csg.cpp 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490
  1. /*************************************************************************/
  2. /* csg.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "csg.h"
  31. #include "core/math/geometry.h"
  32. #include "core/math/math_funcs.h"
  33. #include "core/sort_array.h"
  34. // Static helper functions.
  35. inline static bool is_snapable(const Vector3 &p_point1, const Vector3 &p_point2, real_t p_distance) {
  36. return (p_point1 - p_point2).length_squared() < p_distance * p_distance;
  37. }
  38. inline static Vector2 interpolate_segment_uv(const Vector2 p_segement_points[2], const Vector2 p_uvs[2], const Vector2 &p_interpolation_point) {
  39. float segment_length = (p_segement_points[1] - p_segement_points[0]).length();
  40. if (segment_length < CMP_EPSILON)
  41. return p_uvs[0];
  42. float distance = (p_interpolation_point - p_segement_points[0]).length();
  43. float fraction = distance / segment_length;
  44. return p_uvs[0].lerp(p_uvs[1], fraction);
  45. }
  46. inline static Vector2 interpolate_triangle_uv(const Vector2 p_vertices[3], const Vector2 p_uvs[3], const Vector2 &p_interpolation_point) {
  47. if (p_interpolation_point.distance_squared_to(p_vertices[0]) < CMP_EPSILON2)
  48. return p_uvs[0];
  49. if (p_interpolation_point.distance_squared_to(p_vertices[1]) < CMP_EPSILON2)
  50. return p_uvs[1];
  51. if (p_interpolation_point.distance_squared_to(p_vertices[2]) < CMP_EPSILON2)
  52. return p_uvs[2];
  53. Vector2 edge1 = p_vertices[1] - p_vertices[0];
  54. Vector2 edge2 = p_vertices[2] - p_vertices[0];
  55. Vector2 interpolation = p_interpolation_point - p_vertices[0];
  56. float edge1_on_edge1 = edge1.dot(edge1);
  57. float edge1_on_edge2 = edge1.dot(edge2);
  58. float edge2_on_edge2 = edge2.dot(edge2);
  59. float inter_on_edge1 = interpolation.dot(edge1);
  60. float inter_on_edge2 = interpolation.dot(edge2);
  61. float scale = (edge1_on_edge1 * edge2_on_edge2 - edge1_on_edge2 * edge1_on_edge2);
  62. if (scale == 0)
  63. return p_uvs[0];
  64. float v = (edge2_on_edge2 * inter_on_edge1 - edge1_on_edge2 * inter_on_edge2) / scale;
  65. float w = (edge1_on_edge1 * inter_on_edge2 - edge1_on_edge2 * inter_on_edge1) / scale;
  66. float u = 1.0f - v - w;
  67. return p_uvs[0] * u + p_uvs[1] * v + p_uvs[2] * w;
  68. }
  69. static inline bool ray_intersects_triangle(const Vector3 &p_from, const Vector3 &p_dir, const Vector3 p_vertices[3], float p_tolerance, Vector3 &r_intersection_point) {
  70. Vector3 edge1 = p_vertices[1] - p_vertices[0];
  71. Vector3 edge2 = p_vertices[2] - p_vertices[0];
  72. Vector3 h = p_dir.cross(edge2);
  73. real_t a = edge1.dot(h);
  74. // Check if ray is parallel to triangle.
  75. if (Math::is_zero_approx(a))
  76. return false;
  77. real_t f = 1.0 / a;
  78. Vector3 s = p_from - p_vertices[0];
  79. real_t u = f * s.dot(h);
  80. if (u < 0.0 - p_tolerance || u > 1.0 + p_tolerance)
  81. return false;
  82. Vector3 q = s.cross(edge1);
  83. real_t v = f * p_dir.dot(q);
  84. if (v < 0.0 - p_tolerance || u + v > 1.0 + p_tolerance)
  85. return false;
  86. // Ray intersects triangle.
  87. // Calculate distance.
  88. real_t t = f * edge2.dot(q);
  89. // Confirm triangle is in front of ray.
  90. if (t >= p_tolerance) {
  91. r_intersection_point = p_from + p_dir * t;
  92. return true;
  93. } else
  94. return false;
  95. }
  96. inline bool is_point_in_triangle(const Vector3 &p_point, const Vector3 p_vertices[3], int p_shifted = 0) {
  97. real_t det = p_vertices[0].dot(p_vertices[1].cross(p_vertices[2]));
  98. // If determinant is, zero try shift the triangle and the point.
  99. if (Math::is_zero_approx(det)) {
  100. if (p_shifted > 2) {
  101. // Triangle appears degenerate, so ignore it.
  102. return false;
  103. }
  104. Vector3 shift_by;
  105. shift_by[p_shifted] = 1;
  106. Vector3 shifted_point = p_point + shift_by;
  107. Vector3 shifted_vertices[3] = { p_vertices[0] + shift_by, p_vertices[1] + shift_by, p_vertices[2] + shift_by };
  108. return is_point_in_triangle(shifted_point, shifted_vertices, p_shifted + 1);
  109. }
  110. // Find the barycentric coordinates of the point with respect to the vertices.
  111. real_t lambda[3];
  112. lambda[0] = p_vertices[1].cross(p_vertices[2]).dot(p_point) / det;
  113. lambda[1] = p_vertices[2].cross(p_vertices[0]).dot(p_point) / det;
  114. lambda[2] = p_vertices[0].cross(p_vertices[1]).dot(p_point) / det;
  115. // Point is in the plane if all lambdas sum to 1.
  116. if (!Math::is_equal_approx(lambda[0] + lambda[1] + lambda[2], 1))
  117. return false;
  118. // Point is inside the triangle if all lambdas are positive.
  119. if (lambda[0] < 0 || lambda[1] < 0 || lambda[2] < 0)
  120. return false;
  121. return true;
  122. }
  123. inline static bool are_segements_parallel(const Vector2 p_segment1_points[2], const Vector2 p_segment2_points[2], float p_vertex_snap2) {
  124. Vector2 segment1 = p_segment1_points[1] - p_segment1_points[0];
  125. Vector2 segment2 = p_segment2_points[1] - p_segment2_points[0];
  126. real_t segment1_length2 = segment1.dot(segment1);
  127. real_t segment2_length2 = segment2.dot(segment2);
  128. real_t segment_onto_segment = segment2.dot(segment1);
  129. if (segment1_length2 < p_vertex_snap2 || segment2_length2 < p_vertex_snap2)
  130. return true;
  131. real_t max_separation2;
  132. if (segment1_length2 > segment2_length2) {
  133. max_separation2 = segment2_length2 - segment_onto_segment * segment_onto_segment / segment1_length2;
  134. } else {
  135. max_separation2 = segment1_length2 - segment_onto_segment * segment_onto_segment / segment2_length2;
  136. }
  137. return max_separation2 < p_vertex_snap2;
  138. }
  139. // CSGBrush
  140. void CSGBrush::_regen_face_aabbs() {
  141. for (int i = 0; i < faces.size(); i++) {
  142. faces.write[i].aabb = AABB();
  143. faces.write[i].aabb.position = faces[i].vertices[0];
  144. faces.write[i].aabb.expand_to(faces[i].vertices[1]);
  145. faces.write[i].aabb.expand_to(faces[i].vertices[2]);
  146. }
  147. }
  148. void CSGBrush::build_from_faces(const Vector<Vector3> &p_vertices, const Vector<Vector2> &p_uvs, const Vector<bool> &p_smooth, const Vector<Ref<Material>> &p_materials, const Vector<bool> &p_invert_faces) {
  149. faces.clear();
  150. int vc = p_vertices.size();
  151. ERR_FAIL_COND((vc % 3) != 0);
  152. const Vector3 *rv = p_vertices.ptr();
  153. int uvc = p_uvs.size();
  154. const Vector2 *ruv = p_uvs.ptr();
  155. int sc = p_smooth.size();
  156. const bool *rs = p_smooth.ptr();
  157. int mc = p_materials.size();
  158. const Ref<Material> *rm = p_materials.ptr();
  159. int ic = p_invert_faces.size();
  160. const bool *ri = p_invert_faces.ptr();
  161. Map<Ref<Material>, int> material_map;
  162. faces.resize(p_vertices.size() / 3);
  163. for (int i = 0; i < faces.size(); i++) {
  164. Face &f = faces.write[i];
  165. f.vertices[0] = rv[i * 3 + 0];
  166. f.vertices[1] = rv[i * 3 + 1];
  167. f.vertices[2] = rv[i * 3 + 2];
  168. if (uvc == vc) {
  169. f.uvs[0] = ruv[i * 3 + 0];
  170. f.uvs[1] = ruv[i * 3 + 1];
  171. f.uvs[2] = ruv[i * 3 + 2];
  172. }
  173. if (sc == vc / 3)
  174. f.smooth = rs[i];
  175. else
  176. f.smooth = false;
  177. if (ic == vc / 3)
  178. f.invert = ri[i];
  179. else
  180. f.invert = false;
  181. if (mc == vc / 3) {
  182. Ref<Material> mat = rm[i];
  183. if (mat.is_valid()) {
  184. const Map<Ref<Material>, int>::Element *E = material_map.find(mat);
  185. if (E) {
  186. f.material = E->get();
  187. } else {
  188. f.material = material_map.size();
  189. material_map[mat] = f.material;
  190. }
  191. } else {
  192. f.material = -1;
  193. }
  194. }
  195. }
  196. materials.resize(material_map.size());
  197. for (Map<Ref<Material>, int>::Element *E = material_map.front(); E; E = E->next()) {
  198. materials.write[E->get()] = E->key();
  199. }
  200. _regen_face_aabbs();
  201. }
  202. void CSGBrush::copy_from(const CSGBrush &p_brush, const Transform &p_xform) {
  203. faces = p_brush.faces;
  204. materials = p_brush.materials;
  205. for (int i = 0; i < faces.size(); i++) {
  206. for (int j = 0; j < 3; j++) {
  207. faces.write[i].vertices[j] = p_xform.xform(p_brush.faces[i].vertices[j]);
  208. }
  209. }
  210. _regen_face_aabbs();
  211. }
  212. // CSGBrushOperation
  213. void CSGBrushOperation::merge_brushes(Operation p_operation, const CSGBrush &p_brush_a, const CSGBrush &p_brush_b, CSGBrush &r_merged_brush, float p_vertex_snap) {
  214. // Check for face collisions and add necessary faces.
  215. Build2DFaceCollection build2DFaceCollection;
  216. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  217. for (int j = 0; j < p_brush_b.faces.size(); j++) {
  218. if (p_brush_a.faces[i].aabb.intersects_inclusive(p_brush_b.faces[j].aabb)) {
  219. update_faces(p_brush_a, i, p_brush_b, j, build2DFaceCollection, p_vertex_snap);
  220. }
  221. }
  222. }
  223. // Add faces to MeshMerge.
  224. MeshMerge mesh_merge;
  225. mesh_merge.vertex_snap = p_vertex_snap;
  226. for (int i = 0; i < p_brush_a.faces.size(); i++) {
  227. Ref<Material> material;
  228. if (p_brush_a.faces[i].material != -1) {
  229. material = p_brush_a.materials[p_brush_a.faces[i].material];
  230. }
  231. if (build2DFaceCollection.build2DFacesA.has(i)) {
  232. build2DFaceCollection.build2DFacesA[i].addFacesToMesh(mesh_merge, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  233. } else {
  234. Vector3 points[3];
  235. Vector2 uvs[3];
  236. for (int j = 0; j < 3; j++) {
  237. points[j] = p_brush_a.faces[i].vertices[j];
  238. uvs[j] = p_brush_a.faces[i].uvs[j];
  239. }
  240. mesh_merge.add_face(points, uvs, p_brush_a.faces[i].smooth, p_brush_a.faces[i].invert, material, false);
  241. }
  242. }
  243. for (int i = 0; i < p_brush_b.faces.size(); i++) {
  244. Ref<Material> material;
  245. if (p_brush_b.faces[i].material != -1) {
  246. material = p_brush_b.materials[p_brush_b.faces[i].material];
  247. }
  248. if (build2DFaceCollection.build2DFacesB.has(i)) {
  249. build2DFaceCollection.build2DFacesB[i].addFacesToMesh(mesh_merge, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  250. } else {
  251. Vector3 points[3];
  252. Vector2 uvs[3];
  253. for (int j = 0; j < 3; j++) {
  254. points[j] = p_brush_b.faces[i].vertices[j];
  255. uvs[j] = p_brush_b.faces[i].uvs[j];
  256. }
  257. mesh_merge.add_face(points, uvs, p_brush_b.faces[i].smooth, p_brush_b.faces[i].invert, material, true);
  258. }
  259. }
  260. // Mark faces that ended up inside the intersection.
  261. mesh_merge.mark_inside_faces();
  262. // Create new brush and fill with new faces.
  263. r_merged_brush.faces.clear();
  264. switch (p_operation) {
  265. case OPERATION_UNION: {
  266. int outside_count = 0;
  267. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  268. if (mesh_merge.faces[i].inside)
  269. continue;
  270. outside_count++;
  271. }
  272. r_merged_brush.faces.resize(outside_count);
  273. outside_count = 0;
  274. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  275. if (mesh_merge.faces[i].inside)
  276. continue;
  277. for (int j = 0; j < 3; j++) {
  278. r_merged_brush.faces.write[outside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  279. r_merged_brush.faces.write[outside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  280. }
  281. r_merged_brush.faces.write[outside_count].smooth = mesh_merge.faces[i].smooth;
  282. r_merged_brush.faces.write[outside_count].invert = mesh_merge.faces[i].invert;
  283. r_merged_brush.faces.write[outside_count].material = mesh_merge.faces[i].material_idx;
  284. outside_count++;
  285. }
  286. r_merged_brush._regen_face_aabbs();
  287. } break;
  288. case OPERATION_INTERSECTION: {
  289. int inside_count = 0;
  290. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  291. if (!mesh_merge.faces[i].inside)
  292. continue;
  293. inside_count++;
  294. }
  295. r_merged_brush.faces.resize(inside_count);
  296. inside_count = 0;
  297. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  298. if (!mesh_merge.faces[i].inside)
  299. continue;
  300. for (int j = 0; j < 3; j++) {
  301. r_merged_brush.faces.write[inside_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  302. r_merged_brush.faces.write[inside_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  303. }
  304. r_merged_brush.faces.write[inside_count].smooth = mesh_merge.faces[i].smooth;
  305. r_merged_brush.faces.write[inside_count].invert = mesh_merge.faces[i].invert;
  306. r_merged_brush.faces.write[inside_count].material = mesh_merge.faces[i].material_idx;
  307. inside_count++;
  308. }
  309. r_merged_brush._regen_face_aabbs();
  310. } break;
  311. case OPERATION_SUBSTRACTION: {
  312. int face_count = 0;
  313. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  314. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  315. continue;
  316. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  317. continue;
  318. face_count++;
  319. }
  320. r_merged_brush.faces.resize(face_count);
  321. face_count = 0;
  322. for (int i = 0; i < mesh_merge.faces.size(); i++) {
  323. if (mesh_merge.faces[i].from_b && !mesh_merge.faces[i].inside)
  324. continue;
  325. if (!mesh_merge.faces[i].from_b && mesh_merge.faces[i].inside)
  326. continue;
  327. for (int j = 0; j < 3; j++) {
  328. r_merged_brush.faces.write[face_count].vertices[j] = mesh_merge.points[mesh_merge.faces[i].points[j]];
  329. r_merged_brush.faces.write[face_count].uvs[j] = mesh_merge.faces[i].uvs[j];
  330. }
  331. if (mesh_merge.faces[i].from_b) {
  332. //invert facing of insides of B
  333. SWAP(r_merged_brush.faces.write[face_count].vertices[1], r_merged_brush.faces.write[face_count].vertices[2]);
  334. SWAP(r_merged_brush.faces.write[face_count].uvs[1], r_merged_brush.faces.write[face_count].uvs[2]);
  335. }
  336. r_merged_brush.faces.write[face_count].smooth = mesh_merge.faces[i].smooth;
  337. r_merged_brush.faces.write[face_count].invert = mesh_merge.faces[i].invert;
  338. r_merged_brush.faces.write[face_count].material = mesh_merge.faces[i].material_idx;
  339. face_count++;
  340. }
  341. r_merged_brush._regen_face_aabbs();
  342. } break;
  343. }
  344. // Update the list of materials.
  345. r_merged_brush.materials.resize(mesh_merge.materials.size());
  346. for (const Map<Ref<Material>, int>::Element *E = mesh_merge.materials.front(); E; E = E->next()) {
  347. r_merged_brush.materials.write[E->get()] = E->key();
  348. }
  349. }
  350. // CSGBrushOperation::MeshMerge
  351. // Use a limit to speed up bvh and limit the depth.
  352. #define BVH_LIMIT 8
  353. int CSGBrushOperation::MeshMerge::_create_bvh(FaceBVH *facebvhptr, FaceBVH **facebvhptrptr, int p_from, int p_size, int p_depth, int &r_max_depth, int &r_max_alloc) {
  354. if (p_depth > r_max_depth) {
  355. r_max_depth = p_depth;
  356. }
  357. if (p_size == 0) {
  358. return -1;
  359. }
  360. if (p_size <= BVH_LIMIT) {
  361. for (int i = 0; i < p_size - 1; i++) {
  362. facebvhptrptr[p_from + i]->next = facebvhptrptr[p_from + i + 1] - facebvhptr;
  363. }
  364. return facebvhptrptr[p_from] - facebvhptr;
  365. }
  366. AABB aabb;
  367. aabb = facebvhptrptr[p_from]->aabb;
  368. for (int i = 1; i < p_size; i++) {
  369. aabb.merge_with(facebvhptrptr[p_from + i]->aabb);
  370. }
  371. int li = aabb.get_longest_axis_index();
  372. switch (li) {
  373. case Vector3::AXIS_X: {
  374. SortArray<FaceBVH *, FaceBVHCmpX> sort_x;
  375. sort_x.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  376. //sort_x.sort(&p_bb[p_from],p_size);
  377. } break;
  378. case Vector3::AXIS_Y: {
  379. SortArray<FaceBVH *, FaceBVHCmpY> sort_y;
  380. sort_y.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  381. //sort_y.sort(&p_bb[p_from],p_size);
  382. } break;
  383. case Vector3::AXIS_Z: {
  384. SortArray<FaceBVH *, FaceBVHCmpZ> sort_z;
  385. sort_z.nth_element(0, p_size, p_size / 2, &facebvhptrptr[p_from]);
  386. //sort_z.sort(&p_bb[p_from],p_size);
  387. } break;
  388. }
  389. int left = _create_bvh(facebvhptr, facebvhptrptr, p_from, p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  390. int right = _create_bvh(facebvhptr, facebvhptrptr, p_from + p_size / 2, p_size - p_size / 2, p_depth + 1, r_max_depth, r_max_alloc);
  391. int index = r_max_alloc++;
  392. FaceBVH *_new = &facebvhptr[index];
  393. _new->aabb = aabb;
  394. _new->center = aabb.position + aabb.size * 0.5;
  395. _new->face = -1;
  396. _new->left = left;
  397. _new->right = right;
  398. _new->next = -1;
  399. return index;
  400. }
  401. void CSGBrushOperation::MeshMerge::_add_distance(List<real_t> &r_intersectionsA, List<real_t> &r_intersectionsB, bool p_from_B, real_t p_distance) const {
  402. List<real_t> &intersections = p_from_B ? r_intersectionsB : r_intersectionsA;
  403. // Check if distance exists.
  404. for (const List<real_t>::Element *E = intersections.front(); E; E = E->next())
  405. if (Math::abs(**E - p_distance) < vertex_snap)
  406. return;
  407. intersections.push_back(p_distance);
  408. }
  409. bool CSGBrushOperation::MeshMerge::_bvh_inside(FaceBVH *facebvhptr, int p_max_depth, int p_bvh_first, int p_face_idx) const {
  410. Face face = faces[p_face_idx];
  411. Vector3 face_points[3] = {
  412. points[face.points[0]],
  413. points[face.points[1]],
  414. points[face.points[2]]
  415. };
  416. Vector3 face_center = (face_points[0] + face_points[1] + face_points[2]) / 3.0;
  417. Vector3 face_normal = Plane(face_points[0], face_points[1], face_points[2]).normal;
  418. uint32_t *stack = (uint32_t *)alloca(sizeof(int) * p_max_depth);
  419. enum {
  420. TEST_AABB_BIT = 0,
  421. VISIT_LEFT_BIT = 1,
  422. VISIT_RIGHT_BIT = 2,
  423. VISIT_DONE_BIT = 3,
  424. VISITED_BIT_SHIFT = 29,
  425. NODE_IDX_MASK = (1 << VISITED_BIT_SHIFT) - 1,
  426. VISITED_BIT_MASK = ~NODE_IDX_MASK
  427. };
  428. List<real_t> intersectionsA;
  429. List<real_t> intersectionsB;
  430. int level = 0;
  431. int pos = p_bvh_first;
  432. stack[0] = pos;
  433. while (true) {
  434. uint32_t node = stack[level] & NODE_IDX_MASK;
  435. const FaceBVH *current_facebvhptr = &(facebvhptr[node]);
  436. bool done = false;
  437. switch (stack[level] >> VISITED_BIT_SHIFT) {
  438. case TEST_AABB_BIT: {
  439. if (current_facebvhptr->face >= 0) {
  440. while (current_facebvhptr) {
  441. if (p_face_idx != current_facebvhptr->face &&
  442. current_facebvhptr->aabb.intersects_ray(face_center, face_normal)) {
  443. const Face &current_face = faces[current_facebvhptr->face];
  444. Vector3 current_points[3] = {
  445. points[current_face.points[0]],
  446. points[current_face.points[1]],
  447. points[current_face.points[2]]
  448. };
  449. Vector3 current_normal = Plane(current_points[0], current_points[1], current_points[2]).normal;
  450. Vector3 intersection_point;
  451. // Check if faces are co-planar.
  452. if ((current_normal - face_normal).length_squared() < CMP_EPSILON2 &&
  453. is_point_in_triangle(face_center, current_points)) {
  454. // Only add an intersection if checking a B face.
  455. if (face.from_b)
  456. _add_distance(intersectionsA, intersectionsB, current_face.from_b, 0);
  457. } else if (ray_intersects_triangle(face_center, face_normal, current_points, CMP_EPSILON, intersection_point)) {
  458. real_t distance = (intersection_point - face_center).length();
  459. _add_distance(intersectionsA, intersectionsB, current_face.from_b, distance);
  460. }
  461. }
  462. if (current_facebvhptr->next != -1) {
  463. current_facebvhptr = &facebvhptr[current_facebvhptr->next];
  464. } else {
  465. current_facebvhptr = nullptr;
  466. }
  467. }
  468. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  469. } else {
  470. bool valid = current_facebvhptr->aabb.intersects_ray(face_center, face_normal);
  471. if (!valid) {
  472. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  473. } else {
  474. stack[level] = (VISIT_LEFT_BIT << VISITED_BIT_SHIFT) | node;
  475. }
  476. }
  477. continue;
  478. }
  479. case VISIT_LEFT_BIT: {
  480. stack[level] = (VISIT_RIGHT_BIT << VISITED_BIT_SHIFT) | node;
  481. stack[level + 1] = current_facebvhptr->left | TEST_AABB_BIT;
  482. level++;
  483. continue;
  484. }
  485. case VISIT_RIGHT_BIT: {
  486. stack[level] = (VISIT_DONE_BIT << VISITED_BIT_SHIFT) | node;
  487. stack[level + 1] = current_facebvhptr->right | TEST_AABB_BIT;
  488. level++;
  489. continue;
  490. }
  491. case VISIT_DONE_BIT: {
  492. if (level == 0) {
  493. done = true;
  494. break;
  495. } else
  496. level--;
  497. continue;
  498. }
  499. }
  500. if (done)
  501. break;
  502. }
  503. // Inside if face normal intersects other faces an odd number of times.
  504. return (intersectionsA.size() + intersectionsB.size()) & 1;
  505. }
  506. void CSGBrushOperation::MeshMerge::mark_inside_faces() {
  507. // Mark faces that are inside. This helps later do the boolean ops when merging.
  508. // This approach is very brute force with a bunch of optimizations,
  509. // such as BVH and pre AABB intersection test.
  510. Vector<FaceBVH> bvhvec;
  511. bvhvec.resize(faces.size() * 3); // Will never be larger than this (TODO: Make better)
  512. FaceBVH *facebvh = bvhvec.ptrw();
  513. AABB aabb_a;
  514. AABB aabb_b;
  515. bool first_a = true;
  516. bool first_b = true;
  517. for (int i = 0; i < faces.size(); i++) {
  518. facebvh[i].left = -1;
  519. facebvh[i].right = -1;
  520. facebvh[i].face = i;
  521. facebvh[i].aabb.position = points[faces[i].points[0]];
  522. facebvh[i].aabb.expand_to(points[faces[i].points[1]]);
  523. facebvh[i].aabb.expand_to(points[faces[i].points[2]]);
  524. facebvh[i].center = facebvh[i].aabb.position + facebvh[i].aabb.size * 0.5;
  525. facebvh[i].aabb.grow_by(vertex_snap);
  526. facebvh[i].next = -1;
  527. if (faces[i].from_b) {
  528. if (first_b) {
  529. aabb_b = facebvh[i].aabb;
  530. first_b = false;
  531. } else {
  532. aabb_b.merge_with(facebvh[i].aabb);
  533. }
  534. } else {
  535. if (first_a) {
  536. aabb_a = facebvh[i].aabb;
  537. first_a = false;
  538. } else {
  539. aabb_a.merge_with(facebvh[i].aabb);
  540. }
  541. }
  542. }
  543. AABB intersection_aabb = aabb_a.intersection(aabb_b);
  544. // Check if shape AABBs intersect.
  545. if (intersection_aabb.size == Vector3())
  546. return;
  547. Vector<FaceBVH *> bvhtrvec;
  548. bvhtrvec.resize(faces.size());
  549. FaceBVH **bvhptr = bvhtrvec.ptrw();
  550. for (int i = 0; i < faces.size(); i++) {
  551. bvhptr[i] = &facebvh[i];
  552. }
  553. int max_depth = 0;
  554. int max_alloc = faces.size();
  555. _create_bvh(facebvh, bvhptr, 0, faces.size(), 1, max_depth, max_alloc);
  556. for (int i = 0; i < faces.size(); i++) {
  557. // Check if face AABB intersects the intersection AABB.
  558. if (!intersection_aabb.intersects_inclusive(facebvh[i].aabb))
  559. continue;
  560. if (_bvh_inside(facebvh, max_depth, max_alloc - 1, i))
  561. faces.write[i].inside = true;
  562. }
  563. }
  564. void CSGBrushOperation::MeshMerge::add_face(const Vector3 p_points[], const Vector2 p_uvs[], bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  565. int indices[3];
  566. for (int i = 0; i < 3; i++) {
  567. VertexKey vk;
  568. vk.x = int((double(p_points[i].x) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  569. vk.y = int((double(p_points[i].y) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  570. vk.z = int((double(p_points[i].z) + double(vertex_snap) * 0.31234) / double(vertex_snap));
  571. int res;
  572. if (snap_cache.lookup(vk, res)) {
  573. indices[i] = res;
  574. } else {
  575. indices[i] = points.size();
  576. points.push_back(p_points[i]);
  577. snap_cache.set(vk, indices[i]);
  578. }
  579. }
  580. // Don't add degenerate faces.
  581. if (indices[0] == indices[2] || indices[0] == indices[1] || indices[1] == indices[2])
  582. return;
  583. MeshMerge::Face face;
  584. face.from_b = p_from_b;
  585. face.inside = false;
  586. face.smooth = p_smooth;
  587. face.invert = p_invert;
  588. if (p_material.is_valid()) {
  589. if (!materials.has(p_material)) {
  590. face.material_idx = materials.size();
  591. materials[p_material] = face.material_idx;
  592. } else {
  593. face.material_idx = materials[p_material];
  594. }
  595. } else {
  596. face.material_idx = -1;
  597. }
  598. for (int k = 0; k < 3; k++) {
  599. face.points[k] = indices[k];
  600. face.uvs[k] = p_uvs[k];
  601. }
  602. faces.push_back(face);
  603. }
  604. // CSGBrushOperation::Build2DFaces
  605. int CSGBrushOperation::Build2DFaces::_get_point_idx(const Vector2 &p_point) {
  606. for (int vertex_idx = 0; vertex_idx < vertices.size(); ++vertex_idx) {
  607. if ((p_point - vertices[vertex_idx].point).length_squared() < vertex_snap2)
  608. return vertex_idx;
  609. }
  610. return -1;
  611. }
  612. int CSGBrushOperation::Build2DFaces::_add_vertex(const Vertex2D &p_vertex) {
  613. // Check if vertex exists.
  614. int vertex_id = _get_point_idx(p_vertex.point);
  615. if (vertex_id != -1)
  616. return vertex_id;
  617. vertices.push_back(p_vertex);
  618. return vertices.size() - 1;
  619. }
  620. void CSGBrushOperation::Build2DFaces::_add_vertex_idx_sorted(Vector<int> &r_vertex_indices, int p_new_vertex_index) {
  621. if (p_new_vertex_index >= 0 && r_vertex_indices.find(p_new_vertex_index) == -1) {
  622. ERR_FAIL_COND_MSG(p_new_vertex_index >= vertices.size(), "Invalid vertex index.");
  623. // The first vertex.
  624. if (r_vertex_indices.size() == 0) {
  625. // Simply add it.
  626. r_vertex_indices.push_back(p_new_vertex_index);
  627. return;
  628. }
  629. // The second vertex.
  630. if (r_vertex_indices.size() == 1) {
  631. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  632. Vector2 new_point = vertices[p_new_vertex_index].point;
  633. // Sort along the axis with the greatest difference.
  634. int axis = 0;
  635. if (Math::abs(new_point.x - first_point.x) < Math::abs(new_point.y - first_point.y))
  636. axis = 1;
  637. // Add it to the beginning or the end appropriately.
  638. if (new_point[axis] < first_point[axis])
  639. r_vertex_indices.insert(0, p_new_vertex_index);
  640. else
  641. r_vertex_indices.push_back(p_new_vertex_index);
  642. return;
  643. }
  644. // Third or later vertices.
  645. Vector2 first_point = vertices[r_vertex_indices[0]].point;
  646. Vector2 last_point = vertices[r_vertex_indices[r_vertex_indices.size() - 1]].point;
  647. Vector2 new_point = vertices[p_new_vertex_index].point;
  648. // Determine axis being sorted against i.e. the axis with the greatest difference.
  649. int axis = 0;
  650. if (Math::abs(last_point.x - first_point.x) < Math::abs(last_point.y - first_point.y))
  651. axis = 1;
  652. // Insert the point at the appropriate index.
  653. for (int insert_idx = 0; insert_idx < r_vertex_indices.size(); ++insert_idx) {
  654. Vector2 insert_point = vertices[r_vertex_indices[insert_idx]].point;
  655. if (new_point[axis] < insert_point[axis]) {
  656. r_vertex_indices.insert(insert_idx, p_new_vertex_index);
  657. return;
  658. }
  659. }
  660. // New largest, add it to the end.
  661. r_vertex_indices.push_back(p_new_vertex_index);
  662. }
  663. }
  664. void CSGBrushOperation::Build2DFaces::_merge_faces(const Vector<int> &p_segment_indices) {
  665. int segments = p_segment_indices.size() - 1;
  666. if (segments < 2)
  667. return;
  668. // Faces around an inner vertex are merged by moving the inner vertex to the first vertex.
  669. for (int sorted_idx = 1; sorted_idx < segments; ++sorted_idx) {
  670. int closest_idx = 0;
  671. int inner_idx = p_segment_indices[sorted_idx];
  672. if (sorted_idx > segments / 2) {
  673. // Merge to other segment end.
  674. closest_idx = segments;
  675. // Reverse the merge order.
  676. inner_idx = p_segment_indices[segments + segments / 2 - sorted_idx];
  677. }
  678. // Find the mergeable faces.
  679. Vector<int> merge_faces_idx;
  680. Vector<Face2D> merge_faces;
  681. Vector<int> merge_faces_inner_vertex_idx;
  682. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  683. for (int face_vertex_idx = 0; face_vertex_idx < 3; ++face_vertex_idx) {
  684. if (faces[face_idx].vertex_idx[face_vertex_idx] == inner_idx) {
  685. merge_faces_idx.push_back(face_idx);
  686. merge_faces.push_back(faces[face_idx]);
  687. merge_faces_inner_vertex_idx.push_back(face_vertex_idx);
  688. }
  689. }
  690. }
  691. Vector<int> degenerate_points;
  692. // Create the new faces.
  693. for (int merge_idx = 0; merge_idx < merge_faces.size(); ++merge_idx) {
  694. int outer_edge_idx[2];
  695. outer_edge_idx[0] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 1) % 3];
  696. outer_edge_idx[1] = merge_faces[merge_idx].vertex_idx[(merge_faces_inner_vertex_idx[merge_idx] + 2) % 3];
  697. // Skip flattened faces.
  698. if (outer_edge_idx[0] == p_segment_indices[closest_idx] ||
  699. outer_edge_idx[1] == p_segment_indices[closest_idx])
  700. continue;
  701. //Don't create degenerate triangles.
  702. Vector2 edge1[2] = {
  703. vertices[outer_edge_idx[0]].point,
  704. vertices[p_segment_indices[closest_idx]].point
  705. };
  706. Vector2 edge2[2] = {
  707. vertices[outer_edge_idx[1]].point,
  708. vertices[p_segment_indices[closest_idx]].point
  709. };
  710. if (are_segements_parallel(edge1, edge2, vertex_snap2)) {
  711. degenerate_points.push_back(outer_edge_idx[0]);
  712. degenerate_points.push_back(outer_edge_idx[1]);
  713. continue;
  714. }
  715. // Create new faces.
  716. Face2D new_face;
  717. new_face.vertex_idx[0] = p_segment_indices[closest_idx];
  718. new_face.vertex_idx[1] = outer_edge_idx[0];
  719. new_face.vertex_idx[2] = outer_edge_idx[1];
  720. faces.push_back(new_face);
  721. }
  722. // Delete the old faces in reverse index order.
  723. merge_faces_idx.sort();
  724. merge_faces_idx.invert();
  725. for (int i = 0; i < merge_faces_idx.size(); ++i)
  726. faces.remove(merge_faces_idx[i]);
  727. if (degenerate_points.size() == 0)
  728. continue;
  729. // Split faces using degenerate points.
  730. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  731. Face2D face = faces[face_idx];
  732. Vertex2D face_vertices[3] = {
  733. vertices[face.vertex_idx[0]],
  734. vertices[face.vertex_idx[1]],
  735. vertices[face.vertex_idx[2]]
  736. };
  737. Vector2 face_points[3] = {
  738. face_vertices[0].point,
  739. face_vertices[1].point,
  740. face_vertices[2].point
  741. };
  742. for (int point_idx = 0; point_idx < degenerate_points.size(); ++point_idx) {
  743. int degenerate_idx = degenerate_points[point_idx];
  744. Vector2 point_2D = vertices[degenerate_idx].point;
  745. // Check if point is existing face vertex.
  746. bool existing = false;
  747. for (int i = 0; i < 3; ++i) {
  748. if ((point_2D - face_vertices[i].point).length_squared() < vertex_snap2) {
  749. existing = true;
  750. break;
  751. }
  752. }
  753. if (existing)
  754. continue;
  755. // Check if point is on an each edge.
  756. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  757. Vector2 edge_points[2] = {
  758. face_points[face_edge_idx],
  759. face_points[(face_edge_idx + 1) % 3]
  760. };
  761. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(point_2D, edge_points);
  762. if ((closest_point - point_2D).length_squared() < vertex_snap2) {
  763. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  764. // If new vertex snaps to degenerate vertex, just delete this face.
  765. if (degenerate_idx == opposite_vertex_idx) {
  766. faces.remove(face_idx);
  767. // Update index.
  768. --face_idx;
  769. break;
  770. }
  771. // Create two new faces around the new edge and remove this face.
  772. // The new edge is the last edge.
  773. Face2D left_face;
  774. left_face.vertex_idx[0] = degenerate_idx;
  775. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  776. left_face.vertex_idx[2] = opposite_vertex_idx;
  777. Face2D right_face;
  778. right_face.vertex_idx[0] = opposite_vertex_idx;
  779. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  780. right_face.vertex_idx[2] = degenerate_idx;
  781. faces.remove(face_idx);
  782. faces.insert(face_idx, right_face);
  783. faces.insert(face_idx, left_face);
  784. // Don't check against the new faces.
  785. ++face_idx;
  786. // No need to check other edges.
  787. break;
  788. }
  789. }
  790. }
  791. }
  792. }
  793. }
  794. void CSGBrushOperation::Build2DFaces::_find_edge_intersections(const Vector2 p_segment_points[2], Vector<int> &r_segment_indices) {
  795. // For each face.
  796. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  797. Face2D face = faces[face_idx];
  798. Vertex2D face_vertices[3] = {
  799. vertices[face.vertex_idx[0]],
  800. vertices[face.vertex_idx[1]],
  801. vertices[face.vertex_idx[2]]
  802. };
  803. // Check each edge.
  804. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  805. Vector2 edge_points[2] = {
  806. face_vertices[face_edge_idx].point,
  807. face_vertices[(face_edge_idx + 1) % 3].point
  808. };
  809. Vector2 edge_uvs[2] = {
  810. face_vertices[face_edge_idx].uv,
  811. face_vertices[(face_edge_idx + 1) % 3].uv
  812. };
  813. Vector2 intersection_point;
  814. // First check if the ends of the segment are on the edge.
  815. bool on_edge = false;
  816. for (int edge_point_idx = 0; edge_point_idx < 2; ++edge_point_idx) {
  817. intersection_point = Geometry::get_closest_point_to_segment_2d(p_segment_points[edge_point_idx], edge_points);
  818. if ((intersection_point - p_segment_points[edge_point_idx]).length_squared() < vertex_snap2) {
  819. on_edge = true;
  820. break;
  821. }
  822. }
  823. // Else check if the segment intersects the edge.
  824. if (on_edge || Geometry::segment_intersects_segment_2d(p_segment_points[0], p_segment_points[1], edge_points[0], edge_points[1], &intersection_point)) {
  825. // Check if intersection point is an edge point.
  826. if ((intersection_point - edge_points[0]).length_squared() < vertex_snap2 ||
  827. (intersection_point - edge_points[1]).length_squared() < vertex_snap2)
  828. continue;
  829. // Check if edge exists, by checking if the intersecting segment is parallel to the edge.
  830. if (are_segements_parallel(p_segment_points, edge_points, vertex_snap2))
  831. continue;
  832. // Add the intersection point as a new vertex.
  833. Vertex2D new_vertex;
  834. new_vertex.point = intersection_point;
  835. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, intersection_point);
  836. int new_vertex_idx = _add_vertex(new_vertex);
  837. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  838. _add_vertex_idx_sorted(r_segment_indices, new_vertex_idx);
  839. // If new vertex snaps to opposite vertex, just delete this face.
  840. if (new_vertex_idx == opposite_vertex_idx) {
  841. faces.remove(face_idx);
  842. // Update index.
  843. --face_idx;
  844. break;
  845. }
  846. // Don't create degenerate triangles.
  847. Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
  848. Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
  849. Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
  850. if (are_segements_parallel(split_edge1, new_edge, vertex_snap2) &&
  851. are_segements_parallel(split_edge2, new_edge, vertex_snap2)) {
  852. break;
  853. }
  854. // If opposite point is on the segemnt, add its index to segment indices too.
  855. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(vertices[opposite_vertex_idx].point, p_segment_points);
  856. if ((closest_point - vertices[opposite_vertex_idx].point).length_squared() < vertex_snap2)
  857. _add_vertex_idx_sorted(r_segment_indices, opposite_vertex_idx);
  858. // Create two new faces around the new edge and remove this face.
  859. // The new edge is the last edge.
  860. Face2D left_face;
  861. left_face.vertex_idx[0] = new_vertex_idx;
  862. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  863. left_face.vertex_idx[2] = opposite_vertex_idx;
  864. Face2D right_face;
  865. right_face.vertex_idx[0] = opposite_vertex_idx;
  866. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  867. right_face.vertex_idx[2] = new_vertex_idx;
  868. faces.remove(face_idx);
  869. faces.insert(face_idx, right_face);
  870. faces.insert(face_idx, left_face);
  871. // Check against the new faces.
  872. --face_idx;
  873. break;
  874. }
  875. }
  876. }
  877. }
  878. int CSGBrushOperation::Build2DFaces::_insert_point(const Vector2 &p_point) {
  879. int new_vertex_idx = -1;
  880. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  881. Face2D face = faces[face_idx];
  882. Vertex2D face_vertices[3] = {
  883. vertices[face.vertex_idx[0]],
  884. vertices[face.vertex_idx[1]],
  885. vertices[face.vertex_idx[2]]
  886. };
  887. Vector2 points[3] = {
  888. face_vertices[0].point,
  889. face_vertices[1].point,
  890. face_vertices[2].point
  891. };
  892. Vector2 uvs[3] = {
  893. face_vertices[0].uv,
  894. face_vertices[1].uv,
  895. face_vertices[2].uv
  896. };
  897. // Check if point is existing face vertex.
  898. for (int i = 0; i < 3; ++i) {
  899. if ((p_point - face_vertices[i].point).length_squared() < vertex_snap2)
  900. return face.vertex_idx[i];
  901. }
  902. // Check if point is on an each edge.
  903. bool on_edge = false;
  904. for (int face_edge_idx = 0; face_edge_idx < 3; ++face_edge_idx) {
  905. Vector2 edge_points[2] = {
  906. points[face_edge_idx],
  907. points[(face_edge_idx + 1) % 3]
  908. };
  909. Vector2 edge_uvs[2] = {
  910. uvs[face_edge_idx],
  911. uvs[(face_edge_idx + 1) % 3]
  912. };
  913. Vector2 closest_point = Geometry::get_closest_point_to_segment_2d(p_point, edge_points);
  914. if ((closest_point - p_point).length_squared() < vertex_snap2) {
  915. on_edge = true;
  916. // Add the point as a new vertex.
  917. Vertex2D new_vertex;
  918. new_vertex.point = p_point;
  919. new_vertex.uv = interpolate_segment_uv(edge_points, edge_uvs, p_point);
  920. new_vertex_idx = _add_vertex(new_vertex);
  921. int opposite_vertex_idx = face.vertex_idx[(face_edge_idx + 2) % 3];
  922. // If new vertex snaps to opposite vertex, just delete this face.
  923. if (new_vertex_idx == opposite_vertex_idx) {
  924. faces.remove(face_idx);
  925. // Update index.
  926. --face_idx;
  927. break;
  928. }
  929. // Don't create degenerate triangles.
  930. Vector2 split_edge1[2] = { vertices[new_vertex_idx].point, edge_points[0] };
  931. Vector2 split_edge2[2] = { vertices[new_vertex_idx].point, edge_points[1] };
  932. Vector2 new_edge[2] = { vertices[new_vertex_idx].point, vertices[opposite_vertex_idx].point };
  933. if (are_segements_parallel(split_edge1, new_edge, vertex_snap2) &&
  934. are_segements_parallel(split_edge2, new_edge, vertex_snap2)) {
  935. break;
  936. }
  937. // Create two new faces around the new edge and remove this face.
  938. // The new edge is the last edge.
  939. Face2D left_face;
  940. left_face.vertex_idx[0] = new_vertex_idx;
  941. left_face.vertex_idx[1] = face.vertex_idx[(face_edge_idx + 1) % 3];
  942. left_face.vertex_idx[2] = opposite_vertex_idx;
  943. Face2D right_face;
  944. right_face.vertex_idx[0] = opposite_vertex_idx;
  945. right_face.vertex_idx[1] = face.vertex_idx[face_edge_idx];
  946. right_face.vertex_idx[2] = new_vertex_idx;
  947. faces.remove(face_idx);
  948. faces.insert(face_idx, right_face);
  949. faces.insert(face_idx, left_face);
  950. // Don't check against the new faces.
  951. ++face_idx;
  952. // No need to check other edges.
  953. break;
  954. }
  955. }
  956. // If not on an edge, check if the point is inside the face.
  957. if (!on_edge && Geometry::is_point_in_triangle(p_point, face_vertices[0].point, face_vertices[1].point, face_vertices[2].point)) {
  958. // Add the point as a new vertex.
  959. Vertex2D new_vertex;
  960. new_vertex.point = p_point;
  961. new_vertex.uv = interpolate_triangle_uv(points, uvs, p_point);
  962. new_vertex_idx = _add_vertex(new_vertex);
  963. // Create three new faces around this point and remove this face.
  964. // The new vertex is the last vertex.
  965. for (int i = 0; i < 3; ++i) {
  966. // Don't create degenerate triangles.
  967. Vector2 edge[2] = { points[i], points[(i + 1) % 3] };
  968. Vector2 new_edge1[2] = { vertices[new_vertex_idx].point, points[i] };
  969. Vector2 new_edge2[2] = { vertices[new_vertex_idx].point, points[(i + 1) % 3] };
  970. if (are_segements_parallel(edge, new_edge1, vertex_snap2) &&
  971. are_segements_parallel(edge, new_edge2, vertex_snap2)) {
  972. continue;
  973. }
  974. Face2D new_face;
  975. new_face.vertex_idx[0] = face.vertex_idx[i];
  976. new_face.vertex_idx[1] = face.vertex_idx[(i + 1) % 3];
  977. new_face.vertex_idx[2] = new_vertex_idx;
  978. faces.push_back(new_face);
  979. }
  980. faces.remove(face_idx);
  981. // No need to check other faces.
  982. break;
  983. }
  984. }
  985. return new_vertex_idx;
  986. }
  987. void CSGBrushOperation::Build2DFaces::insert(const CSGBrush &p_brush, int p_face_idx) {
  988. // Find edge points that cross the plane and face points that are in the plane.
  989. // Map those points to 2D.
  990. // Create new faces from those points.
  991. Vector2 points_2D[3];
  992. int points_count = 0;
  993. for (int i = 0; i < 3; i++) {
  994. Vector3 point_3D = p_brush.faces[p_face_idx].vertices[i];
  995. if (plane.has_point(point_3D)) {
  996. // Point is in the plane, add it.
  997. Vector3 point_2D = plane.project(point_3D);
  998. point_2D = to_2D.xform(point_2D);
  999. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  1000. } else {
  1001. Vector3 next_point_3D = p_brush.faces[p_face_idx].vertices[(i + 1) % 3];
  1002. if (plane.has_point(next_point_3D))
  1003. continue; // Next point is in plane, it will be added separately.
  1004. if (plane.is_point_over(point_3D) == plane.is_point_over(next_point_3D))
  1005. continue; // Both points on the same side of the plane, ignore.
  1006. // Edge crosses the plane, find and add the intersection point.
  1007. Vector3 point_2D;
  1008. if (plane.intersects_segment(point_3D, next_point_3D, &point_2D)) {
  1009. point_2D = to_2D.xform(point_2D);
  1010. points_2D[points_count++] = Vector2(point_2D.x, point_2D.y);
  1011. }
  1012. }
  1013. }
  1014. Vector<int> segment_indices;
  1015. Vector2 segment[2];
  1016. int inserted_index[3] = { -1, -1, -1 };
  1017. // Insert points.
  1018. for (int i = 0; i < points_count; ++i) {
  1019. inserted_index[i] = _insert_point(points_2D[i]);
  1020. }
  1021. if (points_count == 2) {
  1022. // Insert a single segment.
  1023. segment[0] = points_2D[0];
  1024. segment[1] = points_2D[1];
  1025. _find_edge_intersections(segment, segment_indices);
  1026. for (int i = 0; i < 2; ++i) {
  1027. _add_vertex_idx_sorted(segment_indices, inserted_index[i]);
  1028. }
  1029. _merge_faces(segment_indices);
  1030. }
  1031. if (points_count == 3) {
  1032. // Insert three segments.
  1033. for (int edge_idx = 0; edge_idx < 3; ++edge_idx) {
  1034. segment[0] = points_2D[edge_idx];
  1035. segment[1] = points_2D[(edge_idx + 1) % 3];
  1036. _find_edge_intersections(segment, segment_indices);
  1037. for (int i = 0; i < 2; ++i) {
  1038. _add_vertex_idx_sorted(segment_indices, inserted_index[(edge_idx + i) % 3]);
  1039. }
  1040. _merge_faces(segment_indices);
  1041. segment_indices.clear();
  1042. }
  1043. }
  1044. }
  1045. void CSGBrushOperation::Build2DFaces::addFacesToMesh(MeshMerge &r_mesh_merge, bool p_smooth, bool p_invert, const Ref<Material> &p_material, bool p_from_b) {
  1046. for (int face_idx = 0; face_idx < faces.size(); ++face_idx) {
  1047. Face2D face = faces[face_idx];
  1048. Vertex2D fv[3] = {
  1049. vertices[face.vertex_idx[0]],
  1050. vertices[face.vertex_idx[1]],
  1051. vertices[face.vertex_idx[2]]
  1052. };
  1053. // Convert 2D vertex points to 3D.
  1054. Vector3 points_3D[3];
  1055. Vector2 uvs[3];
  1056. for (int i = 0; i < 3; ++i) {
  1057. Vector3 point_2D(fv[i].point.x, fv[i].point.y, 0);
  1058. points_3D[i] = to_3D.xform(point_2D);
  1059. uvs[i] = fv[i].uv;
  1060. }
  1061. r_mesh_merge.add_face(points_3D, uvs, p_smooth, p_invert, p_material, p_from_b);
  1062. }
  1063. }
  1064. CSGBrushOperation::Build2DFaces::Build2DFaces(const CSGBrush &p_brush, int p_face_idx, float p_vertex_snap2) :
  1065. vertex_snap2(p_vertex_snap2 * p_vertex_snap2) {
  1066. // Convert 3D vertex points to 2D.
  1067. Vector3 points_3D[3] = {
  1068. p_brush.faces[p_face_idx].vertices[0],
  1069. p_brush.faces[p_face_idx].vertices[1],
  1070. p_brush.faces[p_face_idx].vertices[2],
  1071. };
  1072. plane = Plane(points_3D[0], points_3D[1], points_3D[2]);
  1073. to_3D.origin = points_3D[0];
  1074. to_3D.basis.set_axis(2, plane.normal);
  1075. to_3D.basis.set_axis(0, (points_3D[1] - points_3D[2]).normalized());
  1076. to_3D.basis.set_axis(1, to_3D.basis.get_axis(0).cross(to_3D.basis.get_axis(2)).normalized());
  1077. to_2D = to_3D.affine_inverse();
  1078. Face2D face;
  1079. for (int i = 0; i < 3; i++) {
  1080. Vertex2D vertex;
  1081. Vector3 point_2D = to_2D.xform(points_3D[i]);
  1082. vertex.point.x = point_2D.x;
  1083. vertex.point.y = point_2D.y;
  1084. vertex.uv = p_brush.faces[p_face_idx].uvs[i];
  1085. vertices.push_back(vertex);
  1086. face.vertex_idx[i] = i;
  1087. }
  1088. faces.push_back(face);
  1089. }
  1090. void CSGBrushOperation::update_faces(const CSGBrush &p_brush_a, const int p_face_idx_a, const CSGBrush &p_brush_b, const int p_face_idx_b, Build2DFaceCollection &p_collection, float p_vertex_snap) {
  1091. Vector3 vertices_a[3] = {
  1092. p_brush_a.faces[p_face_idx_a].vertices[0],
  1093. p_brush_a.faces[p_face_idx_a].vertices[1],
  1094. p_brush_a.faces[p_face_idx_a].vertices[2],
  1095. };
  1096. Vector3 vertices_b[3] = {
  1097. p_brush_b.faces[p_face_idx_b].vertices[0],
  1098. p_brush_b.faces[p_face_idx_b].vertices[1],
  1099. p_brush_b.faces[p_face_idx_b].vertices[2],
  1100. };
  1101. // Don't use degenerate faces.
  1102. bool has_degenerate = false;
  1103. if (is_snapable(vertices_a[0], vertices_a[1], p_vertex_snap) ||
  1104. is_snapable(vertices_a[0], vertices_a[2], p_vertex_snap) ||
  1105. is_snapable(vertices_a[1], vertices_a[2], p_vertex_snap)) {
  1106. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces();
  1107. has_degenerate = true;
  1108. }
  1109. if (is_snapable(vertices_b[0], vertices_b[1], p_vertex_snap) ||
  1110. is_snapable(vertices_b[0], vertices_b[2], p_vertex_snap) ||
  1111. is_snapable(vertices_b[1], vertices_b[2], p_vertex_snap)) {
  1112. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces();
  1113. has_degenerate = true;
  1114. }
  1115. if (has_degenerate)
  1116. return;
  1117. // Ensure B has points either side of or in the plane of A.
  1118. int in_plane_count = 0, over_count = 0, under_count = 0;
  1119. Plane plane_a(vertices_a[0], vertices_a[1], vertices_a[2]);
  1120. ERR_FAIL_COND_MSG(plane_a.normal == Vector3(), "Couldn't form plane from Brush A face.");
  1121. for (int i = 0; i < 3; i++) {
  1122. if (plane_a.has_point(vertices_b[i]))
  1123. in_plane_count++;
  1124. else if (plane_a.is_point_over(vertices_b[i]))
  1125. over_count++;
  1126. else
  1127. under_count++;
  1128. }
  1129. // If all points under or over the plane, there is no intesection.
  1130. if (over_count == 3 || under_count == 3)
  1131. return;
  1132. // Ensure A has points either side of or in the plane of B.
  1133. in_plane_count = 0;
  1134. over_count = 0;
  1135. under_count = 0;
  1136. Plane plane_b(vertices_b[0], vertices_b[1], vertices_b[2]);
  1137. ERR_FAIL_COND_MSG(plane_b.normal == Vector3(), "Couldn't form plane from Brush B face.");
  1138. for (int i = 0; i < 3; i++) {
  1139. if (plane_b.has_point(vertices_a[i]))
  1140. in_plane_count++;
  1141. else if (plane_b.is_point_over(vertices_a[i]))
  1142. over_count++;
  1143. else
  1144. under_count++;
  1145. }
  1146. // If all points under or over the plane, there is no intesection.
  1147. if (over_count == 3 || under_count == 3)
  1148. return;
  1149. // Check for intersection using the SAT theorem.
  1150. {
  1151. // Edge pair cross product combinations.
  1152. for (int i = 0; i < 3; i++) {
  1153. Vector3 axis_a = (vertices_a[i] - vertices_a[(i + 1) % 3]).normalized();
  1154. for (int j = 0; j < 3; j++) {
  1155. Vector3 axis_b = (vertices_b[j] - vertices_b[(j + 1) % 3]).normalized();
  1156. Vector3 sep_axis = axis_a.cross(axis_b);
  1157. if (sep_axis == Vector3())
  1158. continue; //colineal
  1159. sep_axis.normalize();
  1160. real_t min_a = 1e20, max_a = -1e20;
  1161. real_t min_b = 1e20, max_b = -1e20;
  1162. for (int k = 0; k < 3; k++) {
  1163. real_t d = sep_axis.dot(vertices_a[k]);
  1164. min_a = MIN(min_a, d);
  1165. max_a = MAX(max_a, d);
  1166. d = sep_axis.dot(vertices_b[k]);
  1167. min_b = MIN(min_b, d);
  1168. max_b = MAX(max_b, d);
  1169. }
  1170. min_b -= (max_a - min_a) * 0.5;
  1171. max_b += (max_a - min_a) * 0.5;
  1172. real_t dmin = min_b - (min_a + max_a) * 0.5;
  1173. real_t dmax = max_b - (min_a + max_a) * 0.5;
  1174. if (dmin > CMP_EPSILON || dmax < -CMP_EPSILON) {
  1175. return; // Does not contain zero, so they don't overlap.
  1176. }
  1177. }
  1178. }
  1179. }
  1180. // If we're still here, the faces probably intersect, so add new faces.
  1181. if (!p_collection.build2DFacesA.has(p_face_idx_a)) {
  1182. p_collection.build2DFacesA[p_face_idx_a] = Build2DFaces(p_brush_a, p_face_idx_a, p_vertex_snap);
  1183. }
  1184. p_collection.build2DFacesA[p_face_idx_a].insert(p_brush_b, p_face_idx_b);
  1185. if (!p_collection.build2DFacesB.has(p_face_idx_b)) {
  1186. p_collection.build2DFacesB[p_face_idx_b] = Build2DFaces(p_brush_b, p_face_idx_b, p_vertex_snap);
  1187. }
  1188. p_collection.build2DFacesB[p_face_idx_b].insert(p_brush_a, p_face_idx_a);
  1189. }