curve.cpp 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700
  1. /*************************************************************************/
  2. /* curve.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "curve.h"
  31. #include "core/core_string_names.h"
  32. template <class T>
  33. static _FORCE_INLINE_ T _bezier_interp(real_t t, T start, T control_1, T control_2, T end) {
  34. /* Formula from Wikipedia article on Bezier curves. */
  35. real_t omt = (1.0 - t);
  36. real_t omt2 = omt * omt;
  37. real_t omt3 = omt2 * omt;
  38. real_t t2 = t * t;
  39. real_t t3 = t2 * t;
  40. return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3;
  41. }
  42. const char *Curve::SIGNAL_RANGE_CHANGED = "range_changed";
  43. Curve::Curve() {
  44. _bake_resolution = 100;
  45. _baked_cache_dirty = false;
  46. _min_value = 0;
  47. _max_value = 1;
  48. _minmax_set_once = 0b00;
  49. }
  50. int Curve::add_point(Vector2 p_pos, real_t left_tangent, real_t right_tangent, TangentMode left_mode, TangentMode right_mode) {
  51. // Add a point and preserve order
  52. // Curve bounds is in 0..1
  53. if (p_pos.x > MAX_X)
  54. p_pos.x = MAX_X;
  55. else if (p_pos.x < MIN_X)
  56. p_pos.x = MIN_X;
  57. int ret = -1;
  58. if (_points.size() == 0) {
  59. _points.push_back(Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
  60. ret = 0;
  61. } else if (_points.size() == 1) {
  62. // TODO Is the `else` able to handle this block already?
  63. real_t diff = p_pos.x - _points[0].pos.x;
  64. if (diff > 0) {
  65. _points.push_back(Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
  66. ret = 1;
  67. } else {
  68. _points.insert(0, Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
  69. ret = 0;
  70. }
  71. } else {
  72. int i = get_index(p_pos.x);
  73. if (i == 0 && p_pos.x < _points[0].pos.x) {
  74. // Insert before anything else
  75. _points.insert(0, Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
  76. ret = 0;
  77. } else {
  78. // Insert between i and i+1
  79. ++i;
  80. _points.insert(i, Point(p_pos, left_tangent, right_tangent, left_mode, right_mode));
  81. ret = i;
  82. }
  83. }
  84. update_auto_tangents(ret);
  85. mark_dirty();
  86. return ret;
  87. }
  88. int Curve::get_index(real_t offset) const {
  89. // Lower-bound float binary search
  90. int imin = 0;
  91. int imax = _points.size() - 1;
  92. while (imax - imin > 1) {
  93. int m = (imin + imax) / 2;
  94. real_t a = _points[m].pos.x;
  95. real_t b = _points[m + 1].pos.x;
  96. if (a < offset && b < offset) {
  97. imin = m;
  98. } else if (a > offset) {
  99. imax = m;
  100. } else {
  101. return m;
  102. }
  103. }
  104. // Will happen if the offset is out of bounds
  105. if (offset > _points[imax].pos.x)
  106. return imax;
  107. return imin;
  108. }
  109. void Curve::clean_dupes() {
  110. bool dirty = false;
  111. for (int i = 1; i < _points.size(); ++i) {
  112. real_t diff = _points[i - 1].pos.x - _points[i].pos.x;
  113. if (diff <= CMP_EPSILON) {
  114. _points.remove(i);
  115. --i;
  116. dirty = true;
  117. }
  118. }
  119. if (dirty)
  120. mark_dirty();
  121. }
  122. void Curve::set_point_left_tangent(int i, real_t tangent) {
  123. ERR_FAIL_INDEX(i, _points.size());
  124. _points.write[i].left_tangent = tangent;
  125. _points.write[i].left_mode = TANGENT_FREE;
  126. mark_dirty();
  127. }
  128. void Curve::set_point_right_tangent(int i, real_t tangent) {
  129. ERR_FAIL_INDEX(i, _points.size());
  130. _points.write[i].right_tangent = tangent;
  131. _points.write[i].right_mode = TANGENT_FREE;
  132. mark_dirty();
  133. }
  134. void Curve::set_point_left_mode(int i, TangentMode p_mode) {
  135. ERR_FAIL_INDEX(i, _points.size());
  136. _points.write[i].left_mode = p_mode;
  137. if (i > 0) {
  138. if (p_mode == TANGENT_LINEAR) {
  139. Vector2 v = (_points[i - 1].pos - _points[i].pos).normalized();
  140. _points.write[i].left_tangent = v.y / v.x;
  141. }
  142. }
  143. mark_dirty();
  144. }
  145. void Curve::set_point_right_mode(int i, TangentMode p_mode) {
  146. ERR_FAIL_INDEX(i, _points.size());
  147. _points.write[i].right_mode = p_mode;
  148. if (i + 1 < _points.size()) {
  149. if (p_mode == TANGENT_LINEAR) {
  150. Vector2 v = (_points[i + 1].pos - _points[i].pos).normalized();
  151. _points.write[i].right_tangent = v.y / v.x;
  152. }
  153. }
  154. mark_dirty();
  155. }
  156. real_t Curve::get_point_left_tangent(int i) const {
  157. ERR_FAIL_INDEX_V(i, _points.size(), 0);
  158. return _points[i].left_tangent;
  159. }
  160. real_t Curve::get_point_right_tangent(int i) const {
  161. ERR_FAIL_INDEX_V(i, _points.size(), 0);
  162. return _points[i].right_tangent;
  163. }
  164. Curve::TangentMode Curve::get_point_left_mode(int i) const {
  165. ERR_FAIL_INDEX_V(i, _points.size(), TANGENT_FREE);
  166. return _points[i].left_mode;
  167. }
  168. Curve::TangentMode Curve::get_point_right_mode(int i) const {
  169. ERR_FAIL_INDEX_V(i, _points.size(), TANGENT_FREE);
  170. return _points[i].right_mode;
  171. }
  172. void Curve::remove_point(int p_index) {
  173. ERR_FAIL_INDEX(p_index, _points.size());
  174. _points.remove(p_index);
  175. mark_dirty();
  176. }
  177. void Curve::clear_points() {
  178. _points.clear();
  179. mark_dirty();
  180. }
  181. void Curve::set_point_value(int p_index, real_t pos) {
  182. ERR_FAIL_INDEX(p_index, _points.size());
  183. _points.write[p_index].pos.y = pos;
  184. update_auto_tangents(p_index);
  185. mark_dirty();
  186. }
  187. int Curve::set_point_offset(int p_index, float offset) {
  188. ERR_FAIL_INDEX_V(p_index, _points.size(), -1);
  189. Point p = _points[p_index];
  190. remove_point(p_index);
  191. int i = add_point(Vector2(offset, p.pos.y));
  192. _points.write[i].left_tangent = p.left_tangent;
  193. _points.write[i].right_tangent = p.right_tangent;
  194. _points.write[i].left_mode = p.left_mode;
  195. _points.write[i].right_mode = p.right_mode;
  196. if (p_index != i)
  197. update_auto_tangents(p_index);
  198. update_auto_tangents(i);
  199. return i;
  200. }
  201. Vector2 Curve::get_point_position(int p_index) const {
  202. ERR_FAIL_INDEX_V(p_index, _points.size(), Vector2(0, 0));
  203. return _points[p_index].pos;
  204. }
  205. Curve::Point Curve::get_point(int p_index) const {
  206. ERR_FAIL_INDEX_V(p_index, _points.size(), Point());
  207. return _points[p_index];
  208. }
  209. void Curve::update_auto_tangents(int i) {
  210. Point &p = _points.write[i];
  211. if (i > 0) {
  212. if (p.left_mode == TANGENT_LINEAR) {
  213. Vector2 v = (_points[i - 1].pos - p.pos).normalized();
  214. p.left_tangent = v.y / v.x;
  215. }
  216. if (_points[i - 1].right_mode == TANGENT_LINEAR) {
  217. Vector2 v = (_points[i - 1].pos - p.pos).normalized();
  218. _points.write[i - 1].right_tangent = v.y / v.x;
  219. }
  220. }
  221. if (i + 1 < _points.size()) {
  222. if (p.right_mode == TANGENT_LINEAR) {
  223. Vector2 v = (_points[i + 1].pos - p.pos).normalized();
  224. p.right_tangent = v.y / v.x;
  225. }
  226. if (_points[i + 1].left_mode == TANGENT_LINEAR) {
  227. Vector2 v = (_points[i + 1].pos - p.pos).normalized();
  228. _points.write[i + 1].left_tangent = v.y / v.x;
  229. }
  230. }
  231. }
  232. #define MIN_Y_RANGE 0.01
  233. void Curve::set_min_value(float p_min) {
  234. if (_minmax_set_once & 0b11 && p_min > _max_value - MIN_Y_RANGE) {
  235. _min_value = _max_value - MIN_Y_RANGE;
  236. } else {
  237. _minmax_set_once |= 0b10; // first bit is "min set"
  238. _min_value = p_min;
  239. }
  240. // Note: min and max are indicative values,
  241. // it's still possible that existing points are out of range at this point.
  242. emit_signal(SIGNAL_RANGE_CHANGED);
  243. }
  244. void Curve::set_max_value(float p_max) {
  245. if (_minmax_set_once & 0b11 && p_max < _min_value + MIN_Y_RANGE) {
  246. _max_value = _min_value + MIN_Y_RANGE;
  247. } else {
  248. _minmax_set_once |= 0b01; // second bit is "max set"
  249. _max_value = p_max;
  250. }
  251. emit_signal(SIGNAL_RANGE_CHANGED);
  252. }
  253. real_t Curve::interpolate(real_t offset) const {
  254. if (_points.size() == 0)
  255. return 0;
  256. if (_points.size() == 1)
  257. return _points[0].pos.y;
  258. int i = get_index(offset);
  259. if (i == _points.size() - 1)
  260. return _points[i].pos.y;
  261. real_t local = offset - _points[i].pos.x;
  262. if (i == 0 && local <= 0)
  263. return _points[0].pos.y;
  264. return interpolate_local_nocheck(i, local);
  265. }
  266. real_t Curve::interpolate_local_nocheck(int index, real_t local_offset) const {
  267. const Point a = _points[index];
  268. const Point b = _points[index + 1];
  269. /* Cubic bezier
  270. *
  271. * ac-----bc
  272. * / \
  273. * / \ Here with a.right_tangent > 0
  274. * / \ and b.left_tangent < 0
  275. * / \
  276. * a b
  277. *
  278. * |-d1--|-d2--|-d3--|
  279. *
  280. * d1 == d2 == d3 == d / 3
  281. */
  282. // Control points are chosen at equal distances
  283. real_t d = b.pos.x - a.pos.x;
  284. if (Math::abs(d) <= CMP_EPSILON)
  285. return b.pos.y;
  286. local_offset /= d;
  287. d /= 3.0;
  288. real_t yac = a.pos.y + d * a.right_tangent;
  289. real_t ybc = b.pos.y - d * b.left_tangent;
  290. real_t y = _bezier_interp(local_offset, a.pos.y, yac, ybc, b.pos.y);
  291. return y;
  292. }
  293. void Curve::mark_dirty() {
  294. _baked_cache_dirty = true;
  295. emit_signal(CoreStringNames::get_singleton()->changed);
  296. }
  297. Array Curve::get_data() const {
  298. Array output;
  299. const unsigned int ELEMS = 5;
  300. output.resize(_points.size() * ELEMS);
  301. for (int j = 0; j < _points.size(); ++j) {
  302. const Point p = _points[j];
  303. int i = j * ELEMS;
  304. output[i] = p.pos;
  305. output[i + 1] = p.left_tangent;
  306. output[i + 2] = p.right_tangent;
  307. output[i + 3] = p.left_mode;
  308. output[i + 4] = p.right_mode;
  309. }
  310. return output;
  311. }
  312. void Curve::set_data(Array input) {
  313. const unsigned int ELEMS = 5;
  314. ERR_FAIL_COND(input.size() % ELEMS != 0);
  315. _points.clear();
  316. // Validate input
  317. for (int i = 0; i < input.size(); i += ELEMS) {
  318. ERR_FAIL_COND(input[i].get_type() != Variant::VECTOR2);
  319. ERR_FAIL_COND(!input[i + 1].is_num());
  320. ERR_FAIL_COND(input[i + 2].get_type() != Variant::FLOAT);
  321. ERR_FAIL_COND(input[i + 3].get_type() != Variant::INT);
  322. int left_mode = input[i + 3];
  323. ERR_FAIL_COND(left_mode < 0 || left_mode >= TANGENT_MODE_COUNT);
  324. ERR_FAIL_COND(input[i + 4].get_type() != Variant::INT);
  325. int right_mode = input[i + 4];
  326. ERR_FAIL_COND(right_mode < 0 || right_mode >= TANGENT_MODE_COUNT);
  327. }
  328. _points.resize(input.size() / ELEMS);
  329. for (int j = 0; j < _points.size(); ++j) {
  330. Point &p = _points.write[j];
  331. int i = j * ELEMS;
  332. p.pos = input[i];
  333. p.left_tangent = input[i + 1];
  334. p.right_tangent = input[i + 2];
  335. // TODO For some reason the compiler won't convert from Variant to enum
  336. int left_mode = input[i + 3];
  337. int right_mode = input[i + 4];
  338. p.left_mode = (TangentMode)left_mode;
  339. p.right_mode = (TangentMode)right_mode;
  340. }
  341. mark_dirty();
  342. }
  343. void Curve::bake() {
  344. _baked_cache.clear();
  345. _baked_cache.resize(_bake_resolution);
  346. for (int i = 1; i < _bake_resolution - 1; ++i) {
  347. real_t x = i / static_cast<real_t>(_bake_resolution);
  348. real_t y = interpolate(x);
  349. _baked_cache.write[i] = y;
  350. }
  351. if (_points.size() != 0) {
  352. _baked_cache.write[0] = _points[0].pos.y;
  353. _baked_cache.write[_baked_cache.size() - 1] = _points[_points.size() - 1].pos.y;
  354. }
  355. _baked_cache_dirty = false;
  356. }
  357. void Curve::set_bake_resolution(int p_resolution) {
  358. ERR_FAIL_COND(p_resolution < 1);
  359. ERR_FAIL_COND(p_resolution > 1000);
  360. _bake_resolution = p_resolution;
  361. _baked_cache_dirty = true;
  362. }
  363. real_t Curve::interpolate_baked(real_t offset) {
  364. if (_baked_cache_dirty) {
  365. // Last-second bake if not done already
  366. bake();
  367. }
  368. // Special cases if the cache is too small
  369. if (_baked_cache.size() == 0) {
  370. if (_points.size() == 0)
  371. return 0;
  372. return _points[0].pos.y;
  373. } else if (_baked_cache.size() == 1) {
  374. return _baked_cache[0];
  375. }
  376. // Get interpolation index
  377. real_t fi = offset * _baked_cache.size();
  378. int i = Math::floor(fi);
  379. if (i < 0) {
  380. i = 0;
  381. fi = 0;
  382. } else if (i >= _baked_cache.size()) {
  383. i = _baked_cache.size() - 1;
  384. fi = 0;
  385. }
  386. // Interpolate
  387. if (i + 1 < _baked_cache.size()) {
  388. real_t t = fi - i;
  389. return Math::lerp(_baked_cache[i], _baked_cache[i + 1], t);
  390. } else {
  391. return _baked_cache[_baked_cache.size() - 1];
  392. }
  393. }
  394. void Curve::ensure_default_setup(float p_min, float p_max) {
  395. if (_points.size() == 0 && _min_value == 0 && _max_value == 1) {
  396. add_point(Vector2(0, 1));
  397. add_point(Vector2(1, 1));
  398. set_min_value(p_min);
  399. set_max_value(p_max);
  400. }
  401. }
  402. void Curve::_bind_methods() {
  403. ClassDB::bind_method(D_METHOD("get_point_count"), &Curve::get_point_count);
  404. ClassDB::bind_method(D_METHOD("add_point", "position", "left_tangent", "right_tangent", "left_mode", "right_mode"), &Curve::add_point, DEFVAL(0), DEFVAL(0), DEFVAL(TANGENT_FREE), DEFVAL(TANGENT_FREE));
  405. ClassDB::bind_method(D_METHOD("remove_point", "index"), &Curve::remove_point);
  406. ClassDB::bind_method(D_METHOD("clear_points"), &Curve::clear_points);
  407. ClassDB::bind_method(D_METHOD("get_point_position", "index"), &Curve::get_point_position);
  408. ClassDB::bind_method(D_METHOD("set_point_value", "index", "y"), &Curve::set_point_value);
  409. ClassDB::bind_method(D_METHOD("set_point_offset", "index", "offset"), &Curve::set_point_offset);
  410. ClassDB::bind_method(D_METHOD("interpolate", "offset"), &Curve::interpolate);
  411. ClassDB::bind_method(D_METHOD("interpolate_baked", "offset"), &Curve::interpolate_baked);
  412. ClassDB::bind_method(D_METHOD("get_point_left_tangent", "index"), &Curve::get_point_left_tangent);
  413. ClassDB::bind_method(D_METHOD("get_point_right_tangent", "index"), &Curve::get_point_right_tangent);
  414. ClassDB::bind_method(D_METHOD("get_point_left_mode", "index"), &Curve::get_point_left_mode);
  415. ClassDB::bind_method(D_METHOD("get_point_right_mode", "index"), &Curve::get_point_right_mode);
  416. ClassDB::bind_method(D_METHOD("set_point_left_tangent", "index", "tangent"), &Curve::set_point_left_tangent);
  417. ClassDB::bind_method(D_METHOD("set_point_right_tangent", "index", "tangent"), &Curve::set_point_right_tangent);
  418. ClassDB::bind_method(D_METHOD("set_point_left_mode", "index", "mode"), &Curve::set_point_left_mode);
  419. ClassDB::bind_method(D_METHOD("set_point_right_mode", "index", "mode"), &Curve::set_point_right_mode);
  420. ClassDB::bind_method(D_METHOD("get_min_value"), &Curve::get_min_value);
  421. ClassDB::bind_method(D_METHOD("set_min_value", "min"), &Curve::set_min_value);
  422. ClassDB::bind_method(D_METHOD("get_max_value"), &Curve::get_max_value);
  423. ClassDB::bind_method(D_METHOD("set_max_value", "max"), &Curve::set_max_value);
  424. ClassDB::bind_method(D_METHOD("clean_dupes"), &Curve::clean_dupes);
  425. ClassDB::bind_method(D_METHOD("bake"), &Curve::bake);
  426. ClassDB::bind_method(D_METHOD("get_bake_resolution"), &Curve::get_bake_resolution);
  427. ClassDB::bind_method(D_METHOD("set_bake_resolution", "resolution"), &Curve::set_bake_resolution);
  428. ClassDB::bind_method(D_METHOD("_get_data"), &Curve::get_data);
  429. ClassDB::bind_method(D_METHOD("_set_data", "data"), &Curve::set_data);
  430. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "min_value", PROPERTY_HINT_RANGE, "-1024,1024,0.01"), "set_min_value", "get_min_value");
  431. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "max_value", PROPERTY_HINT_RANGE, "-1024,1024,0.01"), "set_max_value", "get_max_value");
  432. ADD_PROPERTY(PropertyInfo(Variant::INT, "bake_resolution", PROPERTY_HINT_RANGE, "1,1000,1"), "set_bake_resolution", "get_bake_resolution");
  433. ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data");
  434. ADD_SIGNAL(MethodInfo(SIGNAL_RANGE_CHANGED));
  435. BIND_ENUM_CONSTANT(TANGENT_FREE);
  436. BIND_ENUM_CONSTANT(TANGENT_LINEAR);
  437. BIND_ENUM_CONSTANT(TANGENT_MODE_COUNT);
  438. }
  439. int Curve2D::get_point_count() const {
  440. return points.size();
  441. }
  442. void Curve2D::add_point(const Vector2 &p_pos, const Vector2 &p_in, const Vector2 &p_out, int p_atpos) {
  443. Point n;
  444. n.pos = p_pos;
  445. n.in = p_in;
  446. n.out = p_out;
  447. if (p_atpos >= 0 && p_atpos < points.size())
  448. points.insert(p_atpos, n);
  449. else
  450. points.push_back(n);
  451. baked_cache_dirty = true;
  452. emit_signal(CoreStringNames::get_singleton()->changed);
  453. }
  454. void Curve2D::set_point_position(int p_index, const Vector2 &p_pos) {
  455. ERR_FAIL_INDEX(p_index, points.size());
  456. points.write[p_index].pos = p_pos;
  457. baked_cache_dirty = true;
  458. emit_signal(CoreStringNames::get_singleton()->changed);
  459. }
  460. Vector2 Curve2D::get_point_position(int p_index) const {
  461. ERR_FAIL_INDEX_V(p_index, points.size(), Vector2());
  462. return points[p_index].pos;
  463. }
  464. void Curve2D::set_point_in(int p_index, const Vector2 &p_in) {
  465. ERR_FAIL_INDEX(p_index, points.size());
  466. points.write[p_index].in = p_in;
  467. baked_cache_dirty = true;
  468. emit_signal(CoreStringNames::get_singleton()->changed);
  469. }
  470. Vector2 Curve2D::get_point_in(int p_index) const {
  471. ERR_FAIL_INDEX_V(p_index, points.size(), Vector2());
  472. return points[p_index].in;
  473. }
  474. void Curve2D::set_point_out(int p_index, const Vector2 &p_out) {
  475. ERR_FAIL_INDEX(p_index, points.size());
  476. points.write[p_index].out = p_out;
  477. baked_cache_dirty = true;
  478. emit_signal(CoreStringNames::get_singleton()->changed);
  479. }
  480. Vector2 Curve2D::get_point_out(int p_index) const {
  481. ERR_FAIL_INDEX_V(p_index, points.size(), Vector2());
  482. return points[p_index].out;
  483. }
  484. void Curve2D::remove_point(int p_index) {
  485. ERR_FAIL_INDEX(p_index, points.size());
  486. points.remove(p_index);
  487. baked_cache_dirty = true;
  488. emit_signal(CoreStringNames::get_singleton()->changed);
  489. }
  490. void Curve2D::clear_points() {
  491. if (!points.empty()) {
  492. points.clear();
  493. baked_cache_dirty = true;
  494. emit_signal(CoreStringNames::get_singleton()->changed);
  495. }
  496. }
  497. Vector2 Curve2D::interpolate(int p_index, float p_offset) const {
  498. int pc = points.size();
  499. ERR_FAIL_COND_V(pc == 0, Vector2());
  500. if (p_index >= pc - 1)
  501. return points[pc - 1].pos;
  502. else if (p_index < 0)
  503. return points[0].pos;
  504. Vector2 p0 = points[p_index].pos;
  505. Vector2 p1 = p0 + points[p_index].out;
  506. Vector2 p3 = points[p_index + 1].pos;
  507. Vector2 p2 = p3 + points[p_index + 1].in;
  508. return _bezier_interp(p_offset, p0, p1, p2, p3);
  509. }
  510. Vector2 Curve2D::interpolatef(real_t p_findex) const {
  511. if (p_findex < 0)
  512. p_findex = 0;
  513. else if (p_findex >= points.size())
  514. p_findex = points.size();
  515. return interpolate((int)p_findex, Math::fmod(p_findex, (real_t)1.0));
  516. }
  517. void Curve2D::_bake_segment2d(Map<float, Vector2> &r_bake, float p_begin, float p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, float p_tol) const {
  518. float mp = p_begin + (p_end - p_begin) * 0.5;
  519. Vector2 beg = _bezier_interp(p_begin, p_a, p_a + p_out, p_b + p_in, p_b);
  520. Vector2 mid = _bezier_interp(mp, p_a, p_a + p_out, p_b + p_in, p_b);
  521. Vector2 end = _bezier_interp(p_end, p_a, p_a + p_out, p_b + p_in, p_b);
  522. Vector2 na = (mid - beg).normalized();
  523. Vector2 nb = (end - mid).normalized();
  524. float dp = na.dot(nb);
  525. if (dp < Math::cos(Math::deg2rad(p_tol))) {
  526. r_bake[mp] = mid;
  527. }
  528. if (p_depth < p_max_depth) {
  529. _bake_segment2d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol);
  530. _bake_segment2d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol);
  531. }
  532. }
  533. void Curve2D::_bake() const {
  534. if (!baked_cache_dirty)
  535. return;
  536. baked_max_ofs = 0;
  537. baked_cache_dirty = false;
  538. if (points.size() == 0) {
  539. baked_point_cache.resize(0);
  540. return;
  541. }
  542. if (points.size() == 1) {
  543. baked_point_cache.resize(1);
  544. baked_point_cache.set(0, points[0].pos);
  545. return;
  546. }
  547. Vector2 pos = points[0].pos;
  548. List<Vector2> pointlist;
  549. pointlist.push_back(pos); //start always from origin
  550. for (int i = 0; i < points.size() - 1; i++) {
  551. float step = 0.1; // at least 10 substeps ought to be enough?
  552. float p = 0;
  553. while (p < 1.0) {
  554. float np = p + step;
  555. if (np > 1.0)
  556. np = 1.0;
  557. Vector2 npp = _bezier_interp(np, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
  558. float d = pos.distance_to(npp);
  559. if (d > bake_interval) {
  560. // OK! between P and NP there _has_ to be Something, let's go searching!
  561. int iterations = 10; //lots of detail!
  562. float low = p;
  563. float hi = np;
  564. float mid = low + (hi - low) * 0.5;
  565. for (int j = 0; j < iterations; j++) {
  566. npp = _bezier_interp(mid, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
  567. d = pos.distance_to(npp);
  568. if (bake_interval < d)
  569. hi = mid;
  570. else
  571. low = mid;
  572. mid = low + (hi - low) * 0.5;
  573. }
  574. pos = npp;
  575. p = mid;
  576. pointlist.push_back(pos);
  577. } else {
  578. p = np;
  579. }
  580. }
  581. }
  582. Vector2 lastpos = points[points.size() - 1].pos;
  583. float rem = pos.distance_to(lastpos);
  584. baked_max_ofs = (pointlist.size() - 1) * bake_interval + rem;
  585. pointlist.push_back(lastpos);
  586. baked_point_cache.resize(pointlist.size());
  587. Vector2 *w = baked_point_cache.ptrw();
  588. int idx = 0;
  589. for (List<Vector2>::Element *E = pointlist.front(); E; E = E->next()) {
  590. w[idx] = E->get();
  591. idx++;
  592. }
  593. }
  594. float Curve2D::get_baked_length() const {
  595. if (baked_cache_dirty)
  596. _bake();
  597. return baked_max_ofs;
  598. }
  599. Vector2 Curve2D::interpolate_baked(float p_offset, bool p_cubic) const {
  600. if (baked_cache_dirty)
  601. _bake();
  602. //validate//
  603. int pc = baked_point_cache.size();
  604. ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D.");
  605. if (pc == 1)
  606. return baked_point_cache.get(0);
  607. int bpc = baked_point_cache.size();
  608. const Vector2 *r = baked_point_cache.ptr();
  609. if (p_offset < 0)
  610. return r[0];
  611. if (p_offset >= baked_max_ofs)
  612. return r[bpc - 1];
  613. int idx = Math::floor((double)p_offset / (double)bake_interval);
  614. float frac = Math::fmod(p_offset, (float)bake_interval);
  615. if (idx >= bpc - 1) {
  616. return r[bpc - 1];
  617. } else if (idx == bpc - 2) {
  618. if (frac > 0)
  619. frac /= Math::fmod(baked_max_ofs, bake_interval);
  620. } else {
  621. frac /= bake_interval;
  622. }
  623. if (p_cubic) {
  624. Vector2 pre = idx > 0 ? r[idx - 1] : r[idx];
  625. Vector2 post = (idx < (bpc - 2)) ? r[idx + 2] : r[idx + 1];
  626. return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac);
  627. } else {
  628. return r[idx].lerp(r[idx + 1], frac);
  629. }
  630. }
  631. PackedVector2Array Curve2D::get_baked_points() const {
  632. if (baked_cache_dirty)
  633. _bake();
  634. return baked_point_cache;
  635. }
  636. void Curve2D::set_bake_interval(float p_tolerance) {
  637. bake_interval = p_tolerance;
  638. baked_cache_dirty = true;
  639. emit_signal(CoreStringNames::get_singleton()->changed);
  640. }
  641. float Curve2D::get_bake_interval() const {
  642. return bake_interval;
  643. }
  644. Vector2 Curve2D::get_closest_point(const Vector2 &p_to_point) const {
  645. // Brute force method
  646. if (baked_cache_dirty)
  647. _bake();
  648. //validate//
  649. int pc = baked_point_cache.size();
  650. ERR_FAIL_COND_V_MSG(pc == 0, Vector2(), "No points in Curve2D.");
  651. if (pc == 1)
  652. return baked_point_cache.get(0);
  653. const Vector2 *r = baked_point_cache.ptr();
  654. Vector2 nearest;
  655. float nearest_dist = -1.0f;
  656. for (int i = 0; i < pc - 1; i++) {
  657. Vector2 origin = r[i];
  658. Vector2 direction = (r[i + 1] - origin) / bake_interval;
  659. float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
  660. Vector2 proj = origin + direction * d;
  661. float dist = proj.distance_squared_to(p_to_point);
  662. if (nearest_dist < 0.0f || dist < nearest_dist) {
  663. nearest = proj;
  664. nearest_dist = dist;
  665. }
  666. }
  667. return nearest;
  668. }
  669. float Curve2D::get_closest_offset(const Vector2 &p_to_point) const {
  670. // Brute force method
  671. if (baked_cache_dirty)
  672. _bake();
  673. //validate//
  674. int pc = baked_point_cache.size();
  675. ERR_FAIL_COND_V_MSG(pc == 0, 0.0f, "No points in Curve2D.");
  676. if (pc == 1)
  677. return 0.0f;
  678. const Vector2 *r = baked_point_cache.ptr();
  679. float nearest = 0.0f;
  680. float nearest_dist = -1.0f;
  681. float offset = 0.0f;
  682. for (int i = 0; i < pc - 1; i++) {
  683. Vector2 origin = r[i];
  684. Vector2 direction = (r[i + 1] - origin) / bake_interval;
  685. float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
  686. Vector2 proj = origin + direction * d;
  687. float dist = proj.distance_squared_to(p_to_point);
  688. if (nearest_dist < 0.0f || dist < nearest_dist) {
  689. nearest = offset + d;
  690. nearest_dist = dist;
  691. }
  692. offset += bake_interval;
  693. }
  694. return nearest;
  695. }
  696. Dictionary Curve2D::_get_data() const {
  697. Dictionary dc;
  698. PackedVector2Array d;
  699. d.resize(points.size() * 3);
  700. Vector2 *w = d.ptrw();
  701. for (int i = 0; i < points.size(); i++) {
  702. w[i * 3 + 0] = points[i].in;
  703. w[i * 3 + 1] = points[i].out;
  704. w[i * 3 + 2] = points[i].pos;
  705. }
  706. dc["points"] = d;
  707. return dc;
  708. }
  709. void Curve2D::_set_data(const Dictionary &p_data) {
  710. ERR_FAIL_COND(!p_data.has("points"));
  711. PackedVector2Array rp = p_data["points"];
  712. int pc = rp.size();
  713. ERR_FAIL_COND(pc % 3 != 0);
  714. points.resize(pc / 3);
  715. const Vector2 *r = rp.ptr();
  716. for (int i = 0; i < points.size(); i++) {
  717. points.write[i].in = r[i * 3 + 0];
  718. points.write[i].out = r[i * 3 + 1];
  719. points.write[i].pos = r[i * 3 + 2];
  720. }
  721. baked_cache_dirty = true;
  722. }
  723. PackedVector2Array Curve2D::tessellate(int p_max_stages, float p_tolerance) const {
  724. PackedVector2Array tess;
  725. if (points.size() == 0) {
  726. return tess;
  727. }
  728. Vector<Map<float, Vector2>> midpoints;
  729. midpoints.resize(points.size() - 1);
  730. int pc = 1;
  731. for (int i = 0; i < points.size() - 1; i++) {
  732. _bake_segment2d(midpoints.write[i], 0, 1, points[i].pos, points[i].out, points[i + 1].pos, points[i + 1].in, 0, p_max_stages, p_tolerance);
  733. pc++;
  734. pc += midpoints[i].size();
  735. }
  736. tess.resize(pc);
  737. Vector2 *bpw = tess.ptrw();
  738. bpw[0] = points[0].pos;
  739. int pidx = 0;
  740. for (int i = 0; i < points.size() - 1; i++) {
  741. for (Map<float, Vector2>::Element *E = midpoints[i].front(); E; E = E->next()) {
  742. pidx++;
  743. bpw[pidx] = E->get();
  744. }
  745. pidx++;
  746. bpw[pidx] = points[i + 1].pos;
  747. }
  748. return tess;
  749. }
  750. void Curve2D::_bind_methods() {
  751. ClassDB::bind_method(D_METHOD("get_point_count"), &Curve2D::get_point_count);
  752. ClassDB::bind_method(D_METHOD("add_point", "position", "in", "out", "at_position"), &Curve2D::add_point, DEFVAL(Vector2()), DEFVAL(Vector2()), DEFVAL(-1));
  753. ClassDB::bind_method(D_METHOD("set_point_position", "idx", "position"), &Curve2D::set_point_position);
  754. ClassDB::bind_method(D_METHOD("get_point_position", "idx"), &Curve2D::get_point_position);
  755. ClassDB::bind_method(D_METHOD("set_point_in", "idx", "position"), &Curve2D::set_point_in);
  756. ClassDB::bind_method(D_METHOD("get_point_in", "idx"), &Curve2D::get_point_in);
  757. ClassDB::bind_method(D_METHOD("set_point_out", "idx", "position"), &Curve2D::set_point_out);
  758. ClassDB::bind_method(D_METHOD("get_point_out", "idx"), &Curve2D::get_point_out);
  759. ClassDB::bind_method(D_METHOD("remove_point", "idx"), &Curve2D::remove_point);
  760. ClassDB::bind_method(D_METHOD("clear_points"), &Curve2D::clear_points);
  761. ClassDB::bind_method(D_METHOD("interpolate", "idx", "t"), &Curve2D::interpolate);
  762. ClassDB::bind_method(D_METHOD("interpolatef", "fofs"), &Curve2D::interpolatef);
  763. //ClassDB::bind_method(D_METHOD("bake","subdivs"),&Curve2D::bake,DEFVAL(10));
  764. ClassDB::bind_method(D_METHOD("set_bake_interval", "distance"), &Curve2D::set_bake_interval);
  765. ClassDB::bind_method(D_METHOD("get_bake_interval"), &Curve2D::get_bake_interval);
  766. ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve2D::get_baked_length);
  767. ClassDB::bind_method(D_METHOD("interpolate_baked", "offset", "cubic"), &Curve2D::interpolate_baked, DEFVAL(false));
  768. ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve2D::get_baked_points);
  769. ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve2D::get_closest_point);
  770. ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve2D::get_closest_offset);
  771. ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve2D::tessellate, DEFVAL(5), DEFVAL(4));
  772. ClassDB::bind_method(D_METHOD("_get_data"), &Curve2D::_get_data);
  773. ClassDB::bind_method(D_METHOD("_set_data"), &Curve2D::_set_data);
  774. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bake_interval", PROPERTY_HINT_RANGE, "0.01,512,0.01"), "set_bake_interval", "get_bake_interval");
  775. ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data");
  776. }
  777. Curve2D::Curve2D() {
  778. baked_cache_dirty = false;
  779. baked_max_ofs = 0;
  780. /* add_point(Vector2(-1,0,0));
  781. add_point(Vector2(0,2,0));
  782. add_point(Vector2(0,3,5));*/
  783. bake_interval = 5;
  784. }
  785. /***********************************************************************************/
  786. /***********************************************************************************/
  787. /***********************************************************************************/
  788. /***********************************************************************************/
  789. /***********************************************************************************/
  790. /***********************************************************************************/
  791. int Curve3D::get_point_count() const {
  792. return points.size();
  793. }
  794. void Curve3D::add_point(const Vector3 &p_pos, const Vector3 &p_in, const Vector3 &p_out, int p_atpos) {
  795. Point n;
  796. n.pos = p_pos;
  797. n.in = p_in;
  798. n.out = p_out;
  799. if (p_atpos >= 0 && p_atpos < points.size())
  800. points.insert(p_atpos, n);
  801. else
  802. points.push_back(n);
  803. baked_cache_dirty = true;
  804. emit_signal(CoreStringNames::get_singleton()->changed);
  805. }
  806. void Curve3D::set_point_position(int p_index, const Vector3 &p_pos) {
  807. ERR_FAIL_INDEX(p_index, points.size());
  808. points.write[p_index].pos = p_pos;
  809. baked_cache_dirty = true;
  810. emit_signal(CoreStringNames::get_singleton()->changed);
  811. }
  812. Vector3 Curve3D::get_point_position(int p_index) const {
  813. ERR_FAIL_INDEX_V(p_index, points.size(), Vector3());
  814. return points[p_index].pos;
  815. }
  816. void Curve3D::set_point_tilt(int p_index, float p_tilt) {
  817. ERR_FAIL_INDEX(p_index, points.size());
  818. points.write[p_index].tilt = p_tilt;
  819. baked_cache_dirty = true;
  820. emit_signal(CoreStringNames::get_singleton()->changed);
  821. }
  822. float Curve3D::get_point_tilt(int p_index) const {
  823. ERR_FAIL_INDEX_V(p_index, points.size(), 0);
  824. return points[p_index].tilt;
  825. }
  826. void Curve3D::set_point_in(int p_index, const Vector3 &p_in) {
  827. ERR_FAIL_INDEX(p_index, points.size());
  828. points.write[p_index].in = p_in;
  829. baked_cache_dirty = true;
  830. emit_signal(CoreStringNames::get_singleton()->changed);
  831. }
  832. Vector3 Curve3D::get_point_in(int p_index) const {
  833. ERR_FAIL_INDEX_V(p_index, points.size(), Vector3());
  834. return points[p_index].in;
  835. }
  836. void Curve3D::set_point_out(int p_index, const Vector3 &p_out) {
  837. ERR_FAIL_INDEX(p_index, points.size());
  838. points.write[p_index].out = p_out;
  839. baked_cache_dirty = true;
  840. emit_signal(CoreStringNames::get_singleton()->changed);
  841. }
  842. Vector3 Curve3D::get_point_out(int p_index) const {
  843. ERR_FAIL_INDEX_V(p_index, points.size(), Vector3());
  844. return points[p_index].out;
  845. }
  846. void Curve3D::remove_point(int p_index) {
  847. ERR_FAIL_INDEX(p_index, points.size());
  848. points.remove(p_index);
  849. baked_cache_dirty = true;
  850. emit_signal(CoreStringNames::get_singleton()->changed);
  851. }
  852. void Curve3D::clear_points() {
  853. if (!points.empty()) {
  854. points.clear();
  855. baked_cache_dirty = true;
  856. emit_signal(CoreStringNames::get_singleton()->changed);
  857. }
  858. }
  859. Vector3 Curve3D::interpolate(int p_index, float p_offset) const {
  860. int pc = points.size();
  861. ERR_FAIL_COND_V(pc == 0, Vector3());
  862. if (p_index >= pc - 1)
  863. return points[pc - 1].pos;
  864. else if (p_index < 0)
  865. return points[0].pos;
  866. Vector3 p0 = points[p_index].pos;
  867. Vector3 p1 = p0 + points[p_index].out;
  868. Vector3 p3 = points[p_index + 1].pos;
  869. Vector3 p2 = p3 + points[p_index + 1].in;
  870. return _bezier_interp(p_offset, p0, p1, p2, p3);
  871. }
  872. Vector3 Curve3D::interpolatef(real_t p_findex) const {
  873. if (p_findex < 0)
  874. p_findex = 0;
  875. else if (p_findex >= points.size())
  876. p_findex = points.size();
  877. return interpolate((int)p_findex, Math::fmod(p_findex, (real_t)1.0));
  878. }
  879. void Curve3D::_bake_segment3d(Map<float, Vector3> &r_bake, float p_begin, float p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, float p_tol) const {
  880. float mp = p_begin + (p_end - p_begin) * 0.5;
  881. Vector3 beg = _bezier_interp(p_begin, p_a, p_a + p_out, p_b + p_in, p_b);
  882. Vector3 mid = _bezier_interp(mp, p_a, p_a + p_out, p_b + p_in, p_b);
  883. Vector3 end = _bezier_interp(p_end, p_a, p_a + p_out, p_b + p_in, p_b);
  884. Vector3 na = (mid - beg).normalized();
  885. Vector3 nb = (end - mid).normalized();
  886. float dp = na.dot(nb);
  887. if (dp < Math::cos(Math::deg2rad(p_tol))) {
  888. r_bake[mp] = mid;
  889. }
  890. if (p_depth < p_max_depth) {
  891. _bake_segment3d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol);
  892. _bake_segment3d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol);
  893. }
  894. }
  895. void Curve3D::_bake() const {
  896. if (!baked_cache_dirty)
  897. return;
  898. baked_max_ofs = 0;
  899. baked_cache_dirty = false;
  900. if (points.size() == 0) {
  901. baked_point_cache.resize(0);
  902. baked_tilt_cache.resize(0);
  903. baked_up_vector_cache.resize(0);
  904. return;
  905. }
  906. if (points.size() == 1) {
  907. baked_point_cache.resize(1);
  908. baked_point_cache.set(0, points[0].pos);
  909. baked_tilt_cache.resize(1);
  910. baked_tilt_cache.set(0, points[0].tilt);
  911. if (up_vector_enabled) {
  912. baked_up_vector_cache.resize(1);
  913. baked_up_vector_cache.set(0, Vector3(0, 1, 0));
  914. } else
  915. baked_up_vector_cache.resize(0);
  916. return;
  917. }
  918. Vector3 pos = points[0].pos;
  919. List<Plane> pointlist;
  920. pointlist.push_back(Plane(pos, points[0].tilt));
  921. for (int i = 0; i < points.size() - 1; i++) {
  922. float step = 0.1; // at least 10 substeps ought to be enough?
  923. float p = 0;
  924. while (p < 1.0) {
  925. float np = p + step;
  926. if (np > 1.0)
  927. np = 1.0;
  928. Vector3 npp = _bezier_interp(np, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
  929. float d = pos.distance_to(npp);
  930. if (d > bake_interval) {
  931. // OK! between P and NP there _has_ to be Something, let's go searching!
  932. int iterations = 10; //lots of detail!
  933. float low = p;
  934. float hi = np;
  935. float mid = low + (hi - low) * 0.5;
  936. for (int j = 0; j < iterations; j++) {
  937. npp = _bezier_interp(mid, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos);
  938. d = pos.distance_to(npp);
  939. if (bake_interval < d)
  940. hi = mid;
  941. else
  942. low = mid;
  943. mid = low + (hi - low) * 0.5;
  944. }
  945. pos = npp;
  946. p = mid;
  947. Plane post;
  948. post.normal = pos;
  949. post.distance = Math::lerp(points[i].tilt, points[i + 1].tilt, mid);
  950. pointlist.push_back(post);
  951. } else {
  952. p = np;
  953. }
  954. }
  955. }
  956. Vector3 lastpos = points[points.size() - 1].pos;
  957. float lastilt = points[points.size() - 1].tilt;
  958. float rem = pos.distance_to(lastpos);
  959. baked_max_ofs = (pointlist.size() - 1) * bake_interval + rem;
  960. pointlist.push_back(Plane(lastpos, lastilt));
  961. baked_point_cache.resize(pointlist.size());
  962. Vector3 *w = baked_point_cache.ptrw();
  963. int idx = 0;
  964. baked_tilt_cache.resize(pointlist.size());
  965. real_t *wt = baked_tilt_cache.ptrw();
  966. baked_up_vector_cache.resize(up_vector_enabled ? pointlist.size() : 0);
  967. Vector3 *up_write = baked_up_vector_cache.ptrw();
  968. Vector3 sideways;
  969. Vector3 up;
  970. Vector3 forward;
  971. Vector3 prev_sideways = Vector3(1, 0, 0);
  972. Vector3 prev_up = Vector3(0, 1, 0);
  973. Vector3 prev_forward = Vector3(0, 0, 1);
  974. for (List<Plane>::Element *E = pointlist.front(); E; E = E->next()) {
  975. w[idx] = E->get().normal;
  976. wt[idx] = E->get().distance;
  977. if (!up_vector_enabled) {
  978. idx++;
  979. continue;
  980. }
  981. forward = idx > 0 ? (w[idx] - w[idx - 1]).normalized() : prev_forward;
  982. float y_dot = prev_up.dot(forward);
  983. if (y_dot > (1.0f - CMP_EPSILON)) {
  984. sideways = prev_sideways;
  985. up = -prev_forward;
  986. } else if (y_dot < -(1.0f - CMP_EPSILON)) {
  987. sideways = prev_sideways;
  988. up = prev_forward;
  989. } else {
  990. sideways = prev_up.cross(forward).normalized();
  991. up = forward.cross(sideways).normalized();
  992. }
  993. if (idx == 1)
  994. up_write[0] = up;
  995. up_write[idx] = up;
  996. prev_sideways = sideways;
  997. prev_up = up;
  998. prev_forward = forward;
  999. idx++;
  1000. }
  1001. }
  1002. float Curve3D::get_baked_length() const {
  1003. if (baked_cache_dirty)
  1004. _bake();
  1005. return baked_max_ofs;
  1006. }
  1007. Vector3 Curve3D::interpolate_baked(float p_offset, bool p_cubic) const {
  1008. if (baked_cache_dirty)
  1009. _bake();
  1010. //validate//
  1011. int pc = baked_point_cache.size();
  1012. ERR_FAIL_COND_V_MSG(pc == 0, Vector3(), "No points in Curve3D.");
  1013. if (pc == 1)
  1014. return baked_point_cache.get(0);
  1015. int bpc = baked_point_cache.size();
  1016. const Vector3 *r = baked_point_cache.ptr();
  1017. if (p_offset < 0)
  1018. return r[0];
  1019. if (p_offset >= baked_max_ofs)
  1020. return r[bpc - 1];
  1021. int idx = Math::floor((double)p_offset / (double)bake_interval);
  1022. float frac = Math::fmod(p_offset, bake_interval);
  1023. if (idx >= bpc - 1) {
  1024. return r[bpc - 1];
  1025. } else if (idx == bpc - 2) {
  1026. if (frac > 0)
  1027. frac /= Math::fmod(baked_max_ofs, bake_interval);
  1028. } else {
  1029. frac /= bake_interval;
  1030. }
  1031. if (p_cubic) {
  1032. Vector3 pre = idx > 0 ? r[idx - 1] : r[idx];
  1033. Vector3 post = (idx < (bpc - 2)) ? r[idx + 2] : r[idx + 1];
  1034. return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac);
  1035. } else {
  1036. return r[idx].lerp(r[idx + 1], frac);
  1037. }
  1038. }
  1039. float Curve3D::interpolate_baked_tilt(float p_offset) const {
  1040. if (baked_cache_dirty)
  1041. _bake();
  1042. //validate//
  1043. int pc = baked_tilt_cache.size();
  1044. ERR_FAIL_COND_V_MSG(pc == 0, 0, "No tilts in Curve3D.");
  1045. if (pc == 1)
  1046. return baked_tilt_cache.get(0);
  1047. int bpc = baked_tilt_cache.size();
  1048. const real_t *r = baked_tilt_cache.ptr();
  1049. if (p_offset < 0)
  1050. return r[0];
  1051. if (p_offset >= baked_max_ofs)
  1052. return r[bpc - 1];
  1053. int idx = Math::floor((double)p_offset / (double)bake_interval);
  1054. float frac = Math::fmod(p_offset, bake_interval);
  1055. if (idx >= bpc - 1) {
  1056. return r[bpc - 1];
  1057. } else if (idx == bpc - 2) {
  1058. if (frac > 0)
  1059. frac /= Math::fmod(baked_max_ofs, bake_interval);
  1060. } else {
  1061. frac /= bake_interval;
  1062. }
  1063. return Math::lerp(r[idx], r[idx + 1], frac);
  1064. }
  1065. Vector3 Curve3D::interpolate_baked_up_vector(float p_offset, bool p_apply_tilt) const {
  1066. if (baked_cache_dirty)
  1067. _bake();
  1068. //validate//
  1069. // curve may not have baked up vectors
  1070. int count = baked_up_vector_cache.size();
  1071. ERR_FAIL_COND_V_MSG(count == 0, Vector3(0, 1, 0), "No up vectors in Curve3D.");
  1072. if (count == 1)
  1073. return baked_up_vector_cache.get(0);
  1074. const Vector3 *r = baked_up_vector_cache.ptr();
  1075. const Vector3 *rp = baked_point_cache.ptr();
  1076. const real_t *rt = baked_tilt_cache.ptr();
  1077. float offset = CLAMP(p_offset, 0.0f, baked_max_ofs);
  1078. int idx = Math::floor((double)offset / (double)bake_interval);
  1079. float frac = Math::fmod(offset, bake_interval) / bake_interval;
  1080. if (idx == count - 1)
  1081. return p_apply_tilt ? r[idx].rotated((rp[idx] - rp[idx - 1]).normalized(), rt[idx]) : r[idx];
  1082. Vector3 forward = (rp[idx + 1] - rp[idx]).normalized();
  1083. Vector3 up = r[idx];
  1084. Vector3 up1 = r[idx + 1];
  1085. if (p_apply_tilt) {
  1086. up.rotate(forward, rt[idx]);
  1087. up1.rotate(idx + 2 >= count ? forward : (rp[idx + 2] - rp[idx + 1]).normalized(), rt[idx + 1]);
  1088. }
  1089. Vector3 axis = up.cross(up1);
  1090. if (axis.length_squared() < CMP_EPSILON2)
  1091. axis = forward;
  1092. else
  1093. axis.normalize();
  1094. return up.rotated(axis, up.angle_to(up1) * frac);
  1095. }
  1096. PackedVector3Array Curve3D::get_baked_points() const {
  1097. if (baked_cache_dirty)
  1098. _bake();
  1099. return baked_point_cache;
  1100. }
  1101. PackedFloat32Array Curve3D::get_baked_tilts() const {
  1102. if (baked_cache_dirty)
  1103. _bake();
  1104. return baked_tilt_cache;
  1105. }
  1106. PackedVector3Array Curve3D::get_baked_up_vectors() const {
  1107. if (baked_cache_dirty)
  1108. _bake();
  1109. return baked_up_vector_cache;
  1110. }
  1111. Vector3 Curve3D::get_closest_point(const Vector3 &p_to_point) const {
  1112. // Brute force method
  1113. if (baked_cache_dirty)
  1114. _bake();
  1115. //validate//
  1116. int pc = baked_point_cache.size();
  1117. ERR_FAIL_COND_V_MSG(pc == 0, Vector3(), "No points in Curve3D.");
  1118. if (pc == 1)
  1119. return baked_point_cache.get(0);
  1120. const Vector3 *r = baked_point_cache.ptr();
  1121. Vector3 nearest;
  1122. float nearest_dist = -1.0f;
  1123. for (int i = 0; i < pc - 1; i++) {
  1124. Vector3 origin = r[i];
  1125. Vector3 direction = (r[i + 1] - origin) / bake_interval;
  1126. float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
  1127. Vector3 proj = origin + direction * d;
  1128. float dist = proj.distance_squared_to(p_to_point);
  1129. if (nearest_dist < 0.0f || dist < nearest_dist) {
  1130. nearest = proj;
  1131. nearest_dist = dist;
  1132. }
  1133. }
  1134. return nearest;
  1135. }
  1136. float Curve3D::get_closest_offset(const Vector3 &p_to_point) const {
  1137. // Brute force method
  1138. if (baked_cache_dirty)
  1139. _bake();
  1140. //validate//
  1141. int pc = baked_point_cache.size();
  1142. ERR_FAIL_COND_V_MSG(pc == 0, 0.0f, "No points in Curve3D.");
  1143. if (pc == 1)
  1144. return 0.0f;
  1145. const Vector3 *r = baked_point_cache.ptr();
  1146. float nearest = 0.0f;
  1147. float nearest_dist = -1.0f;
  1148. float offset = 0.0f;
  1149. for (int i = 0; i < pc - 1; i++) {
  1150. Vector3 origin = r[i];
  1151. Vector3 direction = (r[i + 1] - origin) / bake_interval;
  1152. float d = CLAMP((p_to_point - origin).dot(direction), 0.0f, bake_interval);
  1153. Vector3 proj = origin + direction * d;
  1154. float dist = proj.distance_squared_to(p_to_point);
  1155. if (nearest_dist < 0.0f || dist < nearest_dist) {
  1156. nearest = offset + d;
  1157. nearest_dist = dist;
  1158. }
  1159. offset += bake_interval;
  1160. }
  1161. return nearest;
  1162. }
  1163. void Curve3D::set_bake_interval(float p_tolerance) {
  1164. bake_interval = p_tolerance;
  1165. baked_cache_dirty = true;
  1166. emit_signal(CoreStringNames::get_singleton()->changed);
  1167. }
  1168. float Curve3D::get_bake_interval() const {
  1169. return bake_interval;
  1170. }
  1171. void Curve3D::set_up_vector_enabled(bool p_enable) {
  1172. up_vector_enabled = p_enable;
  1173. baked_cache_dirty = true;
  1174. emit_signal(CoreStringNames::get_singleton()->changed);
  1175. }
  1176. bool Curve3D::is_up_vector_enabled() const {
  1177. return up_vector_enabled;
  1178. }
  1179. Dictionary Curve3D::_get_data() const {
  1180. Dictionary dc;
  1181. PackedVector3Array d;
  1182. d.resize(points.size() * 3);
  1183. Vector3 *w = d.ptrw();
  1184. PackedFloat32Array t;
  1185. t.resize(points.size());
  1186. real_t *wt = t.ptrw();
  1187. for (int i = 0; i < points.size(); i++) {
  1188. w[i * 3 + 0] = points[i].in;
  1189. w[i * 3 + 1] = points[i].out;
  1190. w[i * 3 + 2] = points[i].pos;
  1191. wt[i] = points[i].tilt;
  1192. }
  1193. dc["points"] = d;
  1194. dc["tilts"] = t;
  1195. return dc;
  1196. }
  1197. void Curve3D::_set_data(const Dictionary &p_data) {
  1198. ERR_FAIL_COND(!p_data.has("points"));
  1199. ERR_FAIL_COND(!p_data.has("tilts"));
  1200. PackedVector3Array rp = p_data["points"];
  1201. int pc = rp.size();
  1202. ERR_FAIL_COND(pc % 3 != 0);
  1203. points.resize(pc / 3);
  1204. const Vector3 *r = rp.ptr();
  1205. PackedFloat32Array rtl = p_data["tilts"];
  1206. const real_t *rt = rtl.ptr();
  1207. for (int i = 0; i < points.size(); i++) {
  1208. points.write[i].in = r[i * 3 + 0];
  1209. points.write[i].out = r[i * 3 + 1];
  1210. points.write[i].pos = r[i * 3 + 2];
  1211. points.write[i].tilt = rt[i];
  1212. }
  1213. baked_cache_dirty = true;
  1214. }
  1215. PackedVector3Array Curve3D::tessellate(int p_max_stages, float p_tolerance) const {
  1216. PackedVector3Array tess;
  1217. if (points.size() == 0) {
  1218. return tess;
  1219. }
  1220. Vector<Map<float, Vector3>> midpoints;
  1221. midpoints.resize(points.size() - 1);
  1222. int pc = 1;
  1223. for (int i = 0; i < points.size() - 1; i++) {
  1224. _bake_segment3d(midpoints.write[i], 0, 1, points[i].pos, points[i].out, points[i + 1].pos, points[i + 1].in, 0, p_max_stages, p_tolerance);
  1225. pc++;
  1226. pc += midpoints[i].size();
  1227. }
  1228. tess.resize(pc);
  1229. Vector3 *bpw = tess.ptrw();
  1230. bpw[0] = points[0].pos;
  1231. int pidx = 0;
  1232. for (int i = 0; i < points.size() - 1; i++) {
  1233. for (Map<float, Vector3>::Element *E = midpoints[i].front(); E; E = E->next()) {
  1234. pidx++;
  1235. bpw[pidx] = E->get();
  1236. }
  1237. pidx++;
  1238. bpw[pidx] = points[i + 1].pos;
  1239. }
  1240. return tess;
  1241. }
  1242. void Curve3D::_bind_methods() {
  1243. ClassDB::bind_method(D_METHOD("get_point_count"), &Curve3D::get_point_count);
  1244. ClassDB::bind_method(D_METHOD("add_point", "position", "in", "out", "at_position"), &Curve3D::add_point, DEFVAL(Vector3()), DEFVAL(Vector3()), DEFVAL(-1));
  1245. ClassDB::bind_method(D_METHOD("set_point_position", "idx", "position"), &Curve3D::set_point_position);
  1246. ClassDB::bind_method(D_METHOD("get_point_position", "idx"), &Curve3D::get_point_position);
  1247. ClassDB::bind_method(D_METHOD("set_point_tilt", "idx", "tilt"), &Curve3D::set_point_tilt);
  1248. ClassDB::bind_method(D_METHOD("get_point_tilt", "idx"), &Curve3D::get_point_tilt);
  1249. ClassDB::bind_method(D_METHOD("set_point_in", "idx", "position"), &Curve3D::set_point_in);
  1250. ClassDB::bind_method(D_METHOD("get_point_in", "idx"), &Curve3D::get_point_in);
  1251. ClassDB::bind_method(D_METHOD("set_point_out", "idx", "position"), &Curve3D::set_point_out);
  1252. ClassDB::bind_method(D_METHOD("get_point_out", "idx"), &Curve3D::get_point_out);
  1253. ClassDB::bind_method(D_METHOD("remove_point", "idx"), &Curve3D::remove_point);
  1254. ClassDB::bind_method(D_METHOD("clear_points"), &Curve3D::clear_points);
  1255. ClassDB::bind_method(D_METHOD("interpolate", "idx", "t"), &Curve3D::interpolate);
  1256. ClassDB::bind_method(D_METHOD("interpolatef", "fofs"), &Curve3D::interpolatef);
  1257. //ClassDB::bind_method(D_METHOD("bake","subdivs"),&Curve3D::bake,DEFVAL(10));
  1258. ClassDB::bind_method(D_METHOD("set_bake_interval", "distance"), &Curve3D::set_bake_interval);
  1259. ClassDB::bind_method(D_METHOD("get_bake_interval"), &Curve3D::get_bake_interval);
  1260. ClassDB::bind_method(D_METHOD("set_up_vector_enabled", "enable"), &Curve3D::set_up_vector_enabled);
  1261. ClassDB::bind_method(D_METHOD("is_up_vector_enabled"), &Curve3D::is_up_vector_enabled);
  1262. ClassDB::bind_method(D_METHOD("get_baked_length"), &Curve3D::get_baked_length);
  1263. ClassDB::bind_method(D_METHOD("interpolate_baked", "offset", "cubic"), &Curve3D::interpolate_baked, DEFVAL(false));
  1264. ClassDB::bind_method(D_METHOD("interpolate_baked_up_vector", "offset", "apply_tilt"), &Curve3D::interpolate_baked_up_vector, DEFVAL(false));
  1265. ClassDB::bind_method(D_METHOD("get_baked_points"), &Curve3D::get_baked_points);
  1266. ClassDB::bind_method(D_METHOD("get_baked_tilts"), &Curve3D::get_baked_tilts);
  1267. ClassDB::bind_method(D_METHOD("get_baked_up_vectors"), &Curve3D::get_baked_up_vectors);
  1268. ClassDB::bind_method(D_METHOD("get_closest_point", "to_point"), &Curve3D::get_closest_point);
  1269. ClassDB::bind_method(D_METHOD("get_closest_offset", "to_point"), &Curve3D::get_closest_offset);
  1270. ClassDB::bind_method(D_METHOD("tessellate", "max_stages", "tolerance_degrees"), &Curve3D::tessellate, DEFVAL(5), DEFVAL(4));
  1271. ClassDB::bind_method(D_METHOD("_get_data"), &Curve3D::_get_data);
  1272. ClassDB::bind_method(D_METHOD("_set_data"), &Curve3D::_set_data);
  1273. ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "bake_interval", PROPERTY_HINT_RANGE, "0.01,512,0.01"), "set_bake_interval", "get_bake_interval");
  1274. ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR | PROPERTY_USAGE_INTERNAL), "_set_data", "_get_data");
  1275. ADD_GROUP("Up Vector", "up_vector_");
  1276. ADD_PROPERTY(PropertyInfo(Variant::BOOL, "up_vector_enabled"), "set_up_vector_enabled", "is_up_vector_enabled");
  1277. }
  1278. Curve3D::Curve3D() {
  1279. baked_cache_dirty = false;
  1280. baked_max_ofs = 0;
  1281. /* add_point(Vector3(-1,0,0));
  1282. add_point(Vector3(0,2,0));
  1283. add_point(Vector3(0,3,5));*/
  1284. bake_interval = 0.2;
  1285. up_vector_enabled = true;
  1286. }