btOptimizedBvh.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. #include "btOptimizedBvh.h"
  14. #include "btStridingMeshInterface.h"
  15. #include "LinearMath/btAabbUtil2.h"
  16. #include "LinearMath/btIDebugDraw.h"
  17. btOptimizedBvh::btOptimizedBvh()
  18. {
  19. }
  20. btOptimizedBvh::~btOptimizedBvh()
  21. {
  22. }
  23. void btOptimizedBvh::build(btStridingMeshInterface* triangles, bool useQuantizedAabbCompression, const btVector3& bvhAabbMin, const btVector3& bvhAabbMax)
  24. {
  25. m_useQuantization = useQuantizedAabbCompression;
  26. // NodeArray triangleNodes;
  27. struct NodeTriangleCallback : public btInternalTriangleIndexCallback
  28. {
  29. NodeArray& m_triangleNodes;
  30. NodeTriangleCallback& operator=(NodeTriangleCallback& other)
  31. {
  32. m_triangleNodes.copyFromArray(other.m_triangleNodes);
  33. return *this;
  34. }
  35. NodeTriangleCallback(NodeArray& triangleNodes)
  36. : m_triangleNodes(triangleNodes)
  37. {
  38. }
  39. virtual void internalProcessTriangleIndex(btVector3* triangle, int partId, int triangleIndex)
  40. {
  41. btOptimizedBvhNode node;
  42. btVector3 aabbMin, aabbMax;
  43. aabbMin.setValue(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  44. aabbMax.setValue(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  45. aabbMin.setMin(triangle[0]);
  46. aabbMax.setMax(triangle[0]);
  47. aabbMin.setMin(triangle[1]);
  48. aabbMax.setMax(triangle[1]);
  49. aabbMin.setMin(triangle[2]);
  50. aabbMax.setMax(triangle[2]);
  51. //with quantization?
  52. node.m_aabbMinOrg = aabbMin;
  53. node.m_aabbMaxOrg = aabbMax;
  54. node.m_escapeIndex = -1;
  55. //for child nodes
  56. node.m_subPart = partId;
  57. node.m_triangleIndex = triangleIndex;
  58. m_triangleNodes.push_back(node);
  59. }
  60. };
  61. struct QuantizedNodeTriangleCallback : public btInternalTriangleIndexCallback
  62. {
  63. QuantizedNodeArray& m_triangleNodes;
  64. const btQuantizedBvh* m_optimizedTree; // for quantization
  65. QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other)
  66. {
  67. m_triangleNodes.copyFromArray(other.m_triangleNodes);
  68. m_optimizedTree = other.m_optimizedTree;
  69. return *this;
  70. }
  71. QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes, const btQuantizedBvh* tree)
  72. : m_triangleNodes(triangleNodes), m_optimizedTree(tree)
  73. {
  74. }
  75. virtual void internalProcessTriangleIndex(btVector3* triangle, int partId, int triangleIndex)
  76. {
  77. // The partId and triangle index must fit in the same (positive) integer
  78. btAssert(partId < (1 << MAX_NUM_PARTS_IN_BITS));
  79. btAssert(triangleIndex < (1 << (31 - MAX_NUM_PARTS_IN_BITS)));
  80. //negative indices are reserved for escapeIndex
  81. btAssert(triangleIndex >= 0);
  82. btQuantizedBvhNode node;
  83. btVector3 aabbMin, aabbMax;
  84. aabbMin.setValue(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  85. aabbMax.setValue(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  86. aabbMin.setMin(triangle[0]);
  87. aabbMax.setMax(triangle[0]);
  88. aabbMin.setMin(triangle[1]);
  89. aabbMax.setMax(triangle[1]);
  90. aabbMin.setMin(triangle[2]);
  91. aabbMax.setMax(triangle[2]);
  92. //PCK: add these checks for zero dimensions of aabb
  93. const btScalar MIN_AABB_DIMENSION = btScalar(0.002);
  94. const btScalar MIN_AABB_HALF_DIMENSION = btScalar(0.001);
  95. if (aabbMax.x() - aabbMin.x() < MIN_AABB_DIMENSION)
  96. {
  97. aabbMax.setX(aabbMax.x() + MIN_AABB_HALF_DIMENSION);
  98. aabbMin.setX(aabbMin.x() - MIN_AABB_HALF_DIMENSION);
  99. }
  100. if (aabbMax.y() - aabbMin.y() < MIN_AABB_DIMENSION)
  101. {
  102. aabbMax.setY(aabbMax.y() + MIN_AABB_HALF_DIMENSION);
  103. aabbMin.setY(aabbMin.y() - MIN_AABB_HALF_DIMENSION);
  104. }
  105. if (aabbMax.z() - aabbMin.z() < MIN_AABB_DIMENSION)
  106. {
  107. aabbMax.setZ(aabbMax.z() + MIN_AABB_HALF_DIMENSION);
  108. aabbMin.setZ(aabbMin.z() - MIN_AABB_HALF_DIMENSION);
  109. }
  110. m_optimizedTree->quantize(&node.m_quantizedAabbMin[0], aabbMin, 0);
  111. m_optimizedTree->quantize(&node.m_quantizedAabbMax[0], aabbMax, 1);
  112. node.m_escapeIndexOrTriangleIndex = (partId << (31 - MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
  113. m_triangleNodes.push_back(node);
  114. }
  115. };
  116. int numLeafNodes = 0;
  117. if (m_useQuantization)
  118. {
  119. //initialize quantization values
  120. setQuantizationValues(bvhAabbMin, bvhAabbMax);
  121. QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes, this);
  122. triangles->InternalProcessAllTriangles(&callback, m_bvhAabbMin, m_bvhAabbMax);
  123. //now we have an array of leafnodes in m_leafNodes
  124. numLeafNodes = m_quantizedLeafNodes.size();
  125. m_quantizedContiguousNodes.resize(2 * numLeafNodes);
  126. }
  127. else
  128. {
  129. NodeTriangleCallback callback(m_leafNodes);
  130. btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  131. btVector3 aabbMax(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  132. triangles->InternalProcessAllTriangles(&callback, aabbMin, aabbMax);
  133. //now we have an array of leafnodes in m_leafNodes
  134. numLeafNodes = m_leafNodes.size();
  135. m_contiguousNodes.resize(2 * numLeafNodes);
  136. }
  137. m_curNodeIndex = 0;
  138. buildTree(0, numLeafNodes);
  139. ///if the entire tree is small then subtree size, we need to create a header info for the tree
  140. if (m_useQuantization && !m_SubtreeHeaders.size())
  141. {
  142. btBvhSubtreeInfo& subtree = m_SubtreeHeaders.expand();
  143. subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]);
  144. subtree.m_rootNodeIndex = 0;
  145. subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex();
  146. }
  147. //PCK: update the copy of the size
  148. m_subtreeHeaderCount = m_SubtreeHeaders.size();
  149. //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary
  150. m_quantizedLeafNodes.clear();
  151. m_leafNodes.clear();
  152. }
  153. void btOptimizedBvh::refit(btStridingMeshInterface* meshInterface, const btVector3& aabbMin, const btVector3& aabbMax)
  154. {
  155. if (m_useQuantization)
  156. {
  157. setQuantizationValues(aabbMin, aabbMax);
  158. updateBvhNodes(meshInterface, 0, m_curNodeIndex, 0);
  159. ///now update all subtree headers
  160. int i;
  161. for (i = 0; i < m_SubtreeHeaders.size(); i++)
  162. {
  163. btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
  164. subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
  165. }
  166. }
  167. else
  168. {
  169. }
  170. }
  171. void btOptimizedBvh::refitPartial(btStridingMeshInterface* meshInterface, const btVector3& aabbMin, const btVector3& aabbMax)
  172. {
  173. //incrementally initialize quantization values
  174. btAssert(m_useQuantization);
  175. btAssert(aabbMin.getX() > m_bvhAabbMin.getX());
  176. btAssert(aabbMin.getY() > m_bvhAabbMin.getY());
  177. btAssert(aabbMin.getZ() > m_bvhAabbMin.getZ());
  178. btAssert(aabbMax.getX() < m_bvhAabbMax.getX());
  179. btAssert(aabbMax.getY() < m_bvhAabbMax.getY());
  180. btAssert(aabbMax.getZ() < m_bvhAabbMax.getZ());
  181. ///we should update all quantization values, using updateBvhNodes(meshInterface);
  182. ///but we only update chunks that overlap the given aabb
  183. unsigned short quantizedQueryAabbMin[3];
  184. unsigned short quantizedQueryAabbMax[3];
  185. quantize(&quantizedQueryAabbMin[0], aabbMin, 0);
  186. quantize(&quantizedQueryAabbMax[0], aabbMax, 1);
  187. int i;
  188. for (i = 0; i < this->m_SubtreeHeaders.size(); i++)
  189. {
  190. btBvhSubtreeInfo& subtree = m_SubtreeHeaders[i];
  191. //PCK: unsigned instead of bool
  192. unsigned overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin, quantizedQueryAabbMax, subtree.m_quantizedAabbMin, subtree.m_quantizedAabbMax);
  193. if (overlap != 0)
  194. {
  195. updateBvhNodes(meshInterface, subtree.m_rootNodeIndex, subtree.m_rootNodeIndex + subtree.m_subtreeSize, i);
  196. subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]);
  197. }
  198. }
  199. }
  200. void btOptimizedBvh::updateBvhNodes(btStridingMeshInterface* meshInterface, int firstNode, int endNode, int index)
  201. {
  202. (void)index;
  203. btAssert(m_useQuantization);
  204. int curNodeSubPart = -1;
  205. //get access info to trianglemesh data
  206. const unsigned char* vertexbase = 0;
  207. int numverts = 0;
  208. PHY_ScalarType type = PHY_INTEGER;
  209. int stride = 0;
  210. const unsigned char* indexbase = 0;
  211. int indexstride = 0;
  212. int numfaces = 0;
  213. PHY_ScalarType indicestype = PHY_INTEGER;
  214. btVector3 triangleVerts[3];
  215. btVector3 aabbMin, aabbMax;
  216. const btVector3& meshScaling = meshInterface->getScaling();
  217. int i;
  218. for (i = endNode - 1; i >= firstNode; i--)
  219. {
  220. btQuantizedBvhNode& curNode = m_quantizedContiguousNodes[i];
  221. if (curNode.isLeafNode())
  222. {
  223. //recalc aabb from triangle data
  224. int nodeSubPart = curNode.getPartId();
  225. int nodeTriangleIndex = curNode.getTriangleIndex();
  226. if (nodeSubPart != curNodeSubPart)
  227. {
  228. if (curNodeSubPart >= 0)
  229. meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
  230. meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase, numverts, type, stride, &indexbase, indexstride, numfaces, indicestype, nodeSubPart);
  231. curNodeSubPart = nodeSubPart;
  232. }
  233. //triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts,
  234. unsigned int* gfxbase = (unsigned int*)(indexbase + nodeTriangleIndex * indexstride);
  235. for (int j = 2; j >= 0; j--)
  236. {
  237. int graphicsindex;
  238. switch (indicestype) {
  239. case PHY_INTEGER: graphicsindex = gfxbase[j]; break;
  240. case PHY_SHORT: graphicsindex = ((unsigned short*)gfxbase)[j]; break;
  241. case PHY_UCHAR: graphicsindex = ((unsigned char*)gfxbase)[j]; break;
  242. default: btAssert(0);
  243. }
  244. if (type == PHY_FLOAT)
  245. {
  246. float* graphicsbase = (float*)(vertexbase + graphicsindex * stride);
  247. triangleVerts[j] = btVector3(
  248. graphicsbase[0] * meshScaling.getX(),
  249. graphicsbase[1] * meshScaling.getY(),
  250. graphicsbase[2] * meshScaling.getZ());
  251. }
  252. else
  253. {
  254. double* graphicsbase = (double*)(vertexbase + graphicsindex * stride);
  255. triangleVerts[j] = btVector3(btScalar(graphicsbase[0] * meshScaling.getX()), btScalar(graphicsbase[1] * meshScaling.getY()), btScalar(graphicsbase[2] * meshScaling.getZ()));
  256. }
  257. }
  258. aabbMin.setValue(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  259. aabbMax.setValue(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  260. aabbMin.setMin(triangleVerts[0]);
  261. aabbMax.setMax(triangleVerts[0]);
  262. aabbMin.setMin(triangleVerts[1]);
  263. aabbMax.setMax(triangleVerts[1]);
  264. aabbMin.setMin(triangleVerts[2]);
  265. aabbMax.setMax(triangleVerts[2]);
  266. quantize(&curNode.m_quantizedAabbMin[0], aabbMin, 0);
  267. quantize(&curNode.m_quantizedAabbMax[0], aabbMax, 1);
  268. }
  269. else
  270. {
  271. //combine aabb from both children
  272. btQuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i + 1];
  273. btQuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i + 2] : &m_quantizedContiguousNodes[i + 1 + leftChildNode->getEscapeIndex()];
  274. {
  275. for (int i = 0; i < 3; i++)
  276. {
  277. curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i];
  278. if (curNode.m_quantizedAabbMin[i] > rightChildNode->m_quantizedAabbMin[i])
  279. curNode.m_quantizedAabbMin[i] = rightChildNode->m_quantizedAabbMin[i];
  280. curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i];
  281. if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i])
  282. curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i];
  283. }
  284. }
  285. }
  286. }
  287. if (curNodeSubPart >= 0)
  288. meshInterface->unLockReadOnlyVertexBase(curNodeSubPart);
  289. }
  290. ///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place'
  291. btOptimizedBvh* btOptimizedBvh::deSerializeInPlace(void* i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian)
  292. {
  293. btQuantizedBvh* bvh = btQuantizedBvh::deSerializeInPlace(i_alignedDataBuffer, i_dataBufferSize, i_swapEndian);
  294. //we don't add additional data so just do a static upcast
  295. return static_cast<btOptimizedBvh*>(bvh);
  296. }