123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 |
- /**************************************************************************/
- /* transform_interpolator.cpp */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #include "transform_interpolator.h"
- #include "core/math/transform_2d.h"
- #include "core/math/transform_3d.h"
- void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev, const Transform2D &p_curr, Transform2D &r_result, real_t p_fraction) {
- // Special case for physics interpolation, if flipping, don't interpolate basis.
- // If the determinant polarity changes, the handedness of the coordinate system changes.
- if (_sign(p_prev.determinant()) != _sign(p_curr.determinant())) {
- r_result.columns[0] = p_curr.columns[0];
- r_result.columns[1] = p_curr.columns[1];
- r_result.set_origin(p_prev.get_origin().lerp(p_curr.get_origin(), p_fraction));
- return;
- }
- r_result = p_prev.interpolate_with(p_curr, p_fraction);
- }
- void TransformInterpolator::interpolate_transform_3d(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction) {
- r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
- interpolate_basis(p_prev.basis, p_curr.basis, r_result.basis, p_fraction);
- }
- void TransformInterpolator::interpolate_basis(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
- Method method = find_method(p_prev, p_curr);
- interpolate_basis_via_method(p_prev, p_curr, r_result, p_fraction, method);
- }
- void TransformInterpolator::interpolate_transform_3d_via_method(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction, Method p_method) {
- r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
- interpolate_basis_via_method(p_prev.basis, p_curr.basis, r_result.basis, p_fraction, p_method);
- }
- void TransformInterpolator::interpolate_basis_via_method(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction, Method p_method) {
- switch (p_method) {
- default: {
- interpolate_basis_linear(p_prev, p_curr, r_result, p_fraction);
- } break;
- case INTERP_SLERP: {
- r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);
- } break;
- case INTERP_SCALED_SLERP: {
- interpolate_basis_scaled_slerp(p_prev, p_curr, r_result, p_fraction);
- } break;
- }
- }
- Quaternion TransformInterpolator::_basis_to_quat_unchecked(const Basis &p_basis) {
- Basis m = p_basis;
- real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
- real_t temp[4];
- if (trace > 0.0) {
- real_t s = Math::sqrt(trace + 1.0f);
- temp[3] = (s * 0.5f);
- s = 0.5f / s;
- temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
- temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
- temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
- } else {
- int i = m.rows[0][0] < m.rows[1][1]
- ? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
- : (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
- int j = (i + 1) % 3;
- int k = (i + 2) % 3;
- real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
- temp[i] = s * 0.5f;
- s = 0.5f / s;
- temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
- temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
- temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
- }
- return Quaternion(temp[0], temp[1], temp[2], temp[3]);
- }
- Quaternion TransformInterpolator::_quat_slerp_unchecked(const Quaternion &p_from, const Quaternion &p_to, real_t p_fraction) {
- Quaternion to1;
- real_t omega, cosom, sinom, scale0, scale1;
- // Calculate cosine.
- cosom = p_from.dot(p_to);
- // Adjust signs (if necessary)
- if (cosom < 0.0f) {
- cosom = -cosom;
- to1.x = -p_to.x;
- to1.y = -p_to.y;
- to1.z = -p_to.z;
- to1.w = -p_to.w;
- } else {
- to1.x = p_to.x;
- to1.y = p_to.y;
- to1.z = p_to.z;
- to1.w = p_to.w;
- }
- // Calculate coefficients.
- // This check could possibly be removed as we dealt with this
- // case in the find_method() function, but is left for safety, it probably
- // isn't a bottleneck.
- if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
- // standard case (slerp)
- omega = Math::acos(cosom);
- sinom = Math::sin(omega);
- scale0 = Math::sin((1.0f - p_fraction) * omega) / sinom;
- scale1 = Math::sin(p_fraction * omega) / sinom;
- } else {
- // "from" and "to" quaternions are very close
- // ... so we can do a linear interpolation
- scale0 = 1.0f - p_fraction;
- scale1 = p_fraction;
- }
- // Calculate final values.
- return Quaternion(
- scale0 * p_from.x + scale1 * to1.x,
- scale0 * p_from.y + scale1 * to1.y,
- scale0 * p_from.z + scale1 * to1.z,
- scale0 * p_from.w + scale1 * to1.w);
- }
- Basis TransformInterpolator::_basis_slerp_unchecked(Basis p_from, Basis p_to, real_t p_fraction) {
- Quaternion from = _basis_to_quat_unchecked(p_from);
- Quaternion to = _basis_to_quat_unchecked(p_to);
- Basis b(_quat_slerp_unchecked(from, to, p_fraction));
- return b;
- }
- void TransformInterpolator::interpolate_basis_scaled_slerp(Basis p_prev, Basis p_curr, Basis &r_result, real_t p_fraction) {
- // Normalize both and find lengths.
- Vector3 lengths_prev = _basis_orthonormalize(p_prev);
- Vector3 lengths_curr = _basis_orthonormalize(p_curr);
- r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);
- // Now the result is unit length basis, we need to scale.
- Vector3 lengths_lerped = lengths_prev + ((lengths_curr - lengths_prev) * p_fraction);
- // Keep a note that the column / row order of the basis is weird,
- // so keep an eye for bugs with this.
- r_result[0] *= lengths_lerped;
- r_result[1] *= lengths_lerped;
- r_result[2] *= lengths_lerped;
- }
- void TransformInterpolator::interpolate_basis_linear(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
- // Interpolate basis.
- r_result = p_prev.lerp(p_curr, p_fraction);
- // It turns out we need to guard against zero scale basis.
- // This is kind of silly, as we should probably fix the bugs elsewhere in Godot that can't deal with
- // zero scale, but until that time...
- for (int n = 0; n < 3; n++) {
- Vector3 &axis = r_result[n];
- // Not ok, this could cause errors due to bugs elsewhere,
- // so we will bodge set this to a small value.
- const real_t smallest = 0.0001f;
- const real_t smallest_squared = smallest * smallest;
- if (axis.length_squared() < smallest_squared) {
- // Setting a different component to the smallest
- // helps prevent the situation where all the axes are pointing in the same direction,
- // which could be a problem for e.g. cross products...
- axis[n] = smallest;
- }
- }
- }
- // Returns length.
- real_t TransformInterpolator::_vec3_normalize(Vector3 &p_vec) {
- real_t lengthsq = p_vec.length_squared();
- if (lengthsq == 0.0f) {
- p_vec.x = p_vec.y = p_vec.z = 0.0f;
- return 0.0f;
- }
- real_t length = Math::sqrt(lengthsq);
- p_vec.x /= length;
- p_vec.y /= length;
- p_vec.z /= length;
- return length;
- }
- // Returns lengths.
- Vector3 TransformInterpolator::_basis_orthonormalize(Basis &r_basis) {
- // Gram-Schmidt Process.
- Vector3 x = r_basis.get_column(0);
- Vector3 y = r_basis.get_column(1);
- Vector3 z = r_basis.get_column(2);
- Vector3 lengths;
- lengths.x = _vec3_normalize(x);
- y = (y - x * (x.dot(y)));
- lengths.y = _vec3_normalize(y);
- z = (z - x * (x.dot(z)) - y * (y.dot(z)));
- lengths.z = _vec3_normalize(z);
- r_basis.set_column(0, x);
- r_basis.set_column(1, y);
- r_basis.set_column(2, z);
- return lengths;
- }
- TransformInterpolator::Method TransformInterpolator::_test_basis(Basis p_basis, bool r_needed_normalize, Quaternion &r_quat) {
- // Axis lengths.
- Vector3 al = Vector3(p_basis.get_column(0).length_squared(),
- p_basis.get_column(1).length_squared(),
- p_basis.get_column(2).length_squared());
- // Non unit scale?
- if (r_needed_normalize || !_vec3_is_equal_approx(al, Vector3(1.0, 1.0, 1.0), (real_t)0.001f)) {
- // If the basis is not normalized (at least approximately), it will fail the checks needed for slerp.
- // So we try to detect a scaled (but not sheared) basis, which we *can* slerp by normalizing first,
- // and lerping the scales separately.
- // If any of the axes are really small, it is unlikely to be a valid rotation, or is scaled too small to deal with float error.
- const real_t sl_epsilon = 0.00001f;
- if ((al.x < sl_epsilon) ||
- (al.y < sl_epsilon) ||
- (al.z < sl_epsilon)) {
- return INTERP_LERP;
- }
- // Normalize the basis.
- Basis norm_basis = p_basis;
- al.x = Math::sqrt(al.x);
- al.y = Math::sqrt(al.y);
- al.z = Math::sqrt(al.z);
- norm_basis.set_column(0, norm_basis.get_column(0) / al.x);
- norm_basis.set_column(1, norm_basis.get_column(1) / al.y);
- norm_basis.set_column(2, norm_basis.get_column(2) / al.z);
- // This doesn't appear necessary, as the later checks will catch it.
- // if (!_basis_is_orthogonal_any_scale(norm_basis)) {
- // return INTERP_LERP;
- // }
- p_basis = norm_basis;
- // Orthonormalize not necessary as normal normalization(!) works if the
- // axes are orthonormal.
- // p_basis.orthonormalize();
- // If we needed to normalize one of the two bases, we will need to normalize both,
- // regardless of whether the 2nd needs it, just to make sure it takes the path to return
- // INTERP_SCALED_LERP on the 2nd call of _test_basis.
- r_needed_normalize = true;
- }
- // Apply less stringent tests than the built in slerp, the standard Godot slerp
- // is too susceptible to float error to be useful.
- real_t det = p_basis.determinant();
- if (!Math::is_equal_approx(det, 1, (real_t)0.01f)) {
- return INTERP_LERP;
- }
- if (!_basis_is_orthogonal(p_basis)) {
- return INTERP_LERP;
- }
- // TODO: This could possibly be less stringent too, check this.
- r_quat = _basis_to_quat_unchecked(p_basis);
- if (!r_quat.is_normalized()) {
- return INTERP_LERP;
- }
- return r_needed_normalize ? INTERP_SCALED_SLERP : INTERP_SLERP;
- }
- // This check doesn't seem to be needed but is preserved in case of bugs.
- bool TransformInterpolator::_basis_is_orthogonal_any_scale(const Basis &p_basis) {
- Vector3 cross = p_basis.get_column(0).cross(p_basis.get_column(1));
- real_t l = _vec3_normalize(cross);
- // Too small numbers, revert to lerp.
- if (l < 0.001f) {
- return false;
- }
- const real_t epsilon = 0.9995f;
- real_t dot = cross.dot(p_basis.get_column(2));
- if (dot < epsilon) {
- return false;
- }
- cross = p_basis.get_column(1).cross(p_basis.get_column(2));
- l = _vec3_normalize(cross);
- // Too small numbers, revert to lerp.
- if (l < 0.001f) {
- return false;
- }
- dot = cross.dot(p_basis.get_column(0));
- if (dot < epsilon) {
- return false;
- }
- return true;
- }
- bool TransformInterpolator::_basis_is_orthogonal(const Basis &p_basis, real_t p_epsilon) {
- Basis identity;
- Basis m = p_basis * p_basis.transposed();
- // Less stringent tests than the standard Godot slerp.
- if (!_vec3_is_equal_approx(m[0], identity[0], p_epsilon) || !_vec3_is_equal_approx(m[1], identity[1], p_epsilon) || !_vec3_is_equal_approx(m[2], identity[2], p_epsilon)) {
- return false;
- }
- return true;
- }
- real_t TransformInterpolator::checksum_transform_3d(const Transform3D &p_transform) {
- // just a really basic checksum, this can probably be improved
- real_t sum = _vec3_sum(p_transform.origin);
- sum -= _vec3_sum(p_transform.basis.rows[0]);
- sum += _vec3_sum(p_transform.basis.rows[1]);
- sum -= _vec3_sum(p_transform.basis.rows[2]);
- return sum;
- }
- TransformInterpolator::Method TransformInterpolator::find_method(const Basis &p_a, const Basis &p_b) {
- bool needed_normalize = false;
- Quaternion q0;
- Method method = _test_basis(p_a, needed_normalize, q0);
- if (method == INTERP_LERP) {
- return method;
- }
- Quaternion q1;
- method = _test_basis(p_b, needed_normalize, q1);
- if (method == INTERP_LERP) {
- return method;
- }
- // Are they close together?
- // Apply the same test that will revert to lerp as is present in the slerp routine.
- // Calculate cosine.
- real_t cosom = Math::abs(q0.dot(q1));
- if ((1.0f - cosom) <= (real_t)CMP_EPSILON) {
- return INTERP_LERP;
- }
- return method;
- }
|