marshalls.cpp 39 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678
  1. /*************************************************************************/
  2. /* marshalls.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "marshalls.h"
  31. #include "core/object/ref_counted.h"
  32. #include "core/os/keyboard.h"
  33. #include "core/string/print_string.h"
  34. #include <limits.h>
  35. #include <stdio.h>
  36. void EncodedObjectAsID::_bind_methods() {
  37. ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id);
  38. ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id);
  39. ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id");
  40. }
  41. void EncodedObjectAsID::set_object_id(ObjectID p_id) {
  42. id = p_id;
  43. }
  44. ObjectID EncodedObjectAsID::get_object_id() const {
  45. return id;
  46. }
  47. #define _S(a) ((int32_t)a)
  48. #define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(_S(b) < 0 || _S(a) < 0 || _S(a) > INT_MAX - _S(b), err)
  49. #define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(_S(a) < 0 || _S(b) <= 0 || _S(a) > INT_MAX / _S(b), err)
  50. #define ENCODE_MASK 0xFF
  51. #define ENCODE_FLAG_64 1 << 16
  52. #define ENCODE_FLAG_OBJECT_AS_ID 1 << 16
  53. static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
  54. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  55. int32_t strlen = decode_uint32(buf);
  56. int32_t pad = 0;
  57. // Handle padding
  58. if (strlen % 4) {
  59. pad = 4 - strlen % 4;
  60. }
  61. buf += 4;
  62. len -= 4;
  63. // Ensure buffer is big enough
  64. ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
  65. ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
  66. String str;
  67. ERR_FAIL_COND_V(str.parse_utf8((const char *)buf, strlen), ERR_INVALID_DATA);
  68. r_string = str;
  69. // Add padding
  70. strlen += pad;
  71. // Update buffer pos, left data count, and return size
  72. buf += strlen;
  73. len -= strlen;
  74. if (r_len) {
  75. (*r_len) += 4 + strlen;
  76. }
  77. return OK;
  78. }
  79. Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects) {
  80. const uint8_t *buf = p_buffer;
  81. int len = p_len;
  82. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  83. uint32_t type = decode_uint32(buf);
  84. ERR_FAIL_COND_V((type & ENCODE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
  85. buf += 4;
  86. len -= 4;
  87. if (r_len) {
  88. *r_len = 4;
  89. }
  90. // Note: We cannot use sizeof(real_t) for decoding, in case a different size is encoded.
  91. // Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
  92. // This does lead to some code duplication for decoding, but compatibility is the priority.
  93. switch (type & ENCODE_MASK) {
  94. case Variant::NIL: {
  95. r_variant = Variant();
  96. } break;
  97. case Variant::BOOL: {
  98. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  99. bool val = decode_uint32(buf);
  100. r_variant = val;
  101. if (r_len) {
  102. (*r_len) += 4;
  103. }
  104. } break;
  105. case Variant::INT: {
  106. if (type & ENCODE_FLAG_64) {
  107. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  108. int64_t val = decode_uint64(buf);
  109. r_variant = val;
  110. if (r_len) {
  111. (*r_len) += 8;
  112. }
  113. } else {
  114. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  115. int32_t val = decode_uint32(buf);
  116. r_variant = val;
  117. if (r_len) {
  118. (*r_len) += 4;
  119. }
  120. }
  121. } break;
  122. case Variant::FLOAT: {
  123. if (type & ENCODE_FLAG_64) {
  124. ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
  125. double val = decode_double(buf);
  126. r_variant = val;
  127. if (r_len) {
  128. (*r_len) += sizeof(double);
  129. }
  130. } else {
  131. ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
  132. float val = decode_float(buf);
  133. r_variant = val;
  134. if (r_len) {
  135. (*r_len) += sizeof(float);
  136. }
  137. }
  138. } break;
  139. case Variant::STRING: {
  140. String str;
  141. Error err = _decode_string(buf, len, r_len, str);
  142. if (err) {
  143. return err;
  144. }
  145. r_variant = str;
  146. } break;
  147. // math types
  148. case Variant::VECTOR2: {
  149. Vector2 val;
  150. if (type & ENCODE_FLAG_64) {
  151. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
  152. val.x = decode_double(&buf[0]);
  153. val.y = decode_double(&buf[sizeof(double)]);
  154. if (r_len) {
  155. (*r_len) += sizeof(double) * 2;
  156. }
  157. } else {
  158. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
  159. val.x = decode_float(&buf[0]);
  160. val.y = decode_float(&buf[sizeof(float)]);
  161. if (r_len) {
  162. (*r_len) += sizeof(float) * 2;
  163. }
  164. }
  165. r_variant = val;
  166. } break;
  167. case Variant::VECTOR2I: {
  168. ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
  169. Vector2i val;
  170. val.x = decode_uint32(&buf[0]);
  171. val.y = decode_uint32(&buf[4]);
  172. r_variant = val;
  173. if (r_len) {
  174. (*r_len) += 4 * 2;
  175. }
  176. } break;
  177. case Variant::RECT2: {
  178. Rect2 val;
  179. if (type & ENCODE_FLAG_64) {
  180. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  181. val.position.x = decode_double(&buf[0]);
  182. val.position.y = decode_double(&buf[sizeof(double)]);
  183. val.size.x = decode_double(&buf[sizeof(double) * 2]);
  184. val.size.y = decode_double(&buf[sizeof(double) * 3]);
  185. if (r_len) {
  186. (*r_len) += sizeof(double) * 4;
  187. }
  188. } else {
  189. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  190. val.position.x = decode_float(&buf[0]);
  191. val.position.y = decode_float(&buf[sizeof(float)]);
  192. val.size.x = decode_float(&buf[sizeof(float) * 2]);
  193. val.size.y = decode_float(&buf[sizeof(float) * 3]);
  194. if (r_len) {
  195. (*r_len) += sizeof(float) * 4;
  196. }
  197. }
  198. r_variant = val;
  199. } break;
  200. case Variant::RECT2I: {
  201. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  202. Rect2i val;
  203. val.position.x = decode_uint32(&buf[0]);
  204. val.position.y = decode_uint32(&buf[4]);
  205. val.size.x = decode_uint32(&buf[8]);
  206. val.size.y = decode_uint32(&buf[12]);
  207. r_variant = val;
  208. if (r_len) {
  209. (*r_len) += 4 * 4;
  210. }
  211. } break;
  212. case Variant::VECTOR3: {
  213. Vector3 val;
  214. if (type & ENCODE_FLAG_64) {
  215. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
  216. val.x = decode_double(&buf[0]);
  217. val.y = decode_double(&buf[sizeof(double)]);
  218. val.z = decode_double(&buf[sizeof(double) * 2]);
  219. if (r_len) {
  220. (*r_len) += sizeof(double) * 3;
  221. }
  222. } else {
  223. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
  224. val.x = decode_float(&buf[0]);
  225. val.y = decode_float(&buf[sizeof(float)]);
  226. val.z = decode_float(&buf[sizeof(float) * 2]);
  227. if (r_len) {
  228. (*r_len) += sizeof(float) * 3;
  229. }
  230. }
  231. r_variant = val;
  232. } break;
  233. case Variant::VECTOR3I: {
  234. ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
  235. Vector3i val;
  236. val.x = decode_uint32(&buf[0]);
  237. val.y = decode_uint32(&buf[4]);
  238. val.z = decode_uint32(&buf[8]);
  239. r_variant = val;
  240. if (r_len) {
  241. (*r_len) += 4 * 3;
  242. }
  243. } break;
  244. case Variant::TRANSFORM2D: {
  245. Transform2D val;
  246. if (type & ENCODE_FLAG_64) {
  247. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  248. for (int i = 0; i < 3; i++) {
  249. for (int j = 0; j < 2; j++) {
  250. val.elements[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
  251. }
  252. }
  253. if (r_len) {
  254. (*r_len) += sizeof(double) * 6;
  255. }
  256. } else {
  257. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  258. for (int i = 0; i < 3; i++) {
  259. for (int j = 0; j < 2; j++) {
  260. val.elements[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
  261. }
  262. }
  263. if (r_len) {
  264. (*r_len) += sizeof(float) * 6;
  265. }
  266. }
  267. r_variant = val;
  268. } break;
  269. case Variant::PLANE: {
  270. Plane val;
  271. if (type & ENCODE_FLAG_64) {
  272. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  273. val.normal.x = decode_double(&buf[0]);
  274. val.normal.y = decode_double(&buf[sizeof(double)]);
  275. val.normal.z = decode_double(&buf[sizeof(double) * 2]);
  276. val.d = decode_double(&buf[sizeof(double) * 3]);
  277. if (r_len) {
  278. (*r_len) += sizeof(double) * 4;
  279. }
  280. } else {
  281. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  282. val.normal.x = decode_float(&buf[0]);
  283. val.normal.y = decode_float(&buf[sizeof(float)]);
  284. val.normal.z = decode_float(&buf[sizeof(float) * 2]);
  285. val.d = decode_float(&buf[sizeof(float) * 3]);
  286. if (r_len) {
  287. (*r_len) += sizeof(float) * 4;
  288. }
  289. }
  290. r_variant = val;
  291. } break;
  292. case Variant::QUATERNION: {
  293. Quaternion val;
  294. if (type & ENCODE_FLAG_64) {
  295. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  296. val.x = decode_double(&buf[0]);
  297. val.y = decode_double(&buf[sizeof(double)]);
  298. val.z = decode_double(&buf[sizeof(double) * 2]);
  299. val.w = decode_double(&buf[sizeof(double) * 3]);
  300. if (r_len) {
  301. (*r_len) += sizeof(double) * 4;
  302. }
  303. } else {
  304. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  305. val.x = decode_float(&buf[0]);
  306. val.y = decode_float(&buf[sizeof(float)]);
  307. val.z = decode_float(&buf[sizeof(float) * 2]);
  308. val.w = decode_float(&buf[sizeof(float) * 3]);
  309. if (r_len) {
  310. (*r_len) += sizeof(float) * 4;
  311. }
  312. }
  313. r_variant = val;
  314. } break;
  315. case Variant::AABB: {
  316. AABB val;
  317. if (type & ENCODE_FLAG_64) {
  318. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  319. val.position.x = decode_double(&buf[0]);
  320. val.position.y = decode_double(&buf[sizeof(double)]);
  321. val.position.z = decode_double(&buf[sizeof(double) * 2]);
  322. val.size.x = decode_double(&buf[sizeof(double) * 3]);
  323. val.size.y = decode_double(&buf[sizeof(double) * 4]);
  324. val.size.z = decode_double(&buf[sizeof(double) * 5]);
  325. if (r_len) {
  326. (*r_len) += sizeof(double) * 6;
  327. }
  328. } else {
  329. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  330. val.position.x = decode_float(&buf[0]);
  331. val.position.y = decode_float(&buf[sizeof(float)]);
  332. val.position.z = decode_float(&buf[sizeof(float) * 2]);
  333. val.size.x = decode_float(&buf[sizeof(float) * 3]);
  334. val.size.y = decode_float(&buf[sizeof(float) * 4]);
  335. val.size.z = decode_float(&buf[sizeof(float) * 5]);
  336. if (r_len) {
  337. (*r_len) += sizeof(float) * 6;
  338. }
  339. }
  340. r_variant = val;
  341. } break;
  342. case Variant::BASIS: {
  343. Basis val;
  344. if (type & ENCODE_FLAG_64) {
  345. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
  346. for (int i = 0; i < 3; i++) {
  347. for (int j = 0; j < 3; j++) {
  348. val.elements[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  349. }
  350. }
  351. if (r_len) {
  352. (*r_len) += sizeof(double) * 9;
  353. }
  354. } else {
  355. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
  356. for (int i = 0; i < 3; i++) {
  357. for (int j = 0; j < 3; j++) {
  358. val.elements[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  359. }
  360. }
  361. if (r_len) {
  362. (*r_len) += sizeof(float) * 9;
  363. }
  364. }
  365. r_variant = val;
  366. } break;
  367. case Variant::TRANSFORM3D: {
  368. Transform3D val;
  369. if (type & ENCODE_FLAG_64) {
  370. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
  371. for (int i = 0; i < 3; i++) {
  372. for (int j = 0; j < 3; j++) {
  373. val.basis.elements[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  374. }
  375. }
  376. val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
  377. val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
  378. val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
  379. if (r_len) {
  380. (*r_len) += sizeof(double) * 12;
  381. }
  382. } else {
  383. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
  384. for (int i = 0; i < 3; i++) {
  385. for (int j = 0; j < 3; j++) {
  386. val.basis.elements[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  387. }
  388. }
  389. val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
  390. val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
  391. val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
  392. if (r_len) {
  393. (*r_len) += sizeof(float) * 12;
  394. }
  395. }
  396. r_variant = val;
  397. } break;
  398. // misc types
  399. case Variant::COLOR: {
  400. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  401. Color val;
  402. val.r = decode_float(&buf[0]);
  403. val.g = decode_float(&buf[4]);
  404. val.b = decode_float(&buf[8]);
  405. val.a = decode_float(&buf[12]);
  406. r_variant = val;
  407. if (r_len) {
  408. (*r_len) += 4 * 4; // Colors should always be in single-precision.
  409. }
  410. } break;
  411. case Variant::STRING_NAME: {
  412. String str;
  413. Error err = _decode_string(buf, len, r_len, str);
  414. if (err) {
  415. return err;
  416. }
  417. r_variant = StringName(str);
  418. } break;
  419. case Variant::NODE_PATH: {
  420. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  421. int32_t strlen = decode_uint32(buf);
  422. if (strlen & 0x80000000) {
  423. //new format
  424. ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
  425. Vector<StringName> names;
  426. Vector<StringName> subnames;
  427. uint32_t namecount = strlen &= 0x7FFFFFFF;
  428. uint32_t subnamecount = decode_uint32(buf + 4);
  429. uint32_t flags = decode_uint32(buf + 8);
  430. len -= 12;
  431. buf += 12;
  432. if (flags & 2) { // Obsolete format with property separate from subpath
  433. subnamecount++;
  434. }
  435. uint32_t total = namecount + subnamecount;
  436. if (r_len) {
  437. (*r_len) += 12;
  438. }
  439. for (uint32_t i = 0; i < total; i++) {
  440. String str;
  441. Error err = _decode_string(buf, len, r_len, str);
  442. if (err) {
  443. return err;
  444. }
  445. if (i < namecount) {
  446. names.push_back(str);
  447. } else {
  448. subnames.push_back(str);
  449. }
  450. }
  451. r_variant = NodePath(names, subnames, flags & 1);
  452. } else {
  453. //old format, just a string
  454. ERR_FAIL_V(ERR_INVALID_DATA);
  455. }
  456. } break;
  457. case Variant::RID: {
  458. r_variant = RID();
  459. } break;
  460. case Variant::OBJECT: {
  461. if (type & ENCODE_FLAG_OBJECT_AS_ID) {
  462. //this _is_ allowed
  463. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  464. ObjectID val = ObjectID(decode_uint64(buf));
  465. if (r_len) {
  466. (*r_len) += 8;
  467. }
  468. if (val.is_null()) {
  469. r_variant = (Object *)nullptr;
  470. } else {
  471. Ref<EncodedObjectAsID> obj_as_id;
  472. obj_as_id.instantiate();
  473. obj_as_id->set_object_id(val);
  474. r_variant = obj_as_id;
  475. }
  476. } else {
  477. ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED);
  478. String str;
  479. Error err = _decode_string(buf, len, r_len, str);
  480. if (err) {
  481. return err;
  482. }
  483. if (str == String()) {
  484. r_variant = (Object *)nullptr;
  485. } else {
  486. Object *obj = ClassDB::instantiate(str);
  487. ERR_FAIL_COND_V(!obj, ERR_UNAVAILABLE);
  488. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  489. int32_t count = decode_uint32(buf);
  490. buf += 4;
  491. len -= 4;
  492. if (r_len) {
  493. (*r_len) += 4; // Size of count number.
  494. }
  495. for (int i = 0; i < count; i++) {
  496. str = String();
  497. err = _decode_string(buf, len, r_len, str);
  498. if (err) {
  499. return err;
  500. }
  501. Variant value;
  502. int used;
  503. err = decode_variant(value, buf, len, &used, p_allow_objects);
  504. if (err) {
  505. return err;
  506. }
  507. buf += used;
  508. len -= used;
  509. if (r_len) {
  510. (*r_len) += used;
  511. }
  512. obj->set(str, value);
  513. }
  514. if (Object::cast_to<RefCounted>(obj)) {
  515. REF ref = REF(Object::cast_to<RefCounted>(obj));
  516. r_variant = ref;
  517. } else {
  518. r_variant = obj;
  519. }
  520. }
  521. }
  522. } break;
  523. case Variant::CALLABLE: {
  524. r_variant = Callable();
  525. } break;
  526. case Variant::SIGNAL: {
  527. r_variant = Signal();
  528. } break;
  529. case Variant::DICTIONARY: {
  530. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  531. int32_t count = decode_uint32(buf);
  532. // bool shared = count&0x80000000;
  533. count &= 0x7FFFFFFF;
  534. buf += 4;
  535. len -= 4;
  536. if (r_len) {
  537. (*r_len) += 4; // Size of count number.
  538. }
  539. Dictionary d;
  540. for (int i = 0; i < count; i++) {
  541. Variant key, value;
  542. int used;
  543. Error err = decode_variant(key, buf, len, &used, p_allow_objects);
  544. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  545. buf += used;
  546. len -= used;
  547. if (r_len) {
  548. (*r_len) += used;
  549. }
  550. err = decode_variant(value, buf, len, &used, p_allow_objects);
  551. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  552. buf += used;
  553. len -= used;
  554. if (r_len) {
  555. (*r_len) += used;
  556. }
  557. d[key] = value;
  558. }
  559. r_variant = d;
  560. } break;
  561. case Variant::ARRAY: {
  562. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  563. int32_t count = decode_uint32(buf);
  564. // bool shared = count&0x80000000;
  565. count &= 0x7FFFFFFF;
  566. buf += 4;
  567. len -= 4;
  568. if (r_len) {
  569. (*r_len) += 4; // Size of count number.
  570. }
  571. Array varr;
  572. for (int i = 0; i < count; i++) {
  573. int used = 0;
  574. Variant v;
  575. Error err = decode_variant(v, buf, len, &used, p_allow_objects);
  576. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  577. buf += used;
  578. len -= used;
  579. varr.push_back(v);
  580. if (r_len) {
  581. (*r_len) += used;
  582. }
  583. }
  584. r_variant = varr;
  585. } break;
  586. // arrays
  587. case Variant::PACKED_BYTE_ARRAY: {
  588. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  589. int32_t count = decode_uint32(buf);
  590. buf += 4;
  591. len -= 4;
  592. ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
  593. Vector<uint8_t> data;
  594. if (count) {
  595. data.resize(count);
  596. uint8_t *w = data.ptrw();
  597. for (int32_t i = 0; i < count; i++) {
  598. w[i] = buf[i];
  599. }
  600. }
  601. r_variant = data;
  602. if (r_len) {
  603. if (count % 4) {
  604. (*r_len) += 4 - count % 4;
  605. }
  606. (*r_len) += 4 + count;
  607. }
  608. } break;
  609. case Variant::PACKED_INT32_ARRAY: {
  610. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  611. int32_t count = decode_uint32(buf);
  612. buf += 4;
  613. len -= 4;
  614. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  615. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  616. Vector<int32_t> data;
  617. if (count) {
  618. //const int*rbuf=(const int*)buf;
  619. data.resize(count);
  620. int32_t *w = data.ptrw();
  621. for (int32_t i = 0; i < count; i++) {
  622. w[i] = decode_uint32(&buf[i * 4]);
  623. }
  624. }
  625. r_variant = Variant(data);
  626. if (r_len) {
  627. (*r_len) += 4 + count * sizeof(int32_t);
  628. }
  629. } break;
  630. case Variant::PACKED_INT64_ARRAY: {
  631. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  632. int32_t count = decode_uint32(buf);
  633. buf += 4;
  634. len -= 4;
  635. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  636. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  637. Vector<int64_t> data;
  638. if (count) {
  639. //const int*rbuf=(const int*)buf;
  640. data.resize(count);
  641. int64_t *w = data.ptrw();
  642. for (int64_t i = 0; i < count; i++) {
  643. w[i] = decode_uint64(&buf[i * 8]);
  644. }
  645. }
  646. r_variant = Variant(data);
  647. if (r_len) {
  648. (*r_len) += 4 + count * sizeof(int64_t);
  649. }
  650. } break;
  651. case Variant::PACKED_FLOAT32_ARRAY: {
  652. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  653. int32_t count = decode_uint32(buf);
  654. buf += 4;
  655. len -= 4;
  656. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  657. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  658. Vector<float> data;
  659. if (count) {
  660. //const float*rbuf=(const float*)buf;
  661. data.resize(count);
  662. float *w = data.ptrw();
  663. for (int32_t i = 0; i < count; i++) {
  664. w[i] = decode_float(&buf[i * 4]);
  665. }
  666. }
  667. r_variant = data;
  668. if (r_len) {
  669. (*r_len) += 4 + count * sizeof(float);
  670. }
  671. } break;
  672. case Variant::PACKED_FLOAT64_ARRAY: {
  673. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  674. int32_t count = decode_uint32(buf);
  675. buf += 4;
  676. len -= 4;
  677. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  678. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  679. Vector<double> data;
  680. if (count) {
  681. data.resize(count);
  682. double *w = data.ptrw();
  683. for (int64_t i = 0; i < count; i++) {
  684. w[i] = decode_double(&buf[i * 8]);
  685. }
  686. }
  687. r_variant = data;
  688. if (r_len) {
  689. (*r_len) += 4 + count * sizeof(double);
  690. }
  691. } break;
  692. case Variant::PACKED_STRING_ARRAY: {
  693. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  694. int32_t count = decode_uint32(buf);
  695. Vector<String> strings;
  696. buf += 4;
  697. len -= 4;
  698. if (r_len) {
  699. (*r_len) += 4; // Size of count number.
  700. }
  701. for (int32_t i = 0; i < count; i++) {
  702. String str;
  703. Error err = _decode_string(buf, len, r_len, str);
  704. if (err) {
  705. return err;
  706. }
  707. strings.push_back(str);
  708. }
  709. r_variant = strings;
  710. } break;
  711. case Variant::PACKED_VECTOR2_ARRAY: {
  712. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  713. int32_t count = decode_uint32(buf);
  714. buf += 4;
  715. len -= 4;
  716. Vector<Vector2> varray;
  717. if (type & ENCODE_FLAG_64) {
  718. ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
  719. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
  720. if (r_len) {
  721. (*r_len) += 4; // Size of count number.
  722. }
  723. if (count) {
  724. varray.resize(count);
  725. Vector2 *w = varray.ptrw();
  726. for (int32_t i = 0; i < count; i++) {
  727. w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
  728. w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
  729. }
  730. int adv = sizeof(double) * 2 * count;
  731. if (r_len) {
  732. (*r_len) += adv;
  733. }
  734. len -= adv;
  735. buf += adv;
  736. }
  737. } else {
  738. ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
  739. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
  740. if (r_len) {
  741. (*r_len) += 4; // Size of count number.
  742. }
  743. if (count) {
  744. varray.resize(count);
  745. Vector2 *w = varray.ptrw();
  746. for (int32_t i = 0; i < count; i++) {
  747. w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
  748. w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
  749. }
  750. int adv = sizeof(float) * 2 * count;
  751. if (r_len) {
  752. (*r_len) += adv;
  753. }
  754. }
  755. }
  756. r_variant = varray;
  757. } break;
  758. case Variant::PACKED_VECTOR3_ARRAY: {
  759. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  760. int32_t count = decode_uint32(buf);
  761. buf += 4;
  762. len -= 4;
  763. Vector<Vector3> varray;
  764. if (type & ENCODE_FLAG_64) {
  765. ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
  766. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
  767. if (r_len) {
  768. (*r_len) += 4; // Size of count number.
  769. }
  770. if (count) {
  771. varray.resize(count);
  772. Vector3 *w = varray.ptrw();
  773. for (int32_t i = 0; i < count; i++) {
  774. w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
  775. w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
  776. w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
  777. }
  778. int adv = sizeof(double) * 3 * count;
  779. if (r_len) {
  780. (*r_len) += adv;
  781. }
  782. len -= adv;
  783. buf += adv;
  784. }
  785. } else {
  786. ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
  787. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
  788. if (r_len) {
  789. (*r_len) += 4; // Size of count number.
  790. }
  791. if (count) {
  792. varray.resize(count);
  793. Vector3 *w = varray.ptrw();
  794. for (int32_t i = 0; i < count; i++) {
  795. w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
  796. w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
  797. w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
  798. }
  799. int adv = sizeof(float) * 3 * count;
  800. if (r_len) {
  801. (*r_len) += adv;
  802. }
  803. len -= adv;
  804. buf += adv;
  805. }
  806. }
  807. r_variant = varray;
  808. } break;
  809. case Variant::PACKED_COLOR_ARRAY: {
  810. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  811. int32_t count = decode_uint32(buf);
  812. buf += 4;
  813. len -= 4;
  814. ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
  815. ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
  816. Vector<Color> carray;
  817. if (r_len) {
  818. (*r_len) += 4; // Size of count number.
  819. }
  820. if (count) {
  821. carray.resize(count);
  822. Color *w = carray.ptrw();
  823. for (int32_t i = 0; i < count; i++) {
  824. // Colors should always be in single-precision.
  825. w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
  826. w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
  827. w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
  828. w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
  829. }
  830. int adv = 4 * 4 * count;
  831. if (r_len) {
  832. (*r_len) += adv;
  833. }
  834. }
  835. r_variant = carray;
  836. } break;
  837. default: {
  838. ERR_FAIL_V(ERR_BUG);
  839. }
  840. }
  841. return OK;
  842. }
  843. static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) {
  844. CharString utf8 = p_string.utf8();
  845. if (buf) {
  846. encode_uint32(utf8.length(), buf);
  847. buf += 4;
  848. memcpy(buf, utf8.get_data(), utf8.length());
  849. buf += utf8.length();
  850. }
  851. r_len += 4 + utf8.length();
  852. while (r_len % 4) {
  853. r_len++; //pad
  854. if (buf) {
  855. *(buf++) = 0;
  856. }
  857. }
  858. }
  859. Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) {
  860. ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential inifite recursion detected. Bailing.");
  861. uint8_t *buf = r_buffer;
  862. r_len = 0;
  863. uint32_t flags = 0;
  864. switch (p_variant.get_type()) {
  865. case Variant::INT: {
  866. int64_t val = p_variant;
  867. if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) {
  868. flags |= ENCODE_FLAG_64;
  869. }
  870. } break;
  871. case Variant::FLOAT: {
  872. double d = p_variant;
  873. float f = d;
  874. if (double(f) != d) {
  875. flags |= ENCODE_FLAG_64;
  876. }
  877. } break;
  878. case Variant::OBJECT: {
  879. // Test for potential wrong values sent by the debugger when it breaks.
  880. Object *obj = p_variant.get_validated_object();
  881. if (!obj) {
  882. // Object is invalid, send a nullptr instead.
  883. if (buf) {
  884. encode_uint32(Variant::NIL, buf);
  885. }
  886. r_len += 4;
  887. return OK;
  888. }
  889. if (!p_full_objects) {
  890. flags |= ENCODE_FLAG_OBJECT_AS_ID;
  891. }
  892. } break;
  893. default: {
  894. } // nothing to do at this stage
  895. }
  896. if (buf) {
  897. encode_uint32(p_variant.get_type() | flags, buf);
  898. buf += 4;
  899. }
  900. r_len += 4;
  901. switch (p_variant.get_type()) {
  902. case Variant::NIL: {
  903. //nothing to do
  904. } break;
  905. case Variant::BOOL: {
  906. if (buf) {
  907. encode_uint32(p_variant.operator bool(), buf);
  908. }
  909. r_len += 4;
  910. } break;
  911. case Variant::INT: {
  912. if (flags & ENCODE_FLAG_64) {
  913. //64 bits
  914. if (buf) {
  915. encode_uint64(p_variant.operator int64_t(), buf);
  916. }
  917. r_len += 8;
  918. } else {
  919. if (buf) {
  920. encode_uint32(p_variant.operator int32_t(), buf);
  921. }
  922. r_len += 4;
  923. }
  924. } break;
  925. case Variant::FLOAT: {
  926. if (flags & ENCODE_FLAG_64) {
  927. if (buf) {
  928. encode_double(p_variant.operator double(), buf);
  929. }
  930. r_len += 8;
  931. } else {
  932. if (buf) {
  933. encode_float(p_variant.operator float(), buf);
  934. }
  935. r_len += 4;
  936. }
  937. } break;
  938. case Variant::NODE_PATH: {
  939. NodePath np = p_variant;
  940. if (buf) {
  941. encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); //for compatibility with the old format
  942. encode_uint32(np.get_subname_count(), buf + 4);
  943. uint32_t np_flags = 0;
  944. if (np.is_absolute()) {
  945. np_flags |= 1;
  946. }
  947. encode_uint32(np_flags, buf + 8);
  948. buf += 12;
  949. }
  950. r_len += 12;
  951. int total = np.get_name_count() + np.get_subname_count();
  952. for (int i = 0; i < total; i++) {
  953. String str;
  954. if (i < np.get_name_count()) {
  955. str = np.get_name(i);
  956. } else {
  957. str = np.get_subname(i - np.get_name_count());
  958. }
  959. CharString utf8 = str.utf8();
  960. int pad = 0;
  961. if (utf8.length() % 4) {
  962. pad = 4 - utf8.length() % 4;
  963. }
  964. if (buf) {
  965. encode_uint32(utf8.length(), buf);
  966. buf += 4;
  967. memcpy(buf, utf8.get_data(), utf8.length());
  968. buf += pad + utf8.length();
  969. }
  970. r_len += 4 + utf8.length() + pad;
  971. }
  972. } break;
  973. case Variant::STRING:
  974. case Variant::STRING_NAME: {
  975. _encode_string(p_variant, buf, r_len);
  976. } break;
  977. // math types
  978. case Variant::VECTOR2: {
  979. if (buf) {
  980. Vector2 v2 = p_variant;
  981. encode_real(v2.x, &buf[0]);
  982. encode_real(v2.y, &buf[sizeof(real_t)]);
  983. }
  984. r_len += 2 * sizeof(real_t);
  985. } break;
  986. case Variant::VECTOR2I: {
  987. if (buf) {
  988. Vector2i v2 = p_variant;
  989. encode_uint32(v2.x, &buf[0]);
  990. encode_uint32(v2.y, &buf[4]);
  991. }
  992. r_len += 2 * 4;
  993. } break;
  994. case Variant::RECT2: {
  995. if (buf) {
  996. Rect2 r2 = p_variant;
  997. encode_real(r2.position.x, &buf[0]);
  998. encode_real(r2.position.y, &buf[sizeof(real_t)]);
  999. encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
  1000. encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
  1001. }
  1002. r_len += 4 * sizeof(real_t);
  1003. } break;
  1004. case Variant::RECT2I: {
  1005. if (buf) {
  1006. Rect2i r2 = p_variant;
  1007. encode_uint32(r2.position.x, &buf[0]);
  1008. encode_uint32(r2.position.y, &buf[4]);
  1009. encode_uint32(r2.size.x, &buf[8]);
  1010. encode_uint32(r2.size.y, &buf[12]);
  1011. }
  1012. r_len += 4 * 4;
  1013. } break;
  1014. case Variant::VECTOR3: {
  1015. if (buf) {
  1016. Vector3 v3 = p_variant;
  1017. encode_real(v3.x, &buf[0]);
  1018. encode_real(v3.y, &buf[sizeof(real_t)]);
  1019. encode_real(v3.z, &buf[sizeof(real_t) * 2]);
  1020. }
  1021. r_len += 3 * sizeof(real_t);
  1022. } break;
  1023. case Variant::VECTOR3I: {
  1024. if (buf) {
  1025. Vector3i v3 = p_variant;
  1026. encode_uint32(v3.x, &buf[0]);
  1027. encode_uint32(v3.y, &buf[4]);
  1028. encode_uint32(v3.z, &buf[8]);
  1029. }
  1030. r_len += 3 * 4;
  1031. } break;
  1032. case Variant::TRANSFORM2D: {
  1033. if (buf) {
  1034. Transform2D val = p_variant;
  1035. for (int i = 0; i < 3; i++) {
  1036. for (int j = 0; j < 2; j++) {
  1037. memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.elements[i][j], sizeof(real_t));
  1038. }
  1039. }
  1040. }
  1041. r_len += 6 * sizeof(real_t);
  1042. } break;
  1043. case Variant::PLANE: {
  1044. if (buf) {
  1045. Plane p = p_variant;
  1046. encode_real(p.normal.x, &buf[0]);
  1047. encode_real(p.normal.y, &buf[sizeof(real_t)]);
  1048. encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
  1049. encode_real(p.d, &buf[sizeof(real_t) * 3]);
  1050. }
  1051. r_len += 4 * sizeof(real_t);
  1052. } break;
  1053. case Variant::QUATERNION: {
  1054. if (buf) {
  1055. Quaternion q = p_variant;
  1056. encode_real(q.x, &buf[0]);
  1057. encode_real(q.y, &buf[sizeof(real_t)]);
  1058. encode_real(q.z, &buf[sizeof(real_t) * 2]);
  1059. encode_real(q.w, &buf[sizeof(real_t) * 3]);
  1060. }
  1061. r_len += 4 * sizeof(real_t);
  1062. } break;
  1063. case Variant::AABB: {
  1064. if (buf) {
  1065. AABB aabb = p_variant;
  1066. encode_real(aabb.position.x, &buf[0]);
  1067. encode_real(aabb.position.y, &buf[sizeof(real_t)]);
  1068. encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
  1069. encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
  1070. encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
  1071. encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
  1072. }
  1073. r_len += 6 * sizeof(real_t);
  1074. } break;
  1075. case Variant::BASIS: {
  1076. if (buf) {
  1077. Basis val = p_variant;
  1078. for (int i = 0; i < 3; i++) {
  1079. for (int j = 0; j < 3; j++) {
  1080. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.elements[i][j], sizeof(real_t));
  1081. }
  1082. }
  1083. }
  1084. r_len += 9 * sizeof(real_t);
  1085. } break;
  1086. case Variant::TRANSFORM3D: {
  1087. if (buf) {
  1088. Transform3D val = p_variant;
  1089. for (int i = 0; i < 3; i++) {
  1090. for (int j = 0; j < 3; j++) {
  1091. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.elements[i][j], sizeof(real_t));
  1092. }
  1093. }
  1094. encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
  1095. encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
  1096. encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
  1097. }
  1098. r_len += 12 * sizeof(real_t);
  1099. } break;
  1100. // misc types
  1101. case Variant::COLOR: {
  1102. if (buf) {
  1103. Color c = p_variant;
  1104. encode_float(c.r, &buf[0]);
  1105. encode_float(c.g, &buf[4]);
  1106. encode_float(c.b, &buf[8]);
  1107. encode_float(c.a, &buf[12]);
  1108. }
  1109. r_len += 4 * 4; // Colors should always be in single-precision.
  1110. } break;
  1111. case Variant::RID: {
  1112. } break;
  1113. case Variant::CALLABLE: {
  1114. } break;
  1115. case Variant::SIGNAL: {
  1116. } break;
  1117. case Variant::OBJECT: {
  1118. if (p_full_objects) {
  1119. Object *obj = p_variant;
  1120. if (!obj) {
  1121. if (buf) {
  1122. encode_uint32(0, buf);
  1123. }
  1124. r_len += 4;
  1125. } else {
  1126. _encode_string(obj->get_class(), buf, r_len);
  1127. List<PropertyInfo> props;
  1128. obj->get_property_list(&props);
  1129. int pc = 0;
  1130. for (const PropertyInfo &E : props) {
  1131. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1132. continue;
  1133. }
  1134. pc++;
  1135. }
  1136. if (buf) {
  1137. encode_uint32(pc, buf);
  1138. buf += 4;
  1139. }
  1140. r_len += 4;
  1141. for (const PropertyInfo &E : props) {
  1142. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1143. continue;
  1144. }
  1145. _encode_string(E.name, buf, r_len);
  1146. int len;
  1147. Error err = encode_variant(obj->get(E.name), buf, len, p_full_objects, p_depth + 1);
  1148. ERR_FAIL_COND_V(err, err);
  1149. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1150. r_len += len;
  1151. if (buf) {
  1152. buf += len;
  1153. }
  1154. }
  1155. }
  1156. } else {
  1157. if (buf) {
  1158. Object *obj = p_variant.get_validated_object();
  1159. ObjectID id;
  1160. if (obj) {
  1161. id = obj->get_instance_id();
  1162. }
  1163. encode_uint64(id, buf);
  1164. }
  1165. r_len += 8;
  1166. }
  1167. } break;
  1168. case Variant::DICTIONARY: {
  1169. Dictionary d = p_variant;
  1170. if (buf) {
  1171. encode_uint32(uint32_t(d.size()), buf);
  1172. buf += 4;
  1173. }
  1174. r_len += 4;
  1175. List<Variant> keys;
  1176. d.get_key_list(&keys);
  1177. for (const Variant &E : keys) {
  1178. /*
  1179. CharString utf8 = E->->utf8();
  1180. if (buf) {
  1181. encode_uint32(utf8.length()+1,buf);
  1182. buf+=4;
  1183. memcpy(buf,utf8.get_data(),utf8.length()+1);
  1184. }
  1185. r_len+=4+utf8.length()+1;
  1186. while (r_len%4)
  1187. r_len++; //pad
  1188. */
  1189. int len;
  1190. Error err = encode_variant(E, buf, len, p_full_objects, p_depth + 1);
  1191. ERR_FAIL_COND_V(err, err);
  1192. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1193. r_len += len;
  1194. if (buf) {
  1195. buf += len;
  1196. }
  1197. Variant *v = d.getptr(E);
  1198. ERR_FAIL_COND_V(!v, ERR_BUG);
  1199. err = encode_variant(*v, buf, len, p_full_objects, p_depth + 1);
  1200. ERR_FAIL_COND_V(err, err);
  1201. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1202. r_len += len;
  1203. if (buf) {
  1204. buf += len;
  1205. }
  1206. }
  1207. } break;
  1208. case Variant::ARRAY: {
  1209. Array v = p_variant;
  1210. if (buf) {
  1211. encode_uint32(uint32_t(v.size()), buf);
  1212. buf += 4;
  1213. }
  1214. r_len += 4;
  1215. for (int i = 0; i < v.size(); i++) {
  1216. int len;
  1217. Error err = encode_variant(v.get(i), buf, len, p_full_objects, p_depth + 1);
  1218. ERR_FAIL_COND_V(err, err);
  1219. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1220. r_len += len;
  1221. if (buf) {
  1222. buf += len;
  1223. }
  1224. }
  1225. } break;
  1226. // arrays
  1227. case Variant::PACKED_BYTE_ARRAY: {
  1228. Vector<uint8_t> data = p_variant;
  1229. int datalen = data.size();
  1230. int datasize = sizeof(uint8_t);
  1231. if (buf) {
  1232. encode_uint32(datalen, buf);
  1233. buf += 4;
  1234. const uint8_t *r = data.ptr();
  1235. memcpy(buf, &r[0], datalen * datasize);
  1236. buf += datalen * datasize;
  1237. }
  1238. r_len += 4 + datalen * datasize;
  1239. while (r_len % 4) {
  1240. r_len++;
  1241. if (buf) {
  1242. *(buf++) = 0;
  1243. }
  1244. }
  1245. } break;
  1246. case Variant::PACKED_INT32_ARRAY: {
  1247. Vector<int32_t> data = p_variant;
  1248. int datalen = data.size();
  1249. int datasize = sizeof(int32_t);
  1250. if (buf) {
  1251. encode_uint32(datalen, buf);
  1252. buf += 4;
  1253. const int32_t *r = data.ptr();
  1254. for (int32_t i = 0; i < datalen; i++) {
  1255. encode_uint32(r[i], &buf[i * datasize]);
  1256. }
  1257. }
  1258. r_len += 4 + datalen * datasize;
  1259. } break;
  1260. case Variant::PACKED_INT64_ARRAY: {
  1261. Vector<int64_t> data = p_variant;
  1262. int datalen = data.size();
  1263. int datasize = sizeof(int64_t);
  1264. if (buf) {
  1265. encode_uint32(datalen, buf);
  1266. buf += 4;
  1267. const int64_t *r = data.ptr();
  1268. for (int64_t i = 0; i < datalen; i++) {
  1269. encode_uint64(r[i], &buf[i * datasize]);
  1270. }
  1271. }
  1272. r_len += 4 + datalen * datasize;
  1273. } break;
  1274. case Variant::PACKED_FLOAT32_ARRAY: {
  1275. Vector<float> data = p_variant;
  1276. int datalen = data.size();
  1277. int datasize = sizeof(float);
  1278. if (buf) {
  1279. encode_uint32(datalen, buf);
  1280. buf += 4;
  1281. const float *r = data.ptr();
  1282. for (int i = 0; i < datalen; i++) {
  1283. encode_float(r[i], &buf[i * datasize]);
  1284. }
  1285. }
  1286. r_len += 4 + datalen * datasize;
  1287. } break;
  1288. case Variant::PACKED_FLOAT64_ARRAY: {
  1289. Vector<double> data = p_variant;
  1290. int datalen = data.size();
  1291. int datasize = sizeof(double);
  1292. if (buf) {
  1293. encode_uint32(datalen, buf);
  1294. buf += 4;
  1295. const double *r = data.ptr();
  1296. for (int i = 0; i < datalen; i++) {
  1297. encode_double(r[i], &buf[i * datasize]);
  1298. }
  1299. }
  1300. r_len += 4 + datalen * datasize;
  1301. } break;
  1302. case Variant::PACKED_STRING_ARRAY: {
  1303. Vector<String> data = p_variant;
  1304. int len = data.size();
  1305. if (buf) {
  1306. encode_uint32(len, buf);
  1307. buf += 4;
  1308. }
  1309. r_len += 4;
  1310. for (int i = 0; i < len; i++) {
  1311. CharString utf8 = data.get(i).utf8();
  1312. if (buf) {
  1313. encode_uint32(utf8.length() + 1, buf);
  1314. buf += 4;
  1315. memcpy(buf, utf8.get_data(), utf8.length() + 1);
  1316. buf += utf8.length() + 1;
  1317. }
  1318. r_len += 4 + utf8.length() + 1;
  1319. while (r_len % 4) {
  1320. r_len++; //pad
  1321. if (buf) {
  1322. *(buf++) = 0;
  1323. }
  1324. }
  1325. }
  1326. } break;
  1327. case Variant::PACKED_VECTOR2_ARRAY: {
  1328. Vector<Vector2> data = p_variant;
  1329. int len = data.size();
  1330. if (buf) {
  1331. encode_uint32(len, buf);
  1332. buf += 4;
  1333. }
  1334. r_len += 4;
  1335. if (buf) {
  1336. for (int i = 0; i < len; i++) {
  1337. Vector2 v = data.get(i);
  1338. encode_real(v.x, &buf[0]);
  1339. encode_real(v.y, &buf[sizeof(real_t)]);
  1340. buf += sizeof(real_t) * 2;
  1341. }
  1342. }
  1343. r_len += sizeof(real_t) * 2 * len;
  1344. } break;
  1345. case Variant::PACKED_VECTOR3_ARRAY: {
  1346. Vector<Vector3> data = p_variant;
  1347. int len = data.size();
  1348. if (buf) {
  1349. encode_uint32(len, buf);
  1350. buf += 4;
  1351. }
  1352. r_len += 4;
  1353. if (buf) {
  1354. for (int i = 0; i < len; i++) {
  1355. Vector3 v = data.get(i);
  1356. encode_real(v.x, &buf[0]);
  1357. encode_real(v.y, &buf[sizeof(real_t)]);
  1358. encode_real(v.z, &buf[sizeof(real_t) * 2]);
  1359. buf += sizeof(real_t) * 3;
  1360. }
  1361. }
  1362. r_len += sizeof(real_t) * 3 * len;
  1363. } break;
  1364. case Variant::PACKED_COLOR_ARRAY: {
  1365. Vector<Color> data = p_variant;
  1366. int len = data.size();
  1367. if (buf) {
  1368. encode_uint32(len, buf);
  1369. buf += 4;
  1370. }
  1371. r_len += 4;
  1372. if (buf) {
  1373. for (int i = 0; i < len; i++) {
  1374. Color c = data.get(i);
  1375. encode_float(c.r, &buf[0]);
  1376. encode_float(c.g, &buf[4]);
  1377. encode_float(c.b, &buf[8]);
  1378. encode_float(c.a, &buf[12]);
  1379. buf += 4 * 4; // Colors should always be in single-precision.
  1380. }
  1381. }
  1382. r_len += 4 * 4 * len;
  1383. } break;
  1384. default: {
  1385. ERR_FAIL_V(ERR_BUG);
  1386. }
  1387. }
  1388. return OK;
  1389. }