math_funcs.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. /**************************************************************************/
  2. /* math_funcs.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #pragma once
  31. #include "core/error/error_macros.h"
  32. #include "core/math/math_defs.h"
  33. #include "core/math/random_pcg.h"
  34. #include "core/typedefs.h"
  35. #include <float.h>
  36. #include <math.h>
  37. class Math {
  38. static RandomPCG default_rand;
  39. public:
  40. Math() {} // useless to instance
  41. // Not using 'RANDOM_MAX' to avoid conflict with system headers on some OSes (at least NetBSD).
  42. static const uint64_t RANDOM_32BIT_MAX = 0xFFFFFFFF;
  43. static _ALWAYS_INLINE_ double sin(double p_x) { return ::sin(p_x); }
  44. static _ALWAYS_INLINE_ float sin(float p_x) { return ::sinf(p_x); }
  45. static _ALWAYS_INLINE_ double cos(double p_x) { return ::cos(p_x); }
  46. static _ALWAYS_INLINE_ float cos(float p_x) { return ::cosf(p_x); }
  47. static _ALWAYS_INLINE_ double tan(double p_x) { return ::tan(p_x); }
  48. static _ALWAYS_INLINE_ float tan(float p_x) { return ::tanf(p_x); }
  49. static _ALWAYS_INLINE_ double sinh(double p_x) { return ::sinh(p_x); }
  50. static _ALWAYS_INLINE_ float sinh(float p_x) { return ::sinhf(p_x); }
  51. static _ALWAYS_INLINE_ float sinc(float p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
  52. static _ALWAYS_INLINE_ double sinc(double p_x) { return p_x == 0 ? 1 : ::sin(p_x) / p_x; }
  53. static _ALWAYS_INLINE_ float sincn(float p_x) { return sinc((float)Math_PI * p_x); }
  54. static _ALWAYS_INLINE_ double sincn(double p_x) { return sinc(Math_PI * p_x); }
  55. static _ALWAYS_INLINE_ double cosh(double p_x) { return ::cosh(p_x); }
  56. static _ALWAYS_INLINE_ float cosh(float p_x) { return ::coshf(p_x); }
  57. static _ALWAYS_INLINE_ double tanh(double p_x) { return ::tanh(p_x); }
  58. static _ALWAYS_INLINE_ float tanh(float p_x) { return ::tanhf(p_x); }
  59. // Always does clamping so always safe to use.
  60. static _ALWAYS_INLINE_ double asin(double p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asin(p_x)); }
  61. static _ALWAYS_INLINE_ float asin(float p_x) { return p_x < -1 ? (-Math_PI / 2) : (p_x > 1 ? (Math_PI / 2) : ::asinf(p_x)); }
  62. // Always does clamping so always safe to use.
  63. static _ALWAYS_INLINE_ double acos(double p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acos(p_x)); }
  64. static _ALWAYS_INLINE_ float acos(float p_x) { return p_x < -1 ? Math_PI : (p_x > 1 ? 0 : ::acosf(p_x)); }
  65. static _ALWAYS_INLINE_ double atan(double p_x) { return ::atan(p_x); }
  66. static _ALWAYS_INLINE_ float atan(float p_x) { return ::atanf(p_x); }
  67. static _ALWAYS_INLINE_ double atan2(double p_y, double p_x) { return ::atan2(p_y, p_x); }
  68. static _ALWAYS_INLINE_ float atan2(float p_y, float p_x) { return ::atan2f(p_y, p_x); }
  69. static _ALWAYS_INLINE_ double asinh(double p_x) { return ::asinh(p_x); }
  70. static _ALWAYS_INLINE_ float asinh(float p_x) { return ::asinhf(p_x); }
  71. // Always does clamping so always safe to use.
  72. static _ALWAYS_INLINE_ double acosh(double p_x) { return p_x < 1 ? 0 : ::acosh(p_x); }
  73. static _ALWAYS_INLINE_ float acosh(float p_x) { return p_x < 1 ? 0 : ::acoshf(p_x); }
  74. // Always does clamping so always safe to use.
  75. static _ALWAYS_INLINE_ double atanh(double p_x) { return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanh(p_x)); }
  76. static _ALWAYS_INLINE_ float atanh(float p_x) { return p_x <= -1 ? -INFINITY : (p_x >= 1 ? INFINITY : ::atanhf(p_x)); }
  77. static _ALWAYS_INLINE_ double sqrt(double p_x) { return ::sqrt(p_x); }
  78. static _ALWAYS_INLINE_ float sqrt(float p_x) { return ::sqrtf(p_x); }
  79. static _ALWAYS_INLINE_ double fmod(double p_x, double p_y) { return ::fmod(p_x, p_y); }
  80. static _ALWAYS_INLINE_ float fmod(float p_x, float p_y) { return ::fmodf(p_x, p_y); }
  81. static _ALWAYS_INLINE_ double modf(double p_x, double *r_y) { return ::modf(p_x, r_y); }
  82. static _ALWAYS_INLINE_ float modf(float p_x, float *r_y) { return ::modff(p_x, r_y); }
  83. static _ALWAYS_INLINE_ double floor(double p_x) { return ::floor(p_x); }
  84. static _ALWAYS_INLINE_ float floor(float p_x) { return ::floorf(p_x); }
  85. static _ALWAYS_INLINE_ double ceil(double p_x) { return ::ceil(p_x); }
  86. static _ALWAYS_INLINE_ float ceil(float p_x) { return ::ceilf(p_x); }
  87. static _ALWAYS_INLINE_ double pow(double p_x, double p_y) { return ::pow(p_x, p_y); }
  88. static _ALWAYS_INLINE_ float pow(float p_x, float p_y) { return ::powf(p_x, p_y); }
  89. static _ALWAYS_INLINE_ double log(double p_x) { return ::log(p_x); }
  90. static _ALWAYS_INLINE_ float log(float p_x) { return ::logf(p_x); }
  91. static _ALWAYS_INLINE_ double log1p(double p_x) { return ::log1p(p_x); }
  92. static _ALWAYS_INLINE_ float log1p(float p_x) { return ::log1pf(p_x); }
  93. static _ALWAYS_INLINE_ double log2(double p_x) { return ::log2(p_x); }
  94. static _ALWAYS_INLINE_ float log2(float p_x) { return ::log2f(p_x); }
  95. static _ALWAYS_INLINE_ double exp(double p_x) { return ::exp(p_x); }
  96. static _ALWAYS_INLINE_ float exp(float p_x) { return ::expf(p_x); }
  97. static _ALWAYS_INLINE_ bool is_nan(double p_val) {
  98. #ifdef _MSC_VER
  99. return _isnan(p_val);
  100. #elif defined(__GNUC__) && __GNUC__ < 6
  101. union {
  102. uint64_t u;
  103. double f;
  104. } ieee754;
  105. ieee754.f = p_val;
  106. // (unsigned)(0x7ff0000000000001 >> 32) : 0x7ff00000
  107. return ((((unsigned)(ieee754.u >> 32) & 0x7fffffff) + ((unsigned)ieee754.u != 0)) > 0x7ff00000);
  108. #else
  109. return isnan(p_val);
  110. #endif
  111. }
  112. static _ALWAYS_INLINE_ bool is_nan(float p_val) {
  113. #ifdef _MSC_VER
  114. return _isnan(p_val);
  115. #elif defined(__GNUC__) && __GNUC__ < 6
  116. union {
  117. uint32_t u;
  118. float f;
  119. } ieee754;
  120. ieee754.f = p_val;
  121. // -----------------------------------
  122. // (single-precision floating-point)
  123. // NaN : s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx
  124. // : (> 0x7f800000)
  125. // where,
  126. // s : sign
  127. // x : non-zero number
  128. // -----------------------------------
  129. return ((ieee754.u & 0x7fffffff) > 0x7f800000);
  130. #else
  131. return isnan(p_val);
  132. #endif
  133. }
  134. static _ALWAYS_INLINE_ bool is_inf(double p_val) {
  135. #ifdef _MSC_VER
  136. return !_finite(p_val);
  137. // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
  138. #elif defined(__GNUC__) && __GNUC__ < 6
  139. union {
  140. uint64_t u;
  141. double f;
  142. } ieee754;
  143. ieee754.f = p_val;
  144. return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
  145. ((unsigned)ieee754.u == 0);
  146. #else
  147. return isinf(p_val);
  148. #endif
  149. }
  150. static _ALWAYS_INLINE_ bool is_inf(float p_val) {
  151. #ifdef _MSC_VER
  152. return !_finite(p_val);
  153. // use an inline implementation of isinf as a workaround for problematic libstdc++ versions from gcc 5.x era
  154. #elif defined(__GNUC__) && __GNUC__ < 6
  155. union {
  156. uint32_t u;
  157. float f;
  158. } ieee754;
  159. ieee754.f = p_val;
  160. return (ieee754.u & 0x7fffffff) == 0x7f800000;
  161. #else
  162. return isinf(p_val);
  163. #endif
  164. }
  165. // These methods assume (p_num + p_den) doesn't overflow.
  166. static _ALWAYS_INLINE_ int32_t division_round_up(int32_t p_num, int32_t p_den) {
  167. int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
  168. return (p_num + p_den + offset) / p_den;
  169. }
  170. static _ALWAYS_INLINE_ uint32_t division_round_up(uint32_t p_num, uint32_t p_den) {
  171. return (p_num + p_den - 1) / p_den;
  172. }
  173. static _ALWAYS_INLINE_ int64_t division_round_up(int64_t p_num, int64_t p_den) {
  174. int32_t offset = (p_num < 0 && p_den < 0) ? 1 : -1;
  175. return (p_num + p_den + offset) / p_den;
  176. }
  177. static _ALWAYS_INLINE_ uint64_t division_round_up(uint64_t p_num, uint64_t p_den) {
  178. return (p_num + p_den - 1) / p_den;
  179. }
  180. static _ALWAYS_INLINE_ bool is_finite(double p_val) { return isfinite(p_val); }
  181. static _ALWAYS_INLINE_ bool is_finite(float p_val) { return isfinite(p_val); }
  182. static _ALWAYS_INLINE_ double abs(double g) { return absd(g); }
  183. static _ALWAYS_INLINE_ float abs(float g) { return absf(g); }
  184. static _ALWAYS_INLINE_ int8_t abs(int8_t g) { return g > 0 ? g : -g; }
  185. static _ALWAYS_INLINE_ int16_t abs(int16_t g) { return g > 0 ? g : -g; }
  186. static _ALWAYS_INLINE_ int32_t abs(int32_t g) { return ::abs(g); }
  187. static _ALWAYS_INLINE_ int64_t abs(int64_t g) { return ::llabs(g); }
  188. static _ALWAYS_INLINE_ double fposmod(double p_x, double p_y) {
  189. double value = Math::fmod(p_x, p_y);
  190. if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
  191. value += p_y;
  192. }
  193. value += 0.0;
  194. return value;
  195. }
  196. static _ALWAYS_INLINE_ float fposmod(float p_x, float p_y) {
  197. float value = Math::fmod(p_x, p_y);
  198. if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
  199. value += p_y;
  200. }
  201. value += 0.0f;
  202. return value;
  203. }
  204. static _ALWAYS_INLINE_ float fposmodp(float p_x, float p_y) {
  205. float value = Math::fmod(p_x, p_y);
  206. if (value < 0) {
  207. value += p_y;
  208. }
  209. value += 0.0f;
  210. return value;
  211. }
  212. static _ALWAYS_INLINE_ double fposmodp(double p_x, double p_y) {
  213. double value = Math::fmod(p_x, p_y);
  214. if (value < 0) {
  215. value += p_y;
  216. }
  217. value += 0.0;
  218. return value;
  219. }
  220. static _ALWAYS_INLINE_ int64_t posmod(int64_t p_x, int64_t p_y) {
  221. ERR_FAIL_COND_V_MSG(p_y == 0, 0, "Division by zero in posmod is undefined. Returning 0 as fallback.");
  222. int64_t value = p_x % p_y;
  223. if (((value < 0) && (p_y > 0)) || ((value > 0) && (p_y < 0))) {
  224. value += p_y;
  225. }
  226. return value;
  227. }
  228. static _ALWAYS_INLINE_ double deg_to_rad(double p_y) { return p_y * (Math_PI / 180.0); }
  229. static _ALWAYS_INLINE_ float deg_to_rad(float p_y) { return p_y * (float)(Math_PI / 180.0); }
  230. static _ALWAYS_INLINE_ double rad_to_deg(double p_y) { return p_y * (180.0 / Math_PI); }
  231. static _ALWAYS_INLINE_ float rad_to_deg(float p_y) { return p_y * (float)(180.0 / Math_PI); }
  232. static _ALWAYS_INLINE_ double lerp(double p_from, double p_to, double p_weight) { return p_from + (p_to - p_from) * p_weight; }
  233. static _ALWAYS_INLINE_ float lerp(float p_from, float p_to, float p_weight) { return p_from + (p_to - p_from) * p_weight; }
  234. static _ALWAYS_INLINE_ double cubic_interpolate(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
  235. return 0.5 *
  236. ((p_from * 2.0) +
  237. (-p_pre + p_to) * p_weight +
  238. (2.0 * p_pre - 5.0 * p_from + 4.0 * p_to - p_post) * (p_weight * p_weight) +
  239. (-p_pre + 3.0 * p_from - 3.0 * p_to + p_post) * (p_weight * p_weight * p_weight));
  240. }
  241. static _ALWAYS_INLINE_ float cubic_interpolate(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
  242. return 0.5f *
  243. ((p_from * 2.0f) +
  244. (-p_pre + p_to) * p_weight +
  245. (2.0f * p_pre - 5.0f * p_from + 4.0f * p_to - p_post) * (p_weight * p_weight) +
  246. (-p_pre + 3.0f * p_from - 3.0f * p_to + p_post) * (p_weight * p_weight * p_weight));
  247. }
  248. static _ALWAYS_INLINE_ double cubic_interpolate_angle(double p_from, double p_to, double p_pre, double p_post, double p_weight) {
  249. double from_rot = fmod(p_from, Math_TAU);
  250. double pre_diff = fmod(p_pre - from_rot, Math_TAU);
  251. double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
  252. double to_diff = fmod(p_to - from_rot, Math_TAU);
  253. double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
  254. double post_diff = fmod(p_post - to_rot, Math_TAU);
  255. double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
  256. return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
  257. }
  258. static _ALWAYS_INLINE_ float cubic_interpolate_angle(float p_from, float p_to, float p_pre, float p_post, float p_weight) {
  259. float from_rot = fmod(p_from, (float)Math_TAU);
  260. float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
  261. float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
  262. float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
  263. float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
  264. float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
  265. float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
  266. return cubic_interpolate(from_rot, to_rot, pre_rot, post_rot, p_weight);
  267. }
  268. static _ALWAYS_INLINE_ double cubic_interpolate_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
  269. double p_to_t, double p_pre_t, double p_post_t) {
  270. /* Barry-Goldman method */
  271. double t = Math::lerp(0.0, p_to_t, p_weight);
  272. double a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0 : (t - p_pre_t) / -p_pre_t);
  273. double a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5 : t / p_to_t);
  274. double a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0 : (t - p_to_t) / (p_post_t - p_to_t));
  275. double b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0 : (t - p_pre_t) / (p_to_t - p_pre_t));
  276. double b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0 : t / p_post_t);
  277. return Math::lerp(b1, b2, p_to_t == 0 ? 0.5 : t / p_to_t);
  278. }
  279. static _ALWAYS_INLINE_ float cubic_interpolate_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
  280. float p_to_t, float p_pre_t, float p_post_t) {
  281. /* Barry-Goldman method */
  282. float t = Math::lerp(0.0f, p_to_t, p_weight);
  283. float a1 = Math::lerp(p_pre, p_from, p_pre_t == 0 ? 0.0f : (t - p_pre_t) / -p_pre_t);
  284. float a2 = Math::lerp(p_from, p_to, p_to_t == 0 ? 0.5f : t / p_to_t);
  285. float a3 = Math::lerp(p_to, p_post, p_post_t - p_to_t == 0 ? 1.0f : (t - p_to_t) / (p_post_t - p_to_t));
  286. float b1 = Math::lerp(a1, a2, p_to_t - p_pre_t == 0 ? 0.0f : (t - p_pre_t) / (p_to_t - p_pre_t));
  287. float b2 = Math::lerp(a2, a3, p_post_t == 0 ? 1.0f : t / p_post_t);
  288. return Math::lerp(b1, b2, p_to_t == 0 ? 0.5f : t / p_to_t);
  289. }
  290. static _ALWAYS_INLINE_ double cubic_interpolate_angle_in_time(double p_from, double p_to, double p_pre, double p_post, double p_weight,
  291. double p_to_t, double p_pre_t, double p_post_t) {
  292. double from_rot = fmod(p_from, Math_TAU);
  293. double pre_diff = fmod(p_pre - from_rot, Math_TAU);
  294. double pre_rot = from_rot + fmod(2.0 * pre_diff, Math_TAU) - pre_diff;
  295. double to_diff = fmod(p_to - from_rot, Math_TAU);
  296. double to_rot = from_rot + fmod(2.0 * to_diff, Math_TAU) - to_diff;
  297. double post_diff = fmod(p_post - to_rot, Math_TAU);
  298. double post_rot = to_rot + fmod(2.0 * post_diff, Math_TAU) - post_diff;
  299. return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
  300. }
  301. static _ALWAYS_INLINE_ float cubic_interpolate_angle_in_time(float p_from, float p_to, float p_pre, float p_post, float p_weight,
  302. float p_to_t, float p_pre_t, float p_post_t) {
  303. float from_rot = fmod(p_from, (float)Math_TAU);
  304. float pre_diff = fmod(p_pre - from_rot, (float)Math_TAU);
  305. float pre_rot = from_rot + fmod(2.0f * pre_diff, (float)Math_TAU) - pre_diff;
  306. float to_diff = fmod(p_to - from_rot, (float)Math_TAU);
  307. float to_rot = from_rot + fmod(2.0f * to_diff, (float)Math_TAU) - to_diff;
  308. float post_diff = fmod(p_post - to_rot, (float)Math_TAU);
  309. float post_rot = to_rot + fmod(2.0f * post_diff, (float)Math_TAU) - post_diff;
  310. return cubic_interpolate_in_time(from_rot, to_rot, pre_rot, post_rot, p_weight, p_to_t, p_pre_t, p_post_t);
  311. }
  312. static _ALWAYS_INLINE_ double bezier_interpolate(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
  313. /* Formula from Wikipedia article on Bezier curves. */
  314. double omt = (1.0 - p_t);
  315. double omt2 = omt * omt;
  316. double omt3 = omt2 * omt;
  317. double t2 = p_t * p_t;
  318. double t3 = t2 * p_t;
  319. return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0 + p_control_2 * omt * t2 * 3.0 + p_end * t3;
  320. }
  321. static _ALWAYS_INLINE_ float bezier_interpolate(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
  322. /* Formula from Wikipedia article on Bezier curves. */
  323. float omt = (1.0f - p_t);
  324. float omt2 = omt * omt;
  325. float omt3 = omt2 * omt;
  326. float t2 = p_t * p_t;
  327. float t3 = t2 * p_t;
  328. return p_start * omt3 + p_control_1 * omt2 * p_t * 3.0f + p_control_2 * omt * t2 * 3.0f + p_end * t3;
  329. }
  330. static _ALWAYS_INLINE_ double bezier_derivative(double p_start, double p_control_1, double p_control_2, double p_end, double p_t) {
  331. /* Formula from Wikipedia article on Bezier curves. */
  332. double omt = (1.0 - p_t);
  333. double omt2 = omt * omt;
  334. double t2 = p_t * p_t;
  335. double d = (p_control_1 - p_start) * 3.0 * omt2 + (p_control_2 - p_control_1) * 6.0 * omt * p_t + (p_end - p_control_2) * 3.0 * t2;
  336. return d;
  337. }
  338. static _ALWAYS_INLINE_ float bezier_derivative(float p_start, float p_control_1, float p_control_2, float p_end, float p_t) {
  339. /* Formula from Wikipedia article on Bezier curves. */
  340. float omt = (1.0f - p_t);
  341. float omt2 = omt * omt;
  342. float t2 = p_t * p_t;
  343. float d = (p_control_1 - p_start) * 3.0f * omt2 + (p_control_2 - p_control_1) * 6.0f * omt * p_t + (p_end - p_control_2) * 3.0f * t2;
  344. return d;
  345. }
  346. static _ALWAYS_INLINE_ double angle_difference(double p_from, double p_to) {
  347. double difference = fmod(p_to - p_from, Math_TAU);
  348. return fmod(2.0 * difference, Math_TAU) - difference;
  349. }
  350. static _ALWAYS_INLINE_ float angle_difference(float p_from, float p_to) {
  351. float difference = fmod(p_to - p_from, (float)Math_TAU);
  352. return fmod(2.0f * difference, (float)Math_TAU) - difference;
  353. }
  354. static _ALWAYS_INLINE_ double lerp_angle(double p_from, double p_to, double p_weight) {
  355. return p_from + Math::angle_difference(p_from, p_to) * p_weight;
  356. }
  357. static _ALWAYS_INLINE_ float lerp_angle(float p_from, float p_to, float p_weight) {
  358. return p_from + Math::angle_difference(p_from, p_to) * p_weight;
  359. }
  360. static _ALWAYS_INLINE_ double inverse_lerp(double p_from, double p_to, double p_value) {
  361. return (p_value - p_from) / (p_to - p_from);
  362. }
  363. static _ALWAYS_INLINE_ float inverse_lerp(float p_from, float p_to, float p_value) {
  364. return (p_value - p_from) / (p_to - p_from);
  365. }
  366. static _ALWAYS_INLINE_ double remap(double p_value, double p_istart, double p_istop, double p_ostart, double p_ostop) {
  367. return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
  368. }
  369. static _ALWAYS_INLINE_ float remap(float p_value, float p_istart, float p_istop, float p_ostart, float p_ostop) {
  370. return Math::lerp(p_ostart, p_ostop, Math::inverse_lerp(p_istart, p_istop, p_value));
  371. }
  372. static _ALWAYS_INLINE_ double smoothstep(double p_from, double p_to, double p_s) {
  373. if (is_equal_approx(p_from, p_to)) {
  374. if (likely(p_from <= p_to)) {
  375. return p_s <= p_from ? 0.0 : 1.0;
  376. } else {
  377. return p_s <= p_to ? 1.0 : 0.0;
  378. }
  379. }
  380. double s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0, 1.0);
  381. return s * s * (3.0 - 2.0 * s);
  382. }
  383. static _ALWAYS_INLINE_ float smoothstep(float p_from, float p_to, float p_s) {
  384. if (is_equal_approx(p_from, p_to)) {
  385. if (likely(p_from <= p_to)) {
  386. return p_s <= p_from ? 0.0f : 1.0f;
  387. } else {
  388. return p_s <= p_to ? 1.0f : 0.0f;
  389. }
  390. }
  391. float s = CLAMP((p_s - p_from) / (p_to - p_from), 0.0f, 1.0f);
  392. return s * s * (3.0f - 2.0f * s);
  393. }
  394. static _ALWAYS_INLINE_ double move_toward(double p_from, double p_to, double p_delta) {
  395. return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
  396. }
  397. static _ALWAYS_INLINE_ float move_toward(float p_from, float p_to, float p_delta) {
  398. return abs(p_to - p_from) <= p_delta ? p_to : p_from + SIGN(p_to - p_from) * p_delta;
  399. }
  400. static _ALWAYS_INLINE_ double rotate_toward(double p_from, double p_to, double p_delta) {
  401. double difference = Math::angle_difference(p_from, p_to);
  402. double abs_difference = Math::abs(difference);
  403. // When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
  404. return p_from + CLAMP(p_delta, abs_difference - Math_PI, abs_difference) * (difference >= 0.0 ? 1.0 : -1.0);
  405. }
  406. static _ALWAYS_INLINE_ float rotate_toward(float p_from, float p_to, float p_delta) {
  407. float difference = Math::angle_difference(p_from, p_to);
  408. float abs_difference = Math::abs(difference);
  409. // When `p_delta < 0` move no further than to PI radians away from `p_to` (as PI is the max possible angle distance).
  410. return p_from + CLAMP(p_delta, abs_difference - (float)Math_PI, abs_difference) * (difference >= 0.0f ? 1.0f : -1.0f);
  411. }
  412. static _ALWAYS_INLINE_ double linear_to_db(double p_linear) {
  413. return Math::log(p_linear) * 8.6858896380650365530225783783321;
  414. }
  415. static _ALWAYS_INLINE_ float linear_to_db(float p_linear) {
  416. return Math::log(p_linear) * (float)8.6858896380650365530225783783321;
  417. }
  418. static _ALWAYS_INLINE_ double db_to_linear(double p_db) {
  419. return Math::exp(p_db * 0.11512925464970228420089957273422);
  420. }
  421. static _ALWAYS_INLINE_ float db_to_linear(float p_db) {
  422. return Math::exp(p_db * (float)0.11512925464970228420089957273422);
  423. }
  424. static _ALWAYS_INLINE_ double round(double p_val) { return ::round(p_val); }
  425. static _ALWAYS_INLINE_ float round(float p_val) { return ::roundf(p_val); }
  426. static _ALWAYS_INLINE_ int64_t wrapi(int64_t value, int64_t min, int64_t max) {
  427. int64_t range = max - min;
  428. return range == 0 ? min : min + ((((value - min) % range) + range) % range);
  429. }
  430. static _ALWAYS_INLINE_ double wrapf(double value, double min, double max) {
  431. double range = max - min;
  432. if (is_zero_approx(range)) {
  433. return min;
  434. }
  435. double result = value - (range * Math::floor((value - min) / range));
  436. if (is_equal_approx(result, max)) {
  437. return min;
  438. }
  439. return result;
  440. }
  441. static _ALWAYS_INLINE_ float wrapf(float value, float min, float max) {
  442. float range = max - min;
  443. if (is_zero_approx(range)) {
  444. return min;
  445. }
  446. float result = value - (range * Math::floor((value - min) / range));
  447. if (is_equal_approx(result, max)) {
  448. return min;
  449. }
  450. return result;
  451. }
  452. static _ALWAYS_INLINE_ float fract(float value) {
  453. return value - floor(value);
  454. }
  455. static _ALWAYS_INLINE_ double fract(double value) {
  456. return value - floor(value);
  457. }
  458. static _ALWAYS_INLINE_ float pingpong(float value, float length) {
  459. return (length != 0.0f) ? abs(fract((value - length) / (length * 2.0f)) * length * 2.0f - length) : 0.0f;
  460. }
  461. static _ALWAYS_INLINE_ double pingpong(double value, double length) {
  462. return (length != 0.0) ? abs(fract((value - length) / (length * 2.0)) * length * 2.0 - length) : 0.0;
  463. }
  464. // double only, as these functions are mainly used by the editor and not performance-critical,
  465. static double ease(double p_x, double p_c);
  466. static int step_decimals(double p_step);
  467. static int range_step_decimals(double p_step); // For editor use only.
  468. static double snapped(double p_value, double p_step);
  469. static uint32_t larger_prime(uint32_t p_val);
  470. static void seed(uint64_t x);
  471. static void randomize();
  472. static uint32_t rand_from_seed(uint64_t *seed);
  473. static uint32_t rand();
  474. static _ALWAYS_INLINE_ double randd() { return (double)rand() / (double)Math::RANDOM_32BIT_MAX; }
  475. static _ALWAYS_INLINE_ float randf() { return (float)rand() / (float)Math::RANDOM_32BIT_MAX; }
  476. static double randfn(double mean, double deviation);
  477. static double random(double from, double to);
  478. static float random(float from, float to);
  479. static int random(int from, int to);
  480. static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b) {
  481. // Check for exact equality first, required to handle "infinity" values.
  482. if (a == b) {
  483. return true;
  484. }
  485. // Then check for approximate equality.
  486. float tolerance = (float)CMP_EPSILON * abs(a);
  487. if (tolerance < (float)CMP_EPSILON) {
  488. tolerance = (float)CMP_EPSILON;
  489. }
  490. return abs(a - b) < tolerance;
  491. }
  492. static _ALWAYS_INLINE_ bool is_equal_approx(float a, float b, float tolerance) {
  493. // Check for exact equality first, required to handle "infinity" values.
  494. if (a == b) {
  495. return true;
  496. }
  497. // Then check for approximate equality.
  498. return abs(a - b) < tolerance;
  499. }
  500. static _ALWAYS_INLINE_ bool is_zero_approx(float s) {
  501. return abs(s) < (float)CMP_EPSILON;
  502. }
  503. static _ALWAYS_INLINE_ bool is_same(float a, float b) {
  504. return (a == b) || (is_nan(a) && is_nan(b));
  505. }
  506. static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b) {
  507. // Check for exact equality first, required to handle "infinity" values.
  508. if (a == b) {
  509. return true;
  510. }
  511. // Then check for approximate equality.
  512. double tolerance = CMP_EPSILON * abs(a);
  513. if (tolerance < CMP_EPSILON) {
  514. tolerance = CMP_EPSILON;
  515. }
  516. return abs(a - b) < tolerance;
  517. }
  518. static _ALWAYS_INLINE_ bool is_equal_approx(double a, double b, double tolerance) {
  519. // Check for exact equality first, required to handle "infinity" values.
  520. if (a == b) {
  521. return true;
  522. }
  523. // Then check for approximate equality.
  524. return abs(a - b) < tolerance;
  525. }
  526. static _ALWAYS_INLINE_ bool is_zero_approx(double s) {
  527. return abs(s) < CMP_EPSILON;
  528. }
  529. static _ALWAYS_INLINE_ bool is_same(double a, double b) {
  530. return (a == b) || (is_nan(a) && is_nan(b));
  531. }
  532. static _ALWAYS_INLINE_ float absf(float g) {
  533. return ::fabsf(g);
  534. }
  535. static _ALWAYS_INLINE_ double absd(double g) {
  536. return ::fabs(g);
  537. }
  538. // This function should be as fast as possible and rounding mode should not matter.
  539. static _ALWAYS_INLINE_ int fast_ftoi(float a) {
  540. // Assuming every supported compiler has `lrint()`.
  541. return lrintf(a);
  542. }
  543. static _ALWAYS_INLINE_ uint32_t halfbits_to_floatbits(uint16_t h) {
  544. uint16_t h_exp, h_sig;
  545. uint32_t f_sgn, f_exp, f_sig;
  546. h_exp = (h & 0x7c00u);
  547. f_sgn = ((uint32_t)h & 0x8000u) << 16;
  548. switch (h_exp) {
  549. case 0x0000u: /* 0 or subnormal */
  550. h_sig = (h & 0x03ffu);
  551. /* Signed zero */
  552. if (h_sig == 0) {
  553. return f_sgn;
  554. }
  555. /* Subnormal */
  556. h_sig <<= 1;
  557. while ((h_sig & 0x0400u) == 0) {
  558. h_sig <<= 1;
  559. h_exp++;
  560. }
  561. f_exp = ((uint32_t)(127 - 15 - h_exp)) << 23;
  562. f_sig = ((uint32_t)(h_sig & 0x03ffu)) << 13;
  563. return f_sgn + f_exp + f_sig;
  564. case 0x7c00u: /* inf or NaN */
  565. /* All-ones exponent and a copy of the significand */
  566. return f_sgn + 0x7f800000u + (((uint32_t)(h & 0x03ffu)) << 13);
  567. default: /* normalized */
  568. /* Just need to adjust the exponent and shift */
  569. return f_sgn + (((uint32_t)(h & 0x7fffu) + 0x1c000u) << 13);
  570. }
  571. }
  572. static _ALWAYS_INLINE_ float halfptr_to_float(const uint16_t *h) {
  573. union {
  574. uint32_t u32;
  575. float f32;
  576. } u;
  577. u.u32 = halfbits_to_floatbits(*h);
  578. return u.f32;
  579. }
  580. static _ALWAYS_INLINE_ float half_to_float(const uint16_t h) {
  581. return halfptr_to_float(&h);
  582. }
  583. static _ALWAYS_INLINE_ uint16_t make_half_float(float f) {
  584. union {
  585. float fv;
  586. uint32_t ui;
  587. } ci;
  588. ci.fv = f;
  589. uint32_t x = ci.ui;
  590. uint32_t sign = (unsigned short)(x >> 31);
  591. uint32_t mantissa;
  592. uint32_t exponent;
  593. uint16_t hf;
  594. // get mantissa
  595. mantissa = x & ((1 << 23) - 1);
  596. // get exponent bits
  597. exponent = x & (0xFF << 23);
  598. if (exponent >= 0x47800000) {
  599. // check if the original single precision float number is a NaN
  600. if (mantissa && (exponent == (0xFF << 23))) {
  601. // we have a single precision NaN
  602. mantissa = (1 << 23) - 1;
  603. } else {
  604. // 16-bit half-float representation stores number as Inf
  605. mantissa = 0;
  606. }
  607. hf = (((uint16_t)sign) << 15) | (uint16_t)((0x1F << 10)) |
  608. (uint16_t)(mantissa >> 13);
  609. }
  610. // check if exponent is <= -15
  611. else if (exponent <= 0x38000000) {
  612. /*
  613. // store a denorm half-float value or zero
  614. exponent = (0x38000000 - exponent) >> 23;
  615. mantissa >>= (14 + exponent);
  616. hf = (((uint16_t)sign) << 15) | (uint16_t)(mantissa);
  617. */
  618. hf = 0; //denormals do not work for 3D, convert to zero
  619. } else {
  620. hf = (((uint16_t)sign) << 15) |
  621. (uint16_t)((exponent - 0x38000000) >> 13) |
  622. (uint16_t)(mantissa >> 13);
  623. }
  624. return hf;
  625. }
  626. static _ALWAYS_INLINE_ float snap_scalar(float p_offset, float p_step, float p_target) {
  627. return p_step != 0 ? Math::snapped(p_target - p_offset, p_step) + p_offset : p_target;
  628. }
  629. static _ALWAYS_INLINE_ float snap_scalar_separation(float p_offset, float p_step, float p_target, float p_separation) {
  630. if (p_step != 0) {
  631. float a = Math::snapped(p_target - p_offset, p_step + p_separation) + p_offset;
  632. float b = a;
  633. if (p_target >= 0) {
  634. b -= p_separation;
  635. } else {
  636. b += p_step;
  637. }
  638. return (Math::abs(p_target - a) < Math::abs(p_target - b)) ? a : b;
  639. }
  640. return p_target;
  641. }
  642. };