123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 |
- // MIT License
- // Copyright (c) 2019 wi-re
- // Copyright 2023 The Manifold Authors.
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to deal
- // in the Software without restriction, including without limitation the rights
- // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- // copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- // SOFTWARE.
- // Modified from https://github.com/wi-re/tbtSVD, removing CUDA dependence and
- // approximate inverse square roots.
- #include <cmath>
- #include "manifold/common.h"
- namespace {
- using manifold::mat3;
- using manifold::vec3;
- using manifold::vec4;
- // Constants used for calculation of Givens quaternions
- inline constexpr double _gamma = 5.82842712474619; // sqrt(8)+3;
- inline constexpr double _cStar = 0.9238795325112867; // cos(pi/8)
- inline constexpr double _sStar = 0.3826834323650898; // sin(pi/8)
- // Threshold value
- inline constexpr double _SVD_EPSILON = 1e-6;
- // Iteration counts for Jacobi Eigen Analysis, influences precision
- inline constexpr int JACOBI_STEPS = 12;
- // Helper function used to swap X with Y and Y with X if c == true
- inline void CondSwap(bool c, double& X, double& Y) {
- double Z = X;
- X = c ? Y : X;
- Y = c ? Z : Y;
- }
- // Helper function used to swap X with Y and Y with -X if c == true
- inline void CondNegSwap(bool c, double& X, double& Y) {
- double Z = -X;
- X = c ? Y : X;
- Y = c ? Z : Y;
- }
- // A simple symmetric 3x3 Matrix class (contains no storage for (0, 1) (0, 2)
- // and (1, 2)
- struct Symmetric3x3 {
- double m_00 = 1.0;
- double m_10 = 0.0, m_11 = 1.0;
- double m_20 = 0.0, m_21 = 0.0, m_22 = 1.0;
- Symmetric3x3(double a11 = 1.0, double a21 = 0.0, double a22 = 1.0,
- double a31 = 0.0, double a32 = 0.0, double a33 = 1.0)
- : m_00(a11), m_10(a21), m_11(a22), m_20(a31), m_21(a32), m_22(a33) {}
- Symmetric3x3(mat3 o)
- : m_00(o[0][0]),
- m_10(o[0][1]),
- m_11(o[1][1]),
- m_20(o[0][2]),
- m_21(o[1][2]),
- m_22(o[2][2]) {}
- };
- // Helper struct to store 2 doubles to avoid OUT parameters on functions
- struct Givens {
- double ch = _cStar;
- double sh = _sStar;
- };
- // Helper struct to store 2 Matrices to avoid OUT parameters on functions
- struct QR {
- mat3 Q, R;
- };
- // Calculates the squared norm of the vector.
- inline double Dist2(vec3 v) { return manifold::la::dot(v, v); }
- // For an explanation of the math see
- // http://pages.cs.wisc.edu/~sifakis/papers/SVD_TR1690.pdf Computing the
- // Singular Value Decomposition of 3 x 3 matrices with minimal branching and
- // elementary floating point operations See Algorithm 2 in reference. Given a
- // matrix A this function returns the Givens quaternion (x and w component, y
- // and z are 0)
- inline Givens ApproximateGivensQuaternion(Symmetric3x3& A) {
- Givens g{2.0 * (A.m_00 - A.m_11), A.m_10};
- bool b = _gamma * g.sh * g.sh < g.ch * g.ch;
- double w = 1.0 / hypot(g.ch, g.sh);
- if (!std::isfinite(w)) b = 0;
- return Givens{b ? w * g.ch : _cStar, b ? w * g.sh : _sStar};
- }
- // Function used to apply a Givens rotation S. Calculates the weights and
- // updates the quaternion to contain the cumulative rotation
- inline void JacobiConjugation(const int32_t x, const int32_t y, const int32_t z,
- Symmetric3x3& S, vec4& q) {
- auto g = ApproximateGivensQuaternion(S);
- double scale = 1.0 / (g.ch * g.ch + g.sh * g.sh);
- double a = (g.ch * g.ch - g.sh * g.sh) * scale;
- double b = 2.0 * g.sh * g.ch * scale;
- Symmetric3x3 _S = S;
- // perform conjugation S = Q'*S*Q
- S.m_00 = a * (a * _S.m_00 + b * _S.m_10) + b * (a * _S.m_10 + b * _S.m_11);
- S.m_10 = a * (-b * _S.m_00 + a * _S.m_10) + b * (-b * _S.m_10 + a * _S.m_11);
- S.m_11 = -b * (-b * _S.m_00 + a * _S.m_10) + a * (-b * _S.m_10 + a * _S.m_11);
- S.m_20 = a * _S.m_20 + b * _S.m_21;
- S.m_21 = -b * _S.m_20 + a * _S.m_21;
- S.m_22 = _S.m_22;
- // update cumulative rotation qV
- vec3 tmp = g.sh * vec3(q);
- g.sh *= q[3];
- // (x,y,z) corresponds to ((0,1,2),(1,2,0),(2,0,1)) for (p,q) =
- // ((0,1),(1,2),(0,2))
- q[z] = q[z] * g.ch + g.sh;
- q[3] = q[3] * g.ch + -tmp[z]; // w
- q[x] = q[x] * g.ch + tmp[y];
- q[y] = q[y] * g.ch + -tmp[x];
- // re-arrange matrix for next iteration
- _S.m_00 = S.m_11;
- _S.m_10 = S.m_21;
- _S.m_11 = S.m_22;
- _S.m_20 = S.m_10;
- _S.m_21 = S.m_20;
- _S.m_22 = S.m_00;
- S.m_00 = _S.m_00;
- S.m_10 = _S.m_10;
- S.m_11 = _S.m_11;
- S.m_20 = _S.m_20;
- S.m_21 = _S.m_21;
- S.m_22 = _S.m_22;
- }
- // Function used to contain the Givens permutations and the loop of the jacobi
- // steps controlled by JACOBI_STEPS Returns the quaternion q containing the
- // cumulative result used to reconstruct S
- inline mat3 JacobiEigenAnalysis(Symmetric3x3 S) {
- vec4 q(0, 0, 0, 1);
- for (int32_t i = 0; i < JACOBI_STEPS; i++) {
- JacobiConjugation(0, 1, 2, S, q);
- JacobiConjugation(1, 2, 0, S, q);
- JacobiConjugation(2, 0, 1, S, q);
- }
- return mat3({1.0 - 2.0 * (q.y * q.y + q.z * q.z), //
- 2.0 * (q.x * q.y + +q.w * q.z), //
- 2.0 * (q.x * q.z + -q.w * q.y)}, //
- {2 * (q.x * q.y + -q.w * q.z), //
- 1 - 2 * (q.x * q.x + q.z * q.z), //
- 2 * (q.y * q.z + q.w * q.x)}, //
- {2 * (q.x * q.z + q.w * q.y), //
- 2 * (q.y * q.z + -q.w * q.x), //
- 1 - 2 * (q.x * q.x + q.y * q.y)});
- }
- // Implementation of Algorithm 3
- inline void SortSingularValues(mat3& B, mat3& V) {
- double rho1 = Dist2(B[0]);
- double rho2 = Dist2(B[1]);
- double rho3 = Dist2(B[2]);
- bool c;
- c = rho1 < rho2;
- CondNegSwap(c, B[0][0], B[1][0]);
- CondNegSwap(c, V[0][0], V[1][0]);
- CondNegSwap(c, B[0][1], B[1][1]);
- CondNegSwap(c, V[0][1], V[1][1]);
- CondNegSwap(c, B[0][2], B[1][2]);
- CondNegSwap(c, V[0][2], V[1][2]);
- CondSwap(c, rho1, rho2);
- c = rho1 < rho3;
- CondNegSwap(c, B[0][0], B[2][0]);
- CondNegSwap(c, V[0][0], V[2][0]);
- CondNegSwap(c, B[0][1], B[2][1]);
- CondNegSwap(c, V[0][1], V[2][1]);
- CondNegSwap(c, B[0][2], B[2][2]);
- CondNegSwap(c, V[0][2], V[2][2]);
- CondSwap(c, rho1, rho3);
- c = rho2 < rho3;
- CondNegSwap(c, B[1][0], B[2][0]);
- CondNegSwap(c, V[1][0], V[2][0]);
- CondNegSwap(c, B[1][1], B[2][1]);
- CondNegSwap(c, V[1][1], V[2][1]);
- CondNegSwap(c, B[1][2], B[2][2]);
- CondNegSwap(c, V[1][2], V[2][2]);
- }
- // Implementation of Algorithm 4
- inline Givens QRGivensQuaternion(double a1, double a2) {
- // a1 = pivot point on diagonal
- // a2 = lower triangular entry we want to annihilate
- double epsilon = _SVD_EPSILON;
- double rho = hypot(a1, a2);
- Givens g{fabs(a1) + fmax(rho, epsilon), rho > epsilon ? a2 : 0};
- bool b = a1 < 0.0;
- CondSwap(b, g.sh, g.ch);
- double w = 1.0 / hypot(g.ch, g.sh);
- g.ch *= w;
- g.sh *= w;
- return g;
- }
- // Implements a QR decomposition of a Matrix, see Sec 4.2
- inline QR QRDecomposition(mat3& B) {
- mat3 Q, R;
- // first Givens rotation (ch,0,0,sh)
- auto g1 = QRGivensQuaternion(B[0][0], B[0][1]);
- auto a = -2.0 * g1.sh * g1.sh + 1.0;
- auto b = 2.0 * g1.ch * g1.sh;
- // apply B = Q' * B
- R[0][0] = a * B[0][0] + b * B[0][1];
- R[1][0] = a * B[1][0] + b * B[1][1];
- R[2][0] = a * B[2][0] + b * B[2][1];
- R[0][1] = -b * B[0][0] + a * B[0][1];
- R[1][1] = -b * B[1][0] + a * B[1][1];
- R[2][1] = -b * B[2][0] + a * B[2][1];
- R[0][2] = B[0][2];
- R[1][2] = B[1][2];
- R[2][2] = B[2][2];
- // second Givens rotation (ch,0,-sh,0)
- auto g2 = QRGivensQuaternion(R[0][0], R[0][2]);
- a = -2.0 * g2.sh * g2.sh + 1.0;
- b = 2.0 * g2.ch * g2.sh;
- // apply B = Q' * B;
- B[0][0] = a * R[0][0] + b * R[0][2];
- B[1][0] = a * R[1][0] + b * R[1][2];
- B[2][0] = a * R[2][0] + b * R[2][2];
- B[0][1] = R[0][1];
- B[1][1] = R[1][1];
- B[2][1] = R[2][1];
- B[0][2] = -b * R[0][0] + a * R[0][2];
- B[1][2] = -b * R[1][0] + a * R[1][2];
- B[2][2] = -b * R[2][0] + a * R[2][2];
- // third Givens rotation (ch,sh,0,0)
- auto g3 = QRGivensQuaternion(B[1][1], B[1][2]);
- a = -2.0 * g3.sh * g3.sh + 1.0;
- b = 2.0 * g3.ch * g3.sh;
- // R is now set to desired value
- R[0][0] = B[0][0];
- R[1][0] = B[1][0];
- R[2][0] = B[2][0];
- R[0][1] = a * B[0][1] + b * B[0][2];
- R[1][1] = a * B[1][1] + b * B[1][2];
- R[2][1] = a * B[2][1] + b * B[2][2];
- R[0][2] = -b * B[0][1] + a * B[0][2];
- R[1][2] = -b * B[1][1] + a * B[1][2];
- R[2][2] = -b * B[2][1] + a * B[2][2];
- // construct the cumulative rotation Q=Q1 * Q2 * Q3
- // the number of floating point operations for three quaternion
- // multiplications is more or less comparable to the explicit form of the
- // joined matrix. certainly more memory-efficient!
- auto sh12 = 2.0 * (g1.sh * g1.sh + -0.5);
- auto sh22 = 2.0 * (g2.sh * g2.sh + -0.5);
- auto sh32 = 2.0 * (g3.sh * g3.sh + -0.5);
- Q[0][0] = sh12 * sh22;
- Q[1][0] =
- 4.0 * g2.ch * g3.ch * sh12 * g2.sh * g3.sh + 2.0 * g1.ch * g1.sh * sh32;
- Q[2][0] =
- 4.0 * g1.ch * g3.ch * g1.sh * g3.sh + -2.0 * g2.ch * sh12 * g2.sh * sh32;
- Q[0][1] = -2.0 * g1.ch * g1.sh * sh22;
- Q[1][1] = -8.0 * g1.ch * g2.ch * g3.ch * g1.sh * g2.sh * g3.sh + sh12 * sh32;
- Q[2][1] =
- -2.0 * g3.ch * g3.sh +
- 4.0 * g1.sh * (g3.ch * g1.sh * g3.sh + g1.ch * g2.ch * g2.sh * sh32);
- Q[0][2] = 2.0 * g2.ch * g2.sh;
- Q[1][2] = -2.0 * g3.ch * sh22 * g3.sh;
- Q[2][2] = sh22 * sh32;
- return QR{Q, R};
- }
- } // namespace
- namespace manifold {
- /**
- * The three matrices of a Singular Value Decomposition.
- */
- struct SVDSet {
- mat3 U, S, V;
- };
- /**
- * Returns the Singular Value Decomposition of A: A = U * S * la::transpose(V).
- *
- * @param A The matrix to decompose.
- */
- inline SVDSet SVD(mat3 A) {
- mat3 V = JacobiEigenAnalysis(la::transpose(A) * A);
- auto B = A * V;
- SortSingularValues(B, V);
- QR qr = QRDecomposition(B);
- return SVDSet{qr.Q, qr.R, V};
- }
- /**
- * Returns the largest singular value of A.
- *
- * @param A The matrix to measure.
- */
- inline double SpectralNorm(mat3 A) {
- SVDSet usv = SVD(A);
- return usv.S[0][0];
- }
- } // namespace manifold
|