| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 |
- <?xml version="1.0" encoding="UTF-8" ?>
- <class name="Vector2" version="4.0">
- <brief_description>
- Vector used for 2D math using floating point coordinates.
- </brief_description>
- <description>
- 2-element structure that can be used to represent positions in 2D space or any other pair of numeric values.
- It uses floating-point coordinates. See [Vector2i] for its integer counterpart.
- [b]Note:[/b] In a boolean context, a Vector2 will evaluate to [code]false[/code] if it's equal to [code]Vector2(0, 0)[/code]. Otherwise, a Vector2 will always evaluate to [code]true[/code].
- </description>
- <tutorials>
- <link title="Math documentation index">https://docs.godotengine.org/en/latest/tutorials/math/index.html</link>
- <link title="Vector math">https://docs.godotengine.org/en/latest/tutorials/math/vector_math.html</link>
- <link title="Advanced vector math">https://docs.godotengine.org/en/latest/tutorials/math/vectors_advanced.html</link>
- <link title="3Blue1Brown Essence of Linear Algebra">https://www.youtube.com/playlist?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab</link>
- <link title="Matrix Transform Demo">https://godotengine.org/asset-library/asset/584</link>
- <link title="All 2D Demos">https://github.com/godotengine/godot-demo-projects/tree/master/2d</link>
- </tutorials>
- <constructors>
- <constructor name="Vector2">
- <return type="Vector2" />
- <description>
- Constructs a default-initialized [Vector2] with all components set to [code]0[/code].
- </description>
- </constructor>
- <constructor name="Vector2">
- <return type="Vector2" />
- <argument index="0" name="from" type="Vector2" />
- <description>
- Constructs a [Vector2] as a copy of the given [Vector2].
- </description>
- </constructor>
- <constructor name="Vector2">
- <return type="Vector2" />
- <argument index="0" name="from" type="Vector2i" />
- <description>
- Constructs a new [Vector2] from [Vector2i].
- </description>
- </constructor>
- <constructor name="Vector2">
- <return type="Vector2" />
- <argument index="0" name="x" type="float" />
- <argument index="1" name="y" type="float" />
- <description>
- Constructs a new [Vector2] from the given [code]x[/code] and [code]y[/code].
- </description>
- </constructor>
- </constructors>
- <methods>
- <method name="abs" qualifiers="const">
- <return type="Vector2" />
- <description>
- Returns a new vector with all components in absolute values (i.e. positive).
- </description>
- </method>
- <method name="angle" qualifiers="const">
- <return type="float" />
- <description>
- Returns this vector's angle with respect to the positive X axis, or [code](1, 0)[/code] vector, in radians.
- For example, [code]Vector2.RIGHT.angle()[/code] will return zero, [code]Vector2.DOWN.angle()[/code] will return [code]PI / 2[/code] (a quarter turn, or 90 degrees), and [code]Vector2(1, -1).angle()[/code] will return [code]-PI / 4[/code] (a negative eighth turn, or -45 degrees).
- [url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle.png]Illustration of the returned angle.[/url]
- Equivalent to the result of [method @GlobalScope.atan2] when called with the vector's [member y] and [member x] as parameters: [code]atan2(y, x)[/code].
- </description>
- </method>
- <method name="angle_to" qualifiers="const">
- <return type="float" />
- <argument index="0" name="to" type="Vector2" />
- <description>
- Returns the angle to the given vector, in radians.
- [url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to.png]Illustration of the returned angle.[/url]
- </description>
- </method>
- <method name="angle_to_point" qualifiers="const">
- <return type="float" />
- <argument index="0" name="to" type="Vector2" />
- <description>
- Returns the angle between the line connecting the two points and the X axis, in radians.
- [url=https://raw.githubusercontent.com/godotengine/godot-docs/master/img/vector2_angle_to_point.png]Illustration of the returned angle.[/url]
- </description>
- </method>
- <method name="aspect" qualifiers="const">
- <return type="float" />
- <description>
- Returns the aspect ratio of this vector, the ratio of [member x] to [member y].
- </description>
- </method>
- <method name="bounce" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="n" type="Vector2" />
- <description>
- Returns the vector "bounced off" from a plane defined by the given normal.
- </description>
- </method>
- <method name="ceil" qualifiers="const">
- <return type="Vector2" />
- <description>
- Returns the vector with all components rounded up (towards positive infinity).
- </description>
- </method>
- <method name="clamp" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="min" type="Vector2" />
- <argument index="1" name="max" type="Vector2" />
- <description>
- Returns a new vector with all components clamped between the components of [code]min[/code] and [code]max[/code], by running [method @GlobalScope.clamp] on each component.
- </description>
- </method>
- <method name="cross" qualifiers="const">
- <return type="float" />
- <argument index="0" name="with" type="Vector2" />
- <description>
- Returns the cross product of this vector and [code]with[/code].
- </description>
- </method>
- <method name="cubic_interpolate" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="b" type="Vector2" />
- <argument index="1" name="pre_a" type="Vector2" />
- <argument index="2" name="post_b" type="Vector2" />
- <argument index="3" name="weight" type="float" />
- <description>
- Cubically interpolates between this vector and [code]b[/code] using [code]pre_a[/code] and [code]post_b[/code] as handles, and returns the result at position [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
- </description>
- </method>
- <method name="direction_to" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="b" type="Vector2" />
- <description>
- Returns the normalized vector pointing from this vector to [code]b[/code]. This is equivalent to using [code](b - a).normalized()[/code].
- </description>
- </method>
- <method name="distance_squared_to" qualifiers="const">
- <return type="float" />
- <argument index="0" name="to" type="Vector2" />
- <description>
- Returns the squared distance between this vector and [code]b[/code].
- This method runs faster than [method distance_to], so prefer it if you need to compare vectors or need the squared distance for some formula.
- </description>
- </method>
- <method name="distance_to" qualifiers="const">
- <return type="float" />
- <argument index="0" name="to" type="Vector2" />
- <description>
- Returns the distance between this vector and [code]to[/code].
- </description>
- </method>
- <method name="dot" qualifiers="const">
- <return type="float" />
- <argument index="0" name="with" type="Vector2" />
- <description>
- Returns the dot product of this vector and [code]with[/code]. This can be used to compare the angle between two vectors. For example, this can be used to determine whether an enemy is facing the player.
- The dot product will be [code]0[/code] for a straight angle (90 degrees), greater than 0 for angles narrower than 90 degrees and lower than 0 for angles wider than 90 degrees.
- When using unit (normalized) vectors, the result will always be between [code]-1.0[/code] (180 degree angle) when the vectors are facing opposite directions, and [code]1.0[/code] (0 degree angle) when the vectors are aligned.
- [b]Note:[/b] [code]a.dot(b)[/code] is equivalent to [code]b.dot(a)[/code].
- </description>
- </method>
- <method name="floor" qualifiers="const">
- <return type="Vector2" />
- <description>
- Returns the vector with all components rounded down (towards negative infinity).
- </description>
- </method>
- <method name="from_angle" qualifiers="static">
- <return type="Vector2" />
- <argument index="0" name="angle" type="float" />
- <description>
- Creates a unit [Vector2] rotated to the given [code]angle[/code] in radians. This is equivalent to doing [code]Vector2(cos(angle), sin(angle))[/code] or [code]Vector2.RIGHT.rotated(angle)[/code].
- [codeblock]
- print(Vector2.from_angle(0)) # Prints (1, 0).
- print(Vector2(1, 0).angle()) # Prints 0, which is the angle used above.
- print(Vector2.from_angle(PI / 2)) # Prints (0, 1).
- [/codeblock]
- </description>
- </method>
- <method name="is_equal_approx" qualifiers="const">
- <return type="bool" />
- <argument index="0" name="to" type="Vector2" />
- <description>
- Returns [code]true[/code] if this vector and [code]v[/code] are approximately equal, by running [method @GlobalScope.is_equal_approx] on each component.
- </description>
- </method>
- <method name="is_normalized" qualifiers="const">
- <return type="bool" />
- <description>
- Returns [code]true[/code] if the vector is normalized, [code]false[/code] otherwise.
- </description>
- </method>
- <method name="length" qualifiers="const">
- <return type="float" />
- <description>
- Returns the length (magnitude) of this vector.
- </description>
- </method>
- <method name="length_squared" qualifiers="const">
- <return type="float" />
- <description>
- Returns the squared length (squared magnitude) of this vector.
- This method runs faster than [method length], so prefer it if you need to compare vectors or need the squared distance for some formula.
- </description>
- </method>
- <method name="lerp" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="to" type="Vector2" />
- <argument index="1" name="weight" type="float" />
- <description>
- Returns the result of the linear interpolation between this vector and [code]to[/code] by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
- </description>
- </method>
- <method name="limit_length" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="length" type="float" default="1.0" />
- <description>
- Returns the vector with a maximum length by limiting its length to [code]length[/code].
- </description>
- </method>
- <method name="move_toward" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="to" type="Vector2" />
- <argument index="1" name="delta" type="float" />
- <description>
- Moves the vector toward [code]to[/code] by the fixed [code]delta[/code] amount.
- </description>
- </method>
- <method name="normalized" qualifiers="const">
- <return type="Vector2" />
- <description>
- Returns the vector scaled to unit length. Equivalent to [code]v / v.length()[/code].
- </description>
- </method>
- <method name="orthogonal" qualifiers="const">
- <return type="Vector2" />
- <description>
- Returns a perpendicular vector rotated 90 degrees counter-clockwise compared to the original, with the same length.
- </description>
- </method>
- <method name="posmod" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="mod" type="float" />
- <description>
- Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]mod[/code].
- </description>
- </method>
- <method name="posmodv" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="modv" type="Vector2" />
- <description>
- Returns a vector composed of the [method @GlobalScope.fposmod] of this vector's components and [code]modv[/code]'s components.
- </description>
- </method>
- <method name="project" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="b" type="Vector2" />
- <description>
- Returns the vector projected onto the vector [code]b[/code].
- </description>
- </method>
- <method name="reflect" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="n" type="Vector2" />
- <description>
- Returns the vector reflected from a plane defined by the given normal.
- </description>
- </method>
- <method name="rotated" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="phi" type="float" />
- <description>
- Returns the vector rotated by [code]phi[/code] radians. See also [method @GlobalScope.deg2rad].
- </description>
- </method>
- <method name="round" qualifiers="const">
- <return type="Vector2" />
- <description>
- Returns the vector with all components rounded to the nearest integer, with halfway cases rounded away from zero.
- </description>
- </method>
- <method name="sign" qualifiers="const">
- <return type="Vector2" />
- <description>
- Returns the vector with each component set to one or negative one, depending on the signs of the components, or zero if the component is zero, by calling [method @GlobalScope.sign] on each component.
- </description>
- </method>
- <method name="slerp" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="to" type="Vector2" />
- <argument index="1" name="weight" type="float" />
- <description>
- Returns the result of spherical linear interpolation between this vector and [code]to[/code], by amount [code]weight[/code]. [code]weight[/code] is on the range of 0.0 to 1.0, representing the amount of interpolation.
- [b]Note:[/b] Both vectors must be normalized.
- </description>
- </method>
- <method name="slide" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="n" type="Vector2" />
- <description>
- Returns this vector slid along a plane defined by the given normal.
- </description>
- </method>
- <method name="snapped" qualifiers="const">
- <return type="Vector2" />
- <argument index="0" name="step" type="Vector2" />
- <description>
- Returns this vector with each component snapped to the nearest multiple of [code]step[/code]. This can also be used to round to an arbitrary number of decimals.
- </description>
- </method>
- </methods>
- <members>
- <member name="x" type="float" setter="" getter="" default="0.0">
- The vector's X component. Also accessible by using the index position [code][0][/code].
- </member>
- <member name="y" type="float" setter="" getter="" default="0.0">
- The vector's Y component. Also accessible by using the index position [code][1][/code].
- </member>
- </members>
- <constants>
- <constant name="AXIS_X" value="0">
- Enumerated value for the X axis.
- </constant>
- <constant name="AXIS_Y" value="1">
- Enumerated value for the Y axis.
- </constant>
- <constant name="ZERO" value="Vector2(0, 0)">
- Zero vector, a vector with all components set to [code]0[/code].
- </constant>
- <constant name="ONE" value="Vector2(1, 1)">
- One vector, a vector with all components set to [code]1[/code].
- </constant>
- <constant name="INF" value="Vector2(inf, inf)">
- Infinity vector, a vector with all components set to [constant @GDScript.INF].
- </constant>
- <constant name="LEFT" value="Vector2(-1, 0)">
- Left unit vector. Represents the direction of left.
- </constant>
- <constant name="RIGHT" value="Vector2(1, 0)">
- Right unit vector. Represents the direction of right.
- </constant>
- <constant name="UP" value="Vector2(0, -1)">
- Up unit vector. Y is down in 2D, so this vector points -Y.
- </constant>
- <constant name="DOWN" value="Vector2(0, 1)">
- Down unit vector. Y is down in 2D, so this vector points +Y.
- </constant>
- </constants>
- <operators>
- <operator name="operator !=">
- <return type="bool" />
- <description>
- </description>
- </operator>
- <operator name="operator !=">
- <return type="bool" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator *">
- <return type="Vector2" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator *">
- <return type="Vector2" />
- <argument index="0" name="right" type="Transform2D" />
- <description>
- </description>
- </operator>
- <operator name="operator *">
- <return type="Vector2" />
- <argument index="0" name="right" type="float" />
- <description>
- </description>
- </operator>
- <operator name="operator *">
- <return type="Vector2" />
- <argument index="0" name="right" type="int" />
- <description>
- </description>
- </operator>
- <operator name="operator +">
- <return type="Vector2" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator -">
- <return type="Vector2" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator /">
- <return type="Vector2" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator /">
- <return type="Vector2" />
- <argument index="0" name="right" type="float" />
- <description>
- </description>
- </operator>
- <operator name="operator /">
- <return type="Vector2" />
- <argument index="0" name="right" type="int" />
- <description>
- </description>
- </operator>
- <operator name="operator <">
- <return type="bool" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator <=">
- <return type="bool" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator ==">
- <return type="bool" />
- <description>
- </description>
- </operator>
- <operator name="operator ==">
- <return type="bool" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator >">
- <return type="bool" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator >=">
- <return type="bool" />
- <argument index="0" name="right" type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator []">
- <return type="float" />
- <argument index="0" name="index" type="int" />
- <description>
- </description>
- </operator>
- <operator name="operator unary+">
- <return type="Vector2" />
- <description>
- </description>
- </operator>
- <operator name="operator unary-">
- <return type="Vector2" />
- <description>
- </description>
- </operator>
- </operators>
- </class>
|