| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 | /**************************************************************************//*  quaternion.cpp                                                        *//**************************************************************************//*                         This file is part of:                          *//*                             GODOT ENGINE                               *//*                        https://godotengine.org                         *//**************************************************************************//* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). *//* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur.                  *//*                                                                        *//* Permission is hereby granted, free of charge, to any person obtaining  *//* a copy of this software and associated documentation files (the        *//* "Software"), to deal in the Software without restriction, including    *//* without limitation the rights to use, copy, modify, merge, publish,    *//* distribute, sublicense, and/or sell copies of the Software, and to     *//* permit persons to whom the Software is furnished to do so, subject to  *//* the following conditions:                                              *//*                                                                        *//* The above copyright notice and this permission notice shall be         *//* included in all copies or substantial portions of the Software.        *//*                                                                        *//* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,        *//* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF     *//* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. *//* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY   *//* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,   *//* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE      *//* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.                 *//**************************************************************************/#include "quaternion.h"#include "core/math/basis.h"#include "core/string/ustring.h"real_t Quaternion::angle_to(const Quaternion &p_to) const {	real_t d = dot(p_to);	// acos does clamping.	return Math::acos(d * d * 2 - 1);}Vector3 Quaternion::get_euler(EulerOrder p_order) const {#ifdef MATH_CHECKS	ERR_FAIL_COND_V_MSG(!is_normalized(), Vector3(0, 0, 0), "The quaternion must be normalized.");#endif	return Basis(*this).get_euler(p_order);}void Quaternion::operator*=(const Quaternion &p_q) {	real_t xx = w * p_q.x + x * p_q.w + y * p_q.z - z * p_q.y;	real_t yy = w * p_q.y + y * p_q.w + z * p_q.x - x * p_q.z;	real_t zz = w * p_q.z + z * p_q.w + x * p_q.y - y * p_q.x;	w = w * p_q.w - x * p_q.x - y * p_q.y - z * p_q.z;	x = xx;	y = yy;	z = zz;}Quaternion Quaternion::operator*(const Quaternion &p_q) const {	Quaternion r = *this;	r *= p_q;	return r;}bool Quaternion::is_equal_approx(const Quaternion &p_quaternion) const {	return Math::is_equal_approx(x, p_quaternion.x) && Math::is_equal_approx(y, p_quaternion.y) && Math::is_equal_approx(z, p_quaternion.z) && Math::is_equal_approx(w, p_quaternion.w);}bool Quaternion::is_finite() const {	return Math::is_finite(x) && Math::is_finite(y) && Math::is_finite(z) && Math::is_finite(w);}real_t Quaternion::length() const {	return Math::sqrt(length_squared());}void Quaternion::normalize() {	*this /= length();}Quaternion Quaternion::normalized() const {	return *this / length();}bool Quaternion::is_normalized() const {	return Math::is_equal_approx(length_squared(), 1, (real_t)UNIT_EPSILON); //use less epsilon}Quaternion Quaternion::inverse() const {#ifdef MATH_CHECKS	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The quaternion must be normalized.");#endif	return Quaternion(-x, -y, -z, w);}Quaternion Quaternion::log() const {	Quaternion src = *this;	Vector3 src_v = src.get_axis() * src.get_angle();	return Quaternion(src_v.x, src_v.y, src_v.z, 0);}Quaternion Quaternion::exp() const {	Quaternion src = *this;	Vector3 src_v = Vector3(src.x, src.y, src.z);	real_t theta = src_v.length();	src_v = src_v.normalized();	if (theta < CMP_EPSILON || !src_v.is_normalized()) {		return Quaternion(0, 0, 0, 1);	}	return Quaternion(src_v, theta);}Quaternion Quaternion::slerp(const Quaternion &p_to, const real_t &p_weight) const {#ifdef MATH_CHECKS	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");#endif	Quaternion to1;	real_t omega, cosom, sinom, scale0, scale1;	// calc cosine	cosom = dot(p_to);	// adjust signs (if necessary)	if (cosom < 0.0f) {		cosom = -cosom;		to1 = -p_to;	} else {		to1 = p_to;	}	// calculate coefficients	if ((1.0f - cosom) > (real_t)CMP_EPSILON) {		// standard case (slerp)		omega = Math::acos(cosom);		sinom = Math::sin(omega);		scale0 = Math::sin((1.0 - p_weight) * omega) / sinom;		scale1 = Math::sin(p_weight * omega) / sinom;	} else {		// "from" and "to" quaternions are very close		//  ... so we can do a linear interpolation		scale0 = 1.0f - p_weight;		scale1 = p_weight;	}	// calculate final values	return Quaternion(			scale0 * x + scale1 * to1.x,			scale0 * y + scale1 * to1.y,			scale0 * z + scale1 * to1.z,			scale0 * w + scale1 * to1.w);}Quaternion Quaternion::slerpni(const Quaternion &p_to, const real_t &p_weight) const {#ifdef MATH_CHECKS	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");	ERR_FAIL_COND_V_MSG(!p_to.is_normalized(), Quaternion(), "The end quaternion must be normalized.");#endif	const Quaternion &from = *this;	real_t dot = from.dot(p_to);	if (Math::absf(dot) > 0.9999f) {		return from;	}	real_t theta = Math::acos(dot),		   sinT = 1.0f / Math::sin(theta),		   newFactor = Math::sin(p_weight * theta) * sinT,		   invFactor = Math::sin((1.0f - p_weight) * theta) * sinT;	return Quaternion(invFactor * from.x + newFactor * p_to.x,			invFactor * from.y + newFactor * p_to.y,			invFactor * from.z + newFactor * p_to.z,			invFactor * from.w + newFactor * p_to.w);}Quaternion Quaternion::spherical_cubic_interpolate(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight) const {#ifdef MATH_CHECKS	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");	ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");#endif	Quaternion from_q = *this;	Quaternion pre_q = p_pre_a;	Quaternion to_q = p_b;	Quaternion post_q = p_post_b;	// Align flip phases.	from_q = Basis(from_q).get_rotation_quaternion();	pre_q = Basis(pre_q).get_rotation_quaternion();	to_q = Basis(to_q).get_rotation_quaternion();	post_q = Basis(post_q).get_rotation_quaternion();	// Flip quaternions to shortest path if necessary.	bool flip1 = signbit(from_q.dot(pre_q));	pre_q = flip1 ? -pre_q : pre_q;	bool flip2 = signbit(from_q.dot(to_q));	to_q = flip2 ? -to_q : to_q;	bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));	post_q = flip3 ? -post_q : post_q;	// Calc by Expmap in from_q space.	Quaternion ln_from = Quaternion(0, 0, 0, 0);	Quaternion ln_to = (from_q.inverse() * to_q).log();	Quaternion ln_pre = (from_q.inverse() * pre_q).log();	Quaternion ln_post = (from_q.inverse() * post_q).log();	Quaternion ln = Quaternion(0, 0, 0, 0);	ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);	ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);	ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);	Quaternion q1 = from_q * ln.exp();	// Calc by Expmap in to_q space.	ln_from = (to_q.inverse() * from_q).log();	ln_to = Quaternion(0, 0, 0, 0);	ln_pre = (to_q.inverse() * pre_q).log();	ln_post = (to_q.inverse() * post_q).log();	ln = Quaternion(0, 0, 0, 0);	ln.x = Math::cubic_interpolate(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight);	ln.y = Math::cubic_interpolate(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight);	ln.z = Math::cubic_interpolate(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight);	Quaternion q2 = to_q * ln.exp();	// To cancel error made by Expmap ambiguity, do blending.	return q1.slerp(q2, p_weight);}Quaternion Quaternion::spherical_cubic_interpolate_in_time(const Quaternion &p_b, const Quaternion &p_pre_a, const Quaternion &p_post_b, const real_t &p_weight,		const real_t &p_b_t, const real_t &p_pre_a_t, const real_t &p_post_b_t) const {#ifdef MATH_CHECKS	ERR_FAIL_COND_V_MSG(!is_normalized(), Quaternion(), "The start quaternion must be normalized.");	ERR_FAIL_COND_V_MSG(!p_b.is_normalized(), Quaternion(), "The end quaternion must be normalized.");#endif	Quaternion from_q = *this;	Quaternion pre_q = p_pre_a;	Quaternion to_q = p_b;	Quaternion post_q = p_post_b;	// Align flip phases.	from_q = Basis(from_q).get_rotation_quaternion();	pre_q = Basis(pre_q).get_rotation_quaternion();	to_q = Basis(to_q).get_rotation_quaternion();	post_q = Basis(post_q).get_rotation_quaternion();	// Flip quaternions to shortest path if necessary.	bool flip1 = signbit(from_q.dot(pre_q));	pre_q = flip1 ? -pre_q : pre_q;	bool flip2 = signbit(from_q.dot(to_q));	to_q = flip2 ? -to_q : to_q;	bool flip3 = flip2 ? to_q.dot(post_q) <= 0 : signbit(to_q.dot(post_q));	post_q = flip3 ? -post_q : post_q;	// Calc by Expmap in from_q space.	Quaternion ln_from = Quaternion(0, 0, 0, 0);	Quaternion ln_to = (from_q.inverse() * to_q).log();	Quaternion ln_pre = (from_q.inverse() * pre_q).log();	Quaternion ln_post = (from_q.inverse() * post_q).log();	Quaternion ln = Quaternion(0, 0, 0, 0);	ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);	ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);	ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);	Quaternion q1 = from_q * ln.exp();	// Calc by Expmap in to_q space.	ln_from = (to_q.inverse() * from_q).log();	ln_to = Quaternion(0, 0, 0, 0);	ln_pre = (to_q.inverse() * pre_q).log();	ln_post = (to_q.inverse() * post_q).log();	ln = Quaternion(0, 0, 0, 0);	ln.x = Math::cubic_interpolate_in_time(ln_from.x, ln_to.x, ln_pre.x, ln_post.x, p_weight, p_b_t, p_pre_a_t, p_post_b_t);	ln.y = Math::cubic_interpolate_in_time(ln_from.y, ln_to.y, ln_pre.y, ln_post.y, p_weight, p_b_t, p_pre_a_t, p_post_b_t);	ln.z = Math::cubic_interpolate_in_time(ln_from.z, ln_to.z, ln_pre.z, ln_post.z, p_weight, p_b_t, p_pre_a_t, p_post_b_t);	Quaternion q2 = to_q * ln.exp();	// To cancel error made by Expmap ambiguity, do blending.	return q1.slerp(q2, p_weight);}Quaternion::operator String() const {	return "(" + String::num_real(x, false) + ", " + String::num_real(y, false) + ", " + String::num_real(z, false) + ", " + String::num_real(w, false) + ")";}Vector3 Quaternion::get_axis() const {	if (Math::abs(w) > 1 - CMP_EPSILON) {		return Vector3(x, y, z);	}	real_t r = ((real_t)1) / Math::sqrt(1 - w * w);	return Vector3(x * r, y * r, z * r);}real_t Quaternion::get_angle() const {	return 2 * Math::acos(w);}Quaternion::Quaternion(const Vector3 &p_axis, real_t p_angle) {#ifdef MATH_CHECKS	ERR_FAIL_COND_MSG(!p_axis.is_normalized(), "The axis Vector3 must be normalized.");#endif	real_t d = p_axis.length();	if (d == 0) {		x = 0;		y = 0;		z = 0;		w = 0;	} else {		real_t sin_angle = Math::sin(p_angle * 0.5f);		real_t cos_angle = Math::cos(p_angle * 0.5f);		real_t s = sin_angle / d;		x = p_axis.x * s;		y = p_axis.y * s;		z = p_axis.z * s;		w = cos_angle;	}}// Euler constructor expects a vector containing the Euler angles in the format// (ax, ay, az), where ax is the angle of rotation around x axis,// and similar for other axes.// This implementation uses YXZ convention (Z is the first rotation).Quaternion Quaternion::from_euler(const Vector3 &p_euler) {	real_t half_a1 = p_euler.y * 0.5f;	real_t half_a2 = p_euler.x * 0.5f;	real_t half_a3 = p_euler.z * 0.5f;	// R = Y(a1).X(a2).Z(a3) convention for Euler angles.	// Conversion to quaternion as listed in https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770024290.pdf (page A-6)	// a3 is the angle of the first rotation, following the notation in this reference.	real_t cos_a1 = Math::cos(half_a1);	real_t sin_a1 = Math::sin(half_a1);	real_t cos_a2 = Math::cos(half_a2);	real_t sin_a2 = Math::sin(half_a2);	real_t cos_a3 = Math::cos(half_a3);	real_t sin_a3 = Math::sin(half_a3);	return Quaternion(			sin_a1 * cos_a2 * sin_a3 + cos_a1 * sin_a2 * cos_a3,			sin_a1 * cos_a2 * cos_a3 - cos_a1 * sin_a2 * sin_a3,			-sin_a1 * sin_a2 * cos_a3 + cos_a1 * cos_a2 * sin_a3,			sin_a1 * sin_a2 * sin_a3 + cos_a1 * cos_a2 * cos_a3);}
 |