math_2d.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /*************************************************************************/
  2. /* math_2d.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* http://www.godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2016 Juan Linietsky, Ariel Manzur. */
  9. /* */
  10. /* Permission is hereby granted, free of charge, to any person obtaining */
  11. /* a copy of this software and associated documentation files (the */
  12. /* "Software"), to deal in the Software without restriction, including */
  13. /* without limitation the rights to use, copy, modify, merge, publish, */
  14. /* distribute, sublicense, and/or sell copies of the Software, and to */
  15. /* permit persons to whom the Software is furnished to do so, subject to */
  16. /* the following conditions: */
  17. /* */
  18. /* The above copyright notice and this permission notice shall be */
  19. /* included in all copies or substantial portions of the Software. */
  20. /* */
  21. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  22. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  23. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  24. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  25. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  26. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  27. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  28. /*************************************************************************/
  29. #include "math_2d.h"
  30. real_t Vector2::angle() const {
  31. return Math::atan2(x,y);
  32. }
  33. float Vector2::length() const {
  34. return Math::sqrt( x*x + y*y );
  35. }
  36. float Vector2::length_squared() const {
  37. return x*x + y*y;
  38. }
  39. void Vector2::normalize() {
  40. float l = x*x + y*y;
  41. if (l!=0) {
  42. l=Math::sqrt(l);
  43. x/=l;
  44. y/=l;
  45. }
  46. }
  47. Vector2 Vector2::normalized() const {
  48. Vector2 v=*this;
  49. v.normalize();
  50. return v;
  51. }
  52. float Vector2::distance_to(const Vector2& p_vector2) const {
  53. return Math::sqrt( (x-p_vector2.x)*(x-p_vector2.x) + (y-p_vector2.y)*(y-p_vector2.y));
  54. }
  55. float Vector2::distance_squared_to(const Vector2& p_vector2) const {
  56. return (x-p_vector2.x)*(x-p_vector2.x) + (y-p_vector2.y)*(y-p_vector2.y);
  57. }
  58. float Vector2::angle_to(const Vector2& p_vector2) const {
  59. return Math::atan2( tangent().dot(p_vector2), dot(p_vector2) );
  60. }
  61. float Vector2::angle_to_point(const Vector2& p_vector2) const {
  62. return Math::atan2( x-p_vector2.x, y - p_vector2.y );
  63. }
  64. float Vector2::dot(const Vector2& p_other) const {
  65. return x*p_other.x + y*p_other.y;
  66. }
  67. float Vector2::cross(const Vector2& p_other) const {
  68. return x*p_other.y - y*p_other.x;
  69. }
  70. Vector2 Vector2::cross(real_t p_other) const {
  71. return Vector2(p_other*y,-p_other*x);
  72. }
  73. Vector2 Vector2::operator+(const Vector2& p_v) const {
  74. return Vector2(x+p_v.x,y+p_v.y);
  75. }
  76. void Vector2::operator+=(const Vector2& p_v) {
  77. x+=p_v.x; y+=p_v.y;
  78. }
  79. Vector2 Vector2::operator-(const Vector2& p_v) const {
  80. return Vector2(x-p_v.x,y-p_v.y);
  81. }
  82. void Vector2::operator-=(const Vector2& p_v) {
  83. x-=p_v.x; y-=p_v.y;
  84. }
  85. Vector2 Vector2::operator*(const Vector2 &p_v1) const {
  86. return Vector2(x * p_v1.x, y * p_v1.y);
  87. };
  88. Vector2 Vector2::operator*(const float &rvalue) const {
  89. return Vector2(x * rvalue, y * rvalue);
  90. };
  91. void Vector2::operator*=(const float &rvalue) {
  92. x *= rvalue; y *= rvalue;
  93. };
  94. Vector2 Vector2::operator/(const Vector2 &p_v1) const {
  95. return Vector2(x / p_v1.x, y / p_v1.y);
  96. };
  97. Vector2 Vector2::operator/(const float &rvalue) const {
  98. return Vector2(x / rvalue, y / rvalue);
  99. };
  100. void Vector2::operator/=(const float &rvalue) {
  101. x /= rvalue; y /= rvalue;
  102. };
  103. Vector2 Vector2::operator-() const {
  104. return Vector2(-x,-y);
  105. }
  106. bool Vector2::operator==(const Vector2& p_vec2) const {
  107. return x==p_vec2.x && y==p_vec2.y;
  108. }
  109. bool Vector2::operator!=(const Vector2& p_vec2) const {
  110. return x!=p_vec2.x || y!=p_vec2.y;
  111. }
  112. Vector2 Vector2::floor() const {
  113. return Vector2( Math::floor(x), Math::floor(y) );
  114. }
  115. Vector2 Vector2::rotated(float p_by) const {
  116. Vector2 v;
  117. v.set_rotation(angle()+p_by);
  118. v*=length();
  119. return v;
  120. }
  121. Vector2 Vector2::project(const Vector2& p_vec) const {
  122. Vector2 v1=p_vec;
  123. Vector2 v2=*this;
  124. return v2 * ( v1.dot(v2) / v2.dot(v2));
  125. }
  126. Vector2 Vector2::snapped(const Vector2& p_by) const {
  127. return Vector2(
  128. Math::stepify(x,p_by.x),
  129. Math::stepify(y,p_by.y)
  130. );
  131. }
  132. Vector2 Vector2::clamped(real_t p_len) const {
  133. real_t l = length();
  134. Vector2 v = *this;
  135. if (l>0 && p_len<l) {
  136. v/=l;
  137. v*=p_len;
  138. }
  139. return v;
  140. }
  141. Vector2 Vector2::cubic_interpolate_soft(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,float p_t) const {
  142. #if 0
  143. k[0] = ((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) (vi[0],
  144. vi[1],vi[2])); //fk = a0
  145. k[1] = (((*this) (vi[0] + 1, vi[1], vi[2])) - ((*this) ((int) (v(0) -
  146. 1), vi[1],vi[2])))*0.5; //dk = a1
  147. k[2] = (((*this) ((int) (v(0) + 2), vi[1], vi[2])) - ((*this) (vi[0],
  148. vi[1],vi[2])))*0.5; //dk+1
  149. k[3] = k[0]*3 - k[1]*2 - k[2];//a2
  150. k[4] = k[1] + k[2] - k[0]*2;//a3
  151. //ip = a3(t-tk)³ + a2(t-tk)² + a1(t-tk) + a0
  152. //
  153. //a3 = dk + dk+1 - Dk
  154. //a2 = 3Dk - 2dk - dk+1
  155. //a1 = dk
  156. //a0 = fk
  157. //
  158. //dk = (fk+1 - fk-1)*0.5
  159. //Dk = (fk+1 - fk)
  160. float dk =
  161. #endif
  162. return Vector2();
  163. }
  164. Vector2 Vector2::cubic_interpolate(const Vector2& p_b,const Vector2& p_pre_a, const Vector2& p_post_b,float p_t) const {
  165. Vector2 p0=p_pre_a;
  166. Vector2 p1=*this;
  167. Vector2 p2=p_b;
  168. Vector2 p3=p_post_b;
  169. float t = p_t;
  170. float t2 = t * t;
  171. float t3 = t2 * t;
  172. Vector2 out;
  173. out = 0.5f * ( ( p1 * 2.0f) +
  174. ( -p0 + p2 ) * t +
  175. ( 2.0f * p0 - 5.0f * p1 + 4 * p2 - p3 ) * t2 +
  176. ( -p0 + 3.0f * p1 - 3.0f * p2 + p3 ) * t3 );
  177. return out;
  178. /*
  179. float mu = p_t;
  180. float mu2 = mu*mu;
  181. Vector2 a0 = p_post_b - p_b - p_pre_a + *this;
  182. Vector2 a1 = p_pre_a - *this - a0;
  183. Vector2 a2 = p_b - p_pre_a;
  184. Vector2 a3 = *this;
  185. return ( a0*mu*mu2 + a1*mu2 + a2*mu + a3 );
  186. */
  187. /*
  188. float t = p_t;
  189. real_t t2 = t*t;
  190. real_t t3 = t2*t;
  191. real_t a = 2.0*t3- 3.0*t2 + 1;
  192. real_t b = -2.0*t3+ 3.0*t2;
  193. real_t c = t3- 2.0*t2 + t;
  194. real_t d = t3- t2;
  195. Vector2 p_a=*this;
  196. return Vector2(
  197. (a * p_a.x) + (b *p_b.x) + (c * p_pre_a.x) + (d * p_post_b.x),
  198. (a * p_a.y) + (b *p_b.y) + (c * p_pre_a.y) + (d * p_post_b.y)
  199. );
  200. */
  201. }
  202. Vector2 Vector2::slide(const Vector2& p_vec) const {
  203. return p_vec - *this * this->dot(p_vec);
  204. }
  205. Vector2 Vector2::reflect(const Vector2& p_vec) const {
  206. return p_vec - *this * this->dot(p_vec) * 2.0;
  207. }
  208. bool Rect2::intersects_segment(const Point2& p_from, const Point2& p_to, Point2* r_pos,Point2* r_normal) const {
  209. real_t min=0,max=1;
  210. int axis=0;
  211. float sign=0;
  212. for(int i=0;i<2;i++) {
  213. real_t seg_from=p_from[i];
  214. real_t seg_to=p_to[i];
  215. real_t box_begin=pos[i];
  216. real_t box_end=box_begin+size[i];
  217. real_t cmin,cmax;
  218. float csign;
  219. if (seg_from < seg_to) {
  220. if (seg_from > box_end || seg_to < box_begin)
  221. return false;
  222. real_t length=seg_to-seg_from;
  223. cmin = (seg_from < box_begin)?((box_begin - seg_from)/length):0;
  224. cmax = (seg_to > box_end)?((box_end - seg_from)/length):1;
  225. csign=-1.0;
  226. } else {
  227. if (seg_to > box_end || seg_from < box_begin)
  228. return false;
  229. real_t length=seg_to-seg_from;
  230. cmin = (seg_from > box_end)?(box_end - seg_from)/length:0;
  231. cmax = (seg_to < box_begin)?(box_begin - seg_from)/length:1;
  232. csign=1.0;
  233. }
  234. if (cmin > min) {
  235. min = cmin;
  236. axis=i;
  237. sign=csign;
  238. }
  239. if (cmax < max)
  240. max = cmax;
  241. if (max < min)
  242. return false;
  243. }
  244. Vector2 rel=p_to-p_from;
  245. if (r_normal) {
  246. Vector2 normal;
  247. normal[axis]=sign;
  248. *r_normal=normal;
  249. }
  250. if (r_pos)
  251. *r_pos=p_from+rel*min;
  252. return true;
  253. }
  254. /* Point2i */
  255. Point2i Point2i::operator+(const Point2i& p_v) const {
  256. return Point2i(x+p_v.x,y+p_v.y);
  257. }
  258. void Point2i::operator+=(const Point2i& p_v) {
  259. x+=p_v.x; y+=p_v.y;
  260. }
  261. Point2i Point2i::operator-(const Point2i& p_v) const {
  262. return Point2i(x-p_v.x,y-p_v.y);
  263. }
  264. void Point2i::operator-=(const Point2i& p_v) {
  265. x-=p_v.x; y-=p_v.y;
  266. }
  267. Point2i Point2i::operator*(const Point2i &p_v1) const {
  268. return Point2i(x * p_v1.x, y * p_v1.y);
  269. };
  270. Point2i Point2i::operator*(const int &rvalue) const {
  271. return Point2i(x * rvalue, y * rvalue);
  272. };
  273. void Point2i::operator*=(const int &rvalue) {
  274. x *= rvalue; y *= rvalue;
  275. };
  276. Point2i Point2i::operator/(const Point2i &p_v1) const {
  277. return Point2i(x / p_v1.x, y / p_v1.y);
  278. };
  279. Point2i Point2i::operator/(const int &rvalue) const {
  280. return Point2i(x / rvalue, y / rvalue);
  281. };
  282. void Point2i::operator/=(const int &rvalue) {
  283. x /= rvalue; y /= rvalue;
  284. };
  285. Point2i Point2i::operator-() const {
  286. return Point2i(-x,-y);
  287. }
  288. bool Point2i::operator==(const Point2i& p_vec2) const {
  289. return x==p_vec2.x && y==p_vec2.y;
  290. }
  291. bool Point2i::operator!=(const Point2i& p_vec2) const {
  292. return x!=p_vec2.x || y!=p_vec2.y;
  293. }
  294. void Matrix32::invert() {
  295. SWAP(elements[0][1],elements[1][0]);
  296. elements[2] = basis_xform(-elements[2]);
  297. }
  298. Matrix32 Matrix32::inverse() const {
  299. Matrix32 inv=*this;
  300. inv.invert();
  301. return inv;
  302. }
  303. void Matrix32::affine_invert() {
  304. float det = elements[0][0]*elements[1][1] - elements[1][0]*elements[0][1];
  305. ERR_FAIL_COND(det==0);
  306. float idet = 1.0 / det;
  307. SWAP( elements[0][0],elements[1][1] );
  308. elements[0]*=Vector2(idet,-idet);
  309. elements[1]*=Vector2(-idet,idet);
  310. elements[2] = basis_xform(-elements[2]);
  311. }
  312. Matrix32 Matrix32::affine_inverse() const {
  313. Matrix32 inv=*this;
  314. inv.affine_invert();
  315. return inv;
  316. }
  317. void Matrix32::rotate(real_t p_phi) {
  318. Matrix32 rot(p_phi,Vector2());
  319. *this *= rot;
  320. }
  321. real_t Matrix32::get_rotation() const {
  322. return Math::atan2(elements[1].x,elements[1].y);
  323. }
  324. void Matrix32::set_rotation(real_t p_rot) {
  325. real_t cr = Math::cos(p_rot);
  326. real_t sr = Math::sin(p_rot);
  327. elements[0][0]=cr;
  328. elements[1][1]=cr;
  329. elements[0][1]=-sr;
  330. elements[1][0]=sr;
  331. }
  332. Matrix32::Matrix32(real_t p_rot, const Vector2& p_pos) {
  333. real_t cr = Math::cos(p_rot);
  334. real_t sr = Math::sin(p_rot);
  335. elements[0][0]=cr;
  336. elements[1][1]=cr;
  337. elements[0][1]=-sr;
  338. elements[1][0]=sr;
  339. elements[2]=p_pos;
  340. }
  341. Vector2 Matrix32::get_scale() const {
  342. return Vector2( elements[0].length(), elements[1].length() );
  343. }
  344. void Matrix32::scale(const Vector2& p_scale) {
  345. elements[0]*=p_scale;
  346. elements[1]*=p_scale;
  347. elements[2]*=p_scale;
  348. }
  349. void Matrix32::scale_basis(const Vector2& p_scale) {
  350. elements[0]*=p_scale;
  351. elements[1]*=p_scale;
  352. }
  353. void Matrix32::translate( real_t p_tx, real_t p_ty) {
  354. translate(Vector2(p_tx,p_ty));
  355. }
  356. void Matrix32::translate( const Vector2& p_translation ) {
  357. elements[2]+=basis_xform(p_translation);
  358. }
  359. void Matrix32::orthonormalize() {
  360. // Gram-Schmidt Process
  361. Vector2 x=elements[0];
  362. Vector2 y=elements[1];
  363. x.normalize();
  364. y = (y-x*(x.dot(y)));
  365. y.normalize();
  366. elements[0]=x;
  367. elements[1]=y;
  368. }
  369. Matrix32 Matrix32::orthonormalized() const {
  370. Matrix32 on=*this;
  371. on.orthonormalize();
  372. return on;
  373. }
  374. bool Matrix32::operator==(const Matrix32& p_transform) const {
  375. for(int i=0;i<3;i++) {
  376. if (elements[i]!=p_transform.elements[i])
  377. return false;
  378. }
  379. return true;
  380. }
  381. bool Matrix32::operator!=(const Matrix32& p_transform) const {
  382. for(int i=0;i<3;i++) {
  383. if (elements[i]!=p_transform.elements[i])
  384. return true;
  385. }
  386. return false;
  387. }
  388. void Matrix32::operator*=(const Matrix32& p_transform) {
  389. elements[2] = xform(p_transform.elements[2]);
  390. float x0,x1,y0,y1;
  391. /*
  392. x0 = p_transform.tdotx(elements[0]);
  393. x1 = p_transform.tdoty(elements[0]);
  394. y0 = p_transform.tdotx(elements[1]);
  395. y1 = p_transform.tdoty(elements[1]);*/
  396. x0 = tdotx(p_transform.elements[0]);
  397. x1 = tdoty(p_transform.elements[0]);
  398. y0 = tdotx(p_transform.elements[1]);
  399. y1 = tdoty(p_transform.elements[1]);
  400. elements[0][0]=x0;
  401. elements[0][1]=x1;
  402. elements[1][0]=y0;
  403. elements[1][1]=y1;
  404. }
  405. Matrix32 Matrix32::operator*(const Matrix32& p_transform) const {
  406. Matrix32 t = *this;
  407. t*=p_transform;
  408. return t;
  409. }
  410. Matrix32 Matrix32::scaled(const Vector2& p_scale) const {
  411. Matrix32 copy=*this;
  412. copy.scale(p_scale);
  413. return copy;
  414. }
  415. Matrix32 Matrix32::basis_scaled(const Vector2& p_scale) const {
  416. Matrix32 copy=*this;
  417. copy.scale_basis(p_scale);
  418. return copy;
  419. }
  420. Matrix32 Matrix32::untranslated() const {
  421. Matrix32 copy=*this;
  422. copy.elements[2]=Vector2();
  423. return copy;
  424. }
  425. Matrix32 Matrix32::translated(const Vector2& p_offset) const {
  426. Matrix32 copy=*this;
  427. copy.translate(p_offset);
  428. return copy;
  429. }
  430. Matrix32 Matrix32::rotated(float p_phi) const {
  431. Matrix32 copy=*this;
  432. copy.rotate(p_phi);
  433. return copy;
  434. }
  435. float Matrix32::basis_determinant() const {
  436. return elements[0].x * elements[1].y - elements[0].y * elements[1].x;
  437. }
  438. Matrix32 Matrix32::interpolate_with(const Matrix32& p_transform, float p_c) const {
  439. //extract parameters
  440. Vector2 p1 = get_origin();
  441. Vector2 p2 = p_transform.get_origin();
  442. real_t r1 = get_rotation();
  443. real_t r2 = p_transform.get_rotation();
  444. Vector2 s1 = get_scale();
  445. Vector2 s2 = p_transform.get_scale();
  446. //slerp rotation
  447. Vector2 v1(Math::cos(r1), Math::sin(r1));
  448. Vector2 v2(Math::cos(r2), Math::sin(r2));
  449. real_t dot = v1.dot(v2);
  450. dot = (dot < -1.0) ? -1.0 : ((dot > 1.0) ? 1.0 : dot); //clamp dot to [-1,1]
  451. Vector2 v;
  452. if (dot > 0.9995) {
  453. v = Vector2::linear_interpolate(v1, v2, p_c).normalized(); //linearly interpolate to avoid numerical precision issues
  454. } else {
  455. real_t angle = p_c*Math::acos(dot);
  456. Vector2 v3 = (v2 - v1*dot).normalized();
  457. v = v1*Math::cos(angle) + v3*Math::sin(angle);
  458. }
  459. //construct matrix
  460. Matrix32 res(Math::atan2(v.y, v.x), Vector2::linear_interpolate(p1, p2, p_c));
  461. res.scale_basis(Vector2::linear_interpolate(s1, s2, p_c));
  462. return res;
  463. }
  464. Matrix32::operator String() const {
  465. return "("+String(String()+elements[0]+", "+elements[1]+", "+elements[2])+")";
  466. }