mesh_storage.cpp 68 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055
  1. /*************************************************************************/
  2. /* mesh_storage.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "mesh_storage.h"
  31. #include "../../rendering_server_globals.h"
  32. using namespace RendererRD;
  33. MeshStorage *MeshStorage::singleton = nullptr;
  34. MeshStorage *MeshStorage::get_singleton() {
  35. return singleton;
  36. }
  37. MeshStorage::MeshStorage() {
  38. singleton = this;
  39. default_rd_storage_buffer = RD::get_singleton()->storage_buffer_create(sizeof(uint32_t) * 4);
  40. //default rd buffers
  41. {
  42. Vector<uint8_t> buffer;
  43. {
  44. buffer.resize(sizeof(float) * 3);
  45. {
  46. uint8_t *w = buffer.ptrw();
  47. float *fptr = reinterpret_cast<float *>(w);
  48. fptr[0] = 0.0;
  49. fptr[1] = 0.0;
  50. fptr[2] = 0.0;
  51. }
  52. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_VERTEX] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  53. }
  54. { //normal
  55. buffer.resize(sizeof(float) * 3);
  56. {
  57. uint8_t *w = buffer.ptrw();
  58. float *fptr = reinterpret_cast<float *>(w);
  59. fptr[0] = 1.0;
  60. fptr[1] = 0.0;
  61. fptr[2] = 0.0;
  62. }
  63. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_NORMAL] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  64. }
  65. { //tangent
  66. buffer.resize(sizeof(float) * 4);
  67. {
  68. uint8_t *w = buffer.ptrw();
  69. float *fptr = reinterpret_cast<float *>(w);
  70. fptr[0] = 1.0;
  71. fptr[1] = 0.0;
  72. fptr[2] = 0.0;
  73. fptr[3] = 0.0;
  74. }
  75. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TANGENT] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  76. }
  77. { //color
  78. buffer.resize(sizeof(float) * 4);
  79. {
  80. uint8_t *w = buffer.ptrw();
  81. float *fptr = reinterpret_cast<float *>(w);
  82. fptr[0] = 1.0;
  83. fptr[1] = 1.0;
  84. fptr[2] = 1.0;
  85. fptr[3] = 1.0;
  86. }
  87. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_COLOR] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  88. }
  89. { //tex uv 1
  90. buffer.resize(sizeof(float) * 2);
  91. {
  92. uint8_t *w = buffer.ptrw();
  93. float *fptr = reinterpret_cast<float *>(w);
  94. fptr[0] = 0.0;
  95. fptr[1] = 0.0;
  96. }
  97. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  98. }
  99. { //tex uv 2
  100. buffer.resize(sizeof(float) * 2);
  101. {
  102. uint8_t *w = buffer.ptrw();
  103. float *fptr = reinterpret_cast<float *>(w);
  104. fptr[0] = 0.0;
  105. fptr[1] = 0.0;
  106. }
  107. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_TEX_UV2] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  108. }
  109. for (int i = 0; i < RS::ARRAY_CUSTOM_COUNT; i++) {
  110. buffer.resize(sizeof(float) * 4);
  111. {
  112. uint8_t *w = buffer.ptrw();
  113. float *fptr = reinterpret_cast<float *>(w);
  114. fptr[0] = 0.0;
  115. fptr[1] = 0.0;
  116. fptr[2] = 0.0;
  117. fptr[3] = 0.0;
  118. }
  119. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_CUSTOM0 + i] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  120. }
  121. { //bones
  122. buffer.resize(sizeof(uint32_t) * 4);
  123. {
  124. uint8_t *w = buffer.ptrw();
  125. uint32_t *fptr = reinterpret_cast<uint32_t *>(w);
  126. fptr[0] = 0;
  127. fptr[1] = 0;
  128. fptr[2] = 0;
  129. fptr[3] = 0;
  130. }
  131. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_BONES] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  132. }
  133. { //weights
  134. buffer.resize(sizeof(float) * 4);
  135. {
  136. uint8_t *w = buffer.ptrw();
  137. float *fptr = reinterpret_cast<float *>(w);
  138. fptr[0] = 0.0;
  139. fptr[1] = 0.0;
  140. fptr[2] = 0.0;
  141. fptr[3] = 0.0;
  142. }
  143. mesh_default_rd_buffers[DEFAULT_RD_BUFFER_WEIGHTS] = RD::get_singleton()->vertex_buffer_create(buffer.size(), buffer);
  144. }
  145. }
  146. {
  147. Vector<String> skeleton_modes;
  148. skeleton_modes.push_back("\n#define MODE_2D\n");
  149. skeleton_modes.push_back("");
  150. skeleton_shader.shader.initialize(skeleton_modes);
  151. skeleton_shader.version = skeleton_shader.shader.version_create();
  152. for (int i = 0; i < SkeletonShader::SHADER_MODE_MAX; i++) {
  153. skeleton_shader.version_shader[i] = skeleton_shader.shader.version_get_shader(skeleton_shader.version, i);
  154. skeleton_shader.pipeline[i] = RD::get_singleton()->compute_pipeline_create(skeleton_shader.version_shader[i]);
  155. }
  156. {
  157. Vector<RD::Uniform> uniforms;
  158. {
  159. RD::Uniform u;
  160. u.binding = 0;
  161. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  162. u.append_id(default_rd_storage_buffer);
  163. uniforms.push_back(u);
  164. }
  165. skeleton_shader.default_skeleton_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  166. }
  167. }
  168. }
  169. MeshStorage::~MeshStorage() {
  170. //def buffers
  171. for (int i = 0; i < DEFAULT_RD_BUFFER_MAX; i++) {
  172. RD::get_singleton()->free(mesh_default_rd_buffers[i]);
  173. }
  174. skeleton_shader.shader.version_free(skeleton_shader.version);
  175. RD::get_singleton()->free(default_rd_storage_buffer);
  176. singleton = nullptr;
  177. }
  178. /* MESH API */
  179. RID MeshStorage::mesh_allocate() {
  180. return mesh_owner.allocate_rid();
  181. }
  182. void MeshStorage::mesh_initialize(RID p_rid) {
  183. mesh_owner.initialize_rid(p_rid, Mesh());
  184. }
  185. void MeshStorage::mesh_free(RID p_rid) {
  186. mesh_clear(p_rid);
  187. mesh_set_shadow_mesh(p_rid, RID());
  188. Mesh *mesh = mesh_owner.get_or_null(p_rid);
  189. ERR_FAIL_COND(!mesh);
  190. mesh->dependency.deleted_notify(p_rid);
  191. if (mesh->instances.size()) {
  192. ERR_PRINT("deleting mesh with active instances");
  193. }
  194. if (mesh->shadow_owners.size()) {
  195. for (Mesh *E : mesh->shadow_owners) {
  196. Mesh *shadow_owner = E;
  197. shadow_owner->shadow_mesh = RID();
  198. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  199. }
  200. }
  201. mesh_owner.free(p_rid);
  202. }
  203. void MeshStorage::mesh_set_blend_shape_count(RID p_mesh, int p_blend_shape_count) {
  204. ERR_FAIL_COND(p_blend_shape_count < 0);
  205. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  206. ERR_FAIL_COND(!mesh);
  207. ERR_FAIL_COND(mesh->surface_count > 0); //surfaces already exist
  208. mesh->blend_shape_count = p_blend_shape_count;
  209. }
  210. /// Returns stride
  211. void MeshStorage::mesh_add_surface(RID p_mesh, const RS::SurfaceData &p_surface) {
  212. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  213. ERR_FAIL_COND(!mesh);
  214. ERR_FAIL_COND(mesh->surface_count == RS::MAX_MESH_SURFACES);
  215. #ifdef DEBUG_ENABLED
  216. //do a validation, to catch errors first
  217. {
  218. uint32_t stride = 0;
  219. uint32_t attrib_stride = 0;
  220. uint32_t skin_stride = 0;
  221. for (int i = 0; i < RS::ARRAY_WEIGHTS; i++) {
  222. if ((p_surface.format & (1 << i))) {
  223. switch (i) {
  224. case RS::ARRAY_VERTEX: {
  225. if (p_surface.format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  226. stride += sizeof(float) * 2;
  227. } else {
  228. stride += sizeof(float) * 3;
  229. }
  230. } break;
  231. case RS::ARRAY_NORMAL: {
  232. stride += sizeof(int32_t);
  233. } break;
  234. case RS::ARRAY_TANGENT: {
  235. stride += sizeof(int32_t);
  236. } break;
  237. case RS::ARRAY_COLOR: {
  238. attrib_stride += sizeof(uint32_t);
  239. } break;
  240. case RS::ARRAY_TEX_UV: {
  241. attrib_stride += sizeof(float) * 2;
  242. } break;
  243. case RS::ARRAY_TEX_UV2: {
  244. attrib_stride += sizeof(float) * 2;
  245. } break;
  246. case RS::ARRAY_CUSTOM0:
  247. case RS::ARRAY_CUSTOM1:
  248. case RS::ARRAY_CUSTOM2:
  249. case RS::ARRAY_CUSTOM3: {
  250. int idx = i - RS::ARRAY_CUSTOM0;
  251. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  252. uint32_t fmt = (p_surface.format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  253. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  254. attrib_stride += fmtsize[fmt];
  255. } break;
  256. case RS::ARRAY_WEIGHTS:
  257. case RS::ARRAY_BONES: {
  258. //uses a separate array
  259. bool use_8 = p_surface.format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS;
  260. skin_stride += sizeof(int16_t) * (use_8 ? 16 : 8);
  261. } break;
  262. }
  263. }
  264. }
  265. int expected_size = stride * p_surface.vertex_count;
  266. ERR_FAIL_COND_MSG(expected_size != p_surface.vertex_data.size(), "Size of vertex data provided (" + itos(p_surface.vertex_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  267. int bs_expected_size = expected_size * mesh->blend_shape_count;
  268. ERR_FAIL_COND_MSG(bs_expected_size != p_surface.blend_shape_data.size(), "Size of blend shape data provided (" + itos(p_surface.blend_shape_data.size()) + ") does not match expected (" + itos(bs_expected_size) + ")");
  269. int expected_attrib_size = attrib_stride * p_surface.vertex_count;
  270. ERR_FAIL_COND_MSG(expected_attrib_size != p_surface.attribute_data.size(), "Size of attribute data provided (" + itos(p_surface.attribute_data.size()) + ") does not match expected (" + itos(expected_attrib_size) + ")");
  271. if ((p_surface.format & RS::ARRAY_FORMAT_WEIGHTS) && (p_surface.format & RS::ARRAY_FORMAT_BONES)) {
  272. expected_size = skin_stride * p_surface.vertex_count;
  273. ERR_FAIL_COND_MSG(expected_size != p_surface.skin_data.size(), "Size of skin data provided (" + itos(p_surface.skin_data.size()) + ") does not match expected (" + itos(expected_size) + ")");
  274. }
  275. }
  276. #endif
  277. Mesh::Surface *s = memnew(Mesh::Surface);
  278. s->format = p_surface.format;
  279. s->primitive = p_surface.primitive;
  280. bool use_as_storage = (p_surface.skin_data.size() || mesh->blend_shape_count > 0);
  281. if (p_surface.vertex_data.size()) {
  282. s->vertex_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.vertex_data.size(), p_surface.vertex_data, use_as_storage);
  283. s->vertex_buffer_size = p_surface.vertex_data.size();
  284. }
  285. if (p_surface.attribute_data.size()) {
  286. s->attribute_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.attribute_data.size(), p_surface.attribute_data);
  287. }
  288. if (p_surface.skin_data.size()) {
  289. s->skin_buffer = RD::get_singleton()->vertex_buffer_create(p_surface.skin_data.size(), p_surface.skin_data, use_as_storage);
  290. s->skin_buffer_size = p_surface.skin_data.size();
  291. }
  292. s->vertex_count = p_surface.vertex_count;
  293. if (p_surface.format & RS::ARRAY_FORMAT_BONES) {
  294. mesh->has_bone_weights = true;
  295. }
  296. if (p_surface.index_count) {
  297. bool is_index_16 = p_surface.vertex_count <= 65536 && p_surface.vertex_count > 0;
  298. s->index_buffer = RD::get_singleton()->index_buffer_create(p_surface.index_count, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.index_data, false);
  299. s->index_count = p_surface.index_count;
  300. s->index_array = RD::get_singleton()->index_array_create(s->index_buffer, 0, s->index_count);
  301. if (p_surface.lods.size()) {
  302. s->lods = memnew_arr(Mesh::Surface::LOD, p_surface.lods.size());
  303. s->lod_count = p_surface.lods.size();
  304. for (int i = 0; i < p_surface.lods.size(); i++) {
  305. uint32_t indices = p_surface.lods[i].index_data.size() / (is_index_16 ? 2 : 4);
  306. s->lods[i].index_buffer = RD::get_singleton()->index_buffer_create(indices, is_index_16 ? RD::INDEX_BUFFER_FORMAT_UINT16 : RD::INDEX_BUFFER_FORMAT_UINT32, p_surface.lods[i].index_data);
  307. s->lods[i].index_array = RD::get_singleton()->index_array_create(s->lods[i].index_buffer, 0, indices);
  308. s->lods[i].edge_length = p_surface.lods[i].edge_length;
  309. s->lods[i].index_count = indices;
  310. }
  311. }
  312. }
  313. ERR_FAIL_COND_MSG(!p_surface.index_count && !p_surface.vertex_count, "Meshes must contain a vertex array, an index array, or both");
  314. s->aabb = p_surface.aabb;
  315. s->bone_aabbs = p_surface.bone_aabbs; //only really useful for returning them.
  316. if (mesh->blend_shape_count > 0) {
  317. s->blend_shape_buffer = RD::get_singleton()->storage_buffer_create(p_surface.blend_shape_data.size(), p_surface.blend_shape_data);
  318. }
  319. if (use_as_storage) {
  320. Vector<RD::Uniform> uniforms;
  321. {
  322. RD::Uniform u;
  323. u.binding = 0;
  324. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  325. if (s->vertex_buffer.is_valid()) {
  326. u.append_id(s->vertex_buffer);
  327. } else {
  328. u.append_id(default_rd_storage_buffer);
  329. }
  330. uniforms.push_back(u);
  331. }
  332. {
  333. RD::Uniform u;
  334. u.binding = 1;
  335. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  336. if (s->skin_buffer.is_valid()) {
  337. u.append_id(s->skin_buffer);
  338. } else {
  339. u.append_id(default_rd_storage_buffer);
  340. }
  341. uniforms.push_back(u);
  342. }
  343. {
  344. RD::Uniform u;
  345. u.binding = 2;
  346. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  347. if (s->blend_shape_buffer.is_valid()) {
  348. u.append_id(s->blend_shape_buffer);
  349. } else {
  350. u.append_id(default_rd_storage_buffer);
  351. }
  352. uniforms.push_back(u);
  353. }
  354. s->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SURFACE);
  355. }
  356. if (mesh->surface_count == 0) {
  357. mesh->bone_aabbs = p_surface.bone_aabbs;
  358. mesh->aabb = p_surface.aabb;
  359. } else {
  360. if (mesh->bone_aabbs.size() < p_surface.bone_aabbs.size()) {
  361. // ArrayMesh::_surface_set_data only allocates bone_aabbs up to max_bone
  362. // Each surface may affect different numbers of bones.
  363. mesh->bone_aabbs.resize(p_surface.bone_aabbs.size());
  364. }
  365. for (int i = 0; i < p_surface.bone_aabbs.size(); i++) {
  366. const AABB &bone = p_surface.bone_aabbs[i];
  367. if (bone.has_volume()) {
  368. mesh->bone_aabbs.write[i].merge_with(bone);
  369. }
  370. }
  371. mesh->aabb.merge_with(p_surface.aabb);
  372. }
  373. s->material = p_surface.material;
  374. mesh->surfaces = (Mesh::Surface **)memrealloc(mesh->surfaces, sizeof(Mesh::Surface *) * (mesh->surface_count + 1));
  375. mesh->surfaces[mesh->surface_count] = s;
  376. mesh->surface_count++;
  377. for (MeshInstance *mi : mesh->instances) {
  378. _mesh_instance_add_surface(mi, mesh, mesh->surface_count - 1);
  379. }
  380. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  381. for (Mesh *E : mesh->shadow_owners) {
  382. Mesh *shadow_owner = E;
  383. shadow_owner->shadow_mesh = RID();
  384. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  385. }
  386. mesh->material_cache.clear();
  387. }
  388. int MeshStorage::mesh_get_blend_shape_count(RID p_mesh) const {
  389. const Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  390. ERR_FAIL_COND_V(!mesh, -1);
  391. return mesh->blend_shape_count;
  392. }
  393. void MeshStorage::mesh_set_blend_shape_mode(RID p_mesh, RS::BlendShapeMode p_mode) {
  394. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  395. ERR_FAIL_COND(!mesh);
  396. ERR_FAIL_INDEX((int)p_mode, 2);
  397. mesh->blend_shape_mode = p_mode;
  398. }
  399. RS::BlendShapeMode MeshStorage::mesh_get_blend_shape_mode(RID p_mesh) const {
  400. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  401. ERR_FAIL_COND_V(!mesh, RS::BLEND_SHAPE_MODE_NORMALIZED);
  402. return mesh->blend_shape_mode;
  403. }
  404. void MeshStorage::mesh_surface_update_vertex_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  405. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  406. ERR_FAIL_COND(!mesh);
  407. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  408. ERR_FAIL_COND(p_data.size() == 0);
  409. ERR_FAIL_COND(mesh->surfaces[p_surface]->vertex_buffer.is_null());
  410. uint64_t data_size = p_data.size();
  411. const uint8_t *r = p_data.ptr();
  412. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->vertex_buffer, p_offset, data_size, r);
  413. }
  414. void MeshStorage::mesh_surface_update_attribute_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  415. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  416. ERR_FAIL_COND(!mesh);
  417. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  418. ERR_FAIL_COND(p_data.size() == 0);
  419. ERR_FAIL_COND(mesh->surfaces[p_surface]->attribute_buffer.is_null());
  420. uint64_t data_size = p_data.size();
  421. const uint8_t *r = p_data.ptr();
  422. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->attribute_buffer, p_offset, data_size, r);
  423. }
  424. void MeshStorage::mesh_surface_update_skin_region(RID p_mesh, int p_surface, int p_offset, const Vector<uint8_t> &p_data) {
  425. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  426. ERR_FAIL_COND(!mesh);
  427. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  428. ERR_FAIL_COND(p_data.size() == 0);
  429. ERR_FAIL_COND(mesh->surfaces[p_surface]->skin_buffer.is_null());
  430. uint64_t data_size = p_data.size();
  431. const uint8_t *r = p_data.ptr();
  432. RD::get_singleton()->buffer_update(mesh->surfaces[p_surface]->skin_buffer, p_offset, data_size, r);
  433. }
  434. void MeshStorage::mesh_surface_set_material(RID p_mesh, int p_surface, RID p_material) {
  435. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  436. ERR_FAIL_COND(!mesh);
  437. ERR_FAIL_UNSIGNED_INDEX((uint32_t)p_surface, mesh->surface_count);
  438. mesh->surfaces[p_surface]->material = p_material;
  439. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MATERIAL);
  440. mesh->material_cache.clear();
  441. }
  442. RID MeshStorage::mesh_surface_get_material(RID p_mesh, int p_surface) const {
  443. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  444. ERR_FAIL_COND_V(!mesh, RID());
  445. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RID());
  446. return mesh->surfaces[p_surface]->material;
  447. }
  448. RS::SurfaceData MeshStorage::mesh_get_surface(RID p_mesh, int p_surface) const {
  449. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  450. ERR_FAIL_COND_V(!mesh, RS::SurfaceData());
  451. ERR_FAIL_UNSIGNED_INDEX_V((uint32_t)p_surface, mesh->surface_count, RS::SurfaceData());
  452. Mesh::Surface &s = *mesh->surfaces[p_surface];
  453. RS::SurfaceData sd;
  454. sd.format = s.format;
  455. if (s.vertex_buffer.is_valid()) {
  456. sd.vertex_data = RD::get_singleton()->buffer_get_data(s.vertex_buffer);
  457. }
  458. if (s.attribute_buffer.is_valid()) {
  459. sd.attribute_data = RD::get_singleton()->buffer_get_data(s.attribute_buffer);
  460. }
  461. if (s.skin_buffer.is_valid()) {
  462. sd.skin_data = RD::get_singleton()->buffer_get_data(s.skin_buffer);
  463. }
  464. sd.vertex_count = s.vertex_count;
  465. sd.index_count = s.index_count;
  466. sd.primitive = s.primitive;
  467. if (sd.index_count) {
  468. sd.index_data = RD::get_singleton()->buffer_get_data(s.index_buffer);
  469. }
  470. sd.aabb = s.aabb;
  471. for (uint32_t i = 0; i < s.lod_count; i++) {
  472. RS::SurfaceData::LOD lod;
  473. lod.edge_length = s.lods[i].edge_length;
  474. lod.index_data = RD::get_singleton()->buffer_get_data(s.lods[i].index_buffer);
  475. sd.lods.push_back(lod);
  476. }
  477. sd.bone_aabbs = s.bone_aabbs;
  478. if (s.blend_shape_buffer.is_valid()) {
  479. sd.blend_shape_data = RD::get_singleton()->buffer_get_data(s.blend_shape_buffer);
  480. }
  481. return sd;
  482. }
  483. int MeshStorage::mesh_get_surface_count(RID p_mesh) const {
  484. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  485. ERR_FAIL_COND_V(!mesh, 0);
  486. return mesh->surface_count;
  487. }
  488. void MeshStorage::mesh_set_custom_aabb(RID p_mesh, const AABB &p_aabb) {
  489. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  490. ERR_FAIL_COND(!mesh);
  491. mesh->custom_aabb = p_aabb;
  492. }
  493. AABB MeshStorage::mesh_get_custom_aabb(RID p_mesh) const {
  494. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  495. ERR_FAIL_COND_V(!mesh, AABB());
  496. return mesh->custom_aabb;
  497. }
  498. AABB MeshStorage::mesh_get_aabb(RID p_mesh, RID p_skeleton) {
  499. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  500. ERR_FAIL_COND_V(!mesh, AABB());
  501. if (mesh->custom_aabb != AABB()) {
  502. return mesh->custom_aabb;
  503. }
  504. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  505. if (!skeleton || skeleton->size == 0) {
  506. return mesh->aabb;
  507. }
  508. AABB aabb;
  509. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  510. AABB laabb;
  511. if ((mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES) && mesh->surfaces[i]->bone_aabbs.size()) {
  512. int bs = mesh->surfaces[i]->bone_aabbs.size();
  513. const AABB *skbones = mesh->surfaces[i]->bone_aabbs.ptr();
  514. int sbs = skeleton->size;
  515. ERR_CONTINUE(bs > sbs);
  516. const float *baseptr = skeleton->data.ptr();
  517. bool first = true;
  518. if (skeleton->use_2d) {
  519. for (int j = 0; j < bs; j++) {
  520. if (skbones[0].size == Vector3()) {
  521. continue; //bone is unused
  522. }
  523. const float *dataptr = baseptr + j * 8;
  524. Transform3D mtx;
  525. mtx.basis.rows[0].x = dataptr[0];
  526. mtx.basis.rows[1].x = dataptr[1];
  527. mtx.origin.x = dataptr[3];
  528. mtx.basis.rows[0].y = dataptr[4];
  529. mtx.basis.rows[1].y = dataptr[5];
  530. mtx.origin.y = dataptr[7];
  531. AABB baabb = mtx.xform(skbones[j]);
  532. if (first) {
  533. laabb = baabb;
  534. first = false;
  535. } else {
  536. laabb.merge_with(baabb);
  537. }
  538. }
  539. } else {
  540. for (int j = 0; j < bs; j++) {
  541. if (skbones[0].size == Vector3()) {
  542. continue; //bone is unused
  543. }
  544. const float *dataptr = baseptr + j * 12;
  545. Transform3D mtx;
  546. mtx.basis.rows[0][0] = dataptr[0];
  547. mtx.basis.rows[0][1] = dataptr[1];
  548. mtx.basis.rows[0][2] = dataptr[2];
  549. mtx.origin.x = dataptr[3];
  550. mtx.basis.rows[1][0] = dataptr[4];
  551. mtx.basis.rows[1][1] = dataptr[5];
  552. mtx.basis.rows[1][2] = dataptr[6];
  553. mtx.origin.y = dataptr[7];
  554. mtx.basis.rows[2][0] = dataptr[8];
  555. mtx.basis.rows[2][1] = dataptr[9];
  556. mtx.basis.rows[2][2] = dataptr[10];
  557. mtx.origin.z = dataptr[11];
  558. AABB baabb = mtx.xform(skbones[j]);
  559. if (first) {
  560. laabb = baabb;
  561. first = false;
  562. } else {
  563. laabb.merge_with(baabb);
  564. }
  565. }
  566. }
  567. if (laabb.size == Vector3()) {
  568. laabb = mesh->surfaces[i]->aabb;
  569. }
  570. } else {
  571. laabb = mesh->surfaces[i]->aabb;
  572. }
  573. if (i == 0) {
  574. aabb = laabb;
  575. } else {
  576. aabb.merge_with(laabb);
  577. }
  578. }
  579. return aabb;
  580. }
  581. void MeshStorage::mesh_set_shadow_mesh(RID p_mesh, RID p_shadow_mesh) {
  582. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  583. ERR_FAIL_COND(!mesh);
  584. Mesh *shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  585. if (shadow_mesh) {
  586. shadow_mesh->shadow_owners.erase(mesh);
  587. }
  588. mesh->shadow_mesh = p_shadow_mesh;
  589. shadow_mesh = mesh_owner.get_or_null(mesh->shadow_mesh);
  590. if (shadow_mesh) {
  591. shadow_mesh->shadow_owners.insert(mesh);
  592. }
  593. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  594. }
  595. void MeshStorage::mesh_clear(RID p_mesh) {
  596. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  597. ERR_FAIL_COND(!mesh);
  598. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  599. Mesh::Surface &s = *mesh->surfaces[i];
  600. if (s.vertex_buffer.is_valid()) {
  601. RD::get_singleton()->free(s.vertex_buffer); //clears arrays as dependency automatically, including all versions
  602. }
  603. if (s.attribute_buffer.is_valid()) {
  604. RD::get_singleton()->free(s.attribute_buffer);
  605. }
  606. if (s.skin_buffer.is_valid()) {
  607. RD::get_singleton()->free(s.skin_buffer);
  608. }
  609. if (s.versions) {
  610. memfree(s.versions); //reallocs, so free with memfree.
  611. }
  612. if (s.index_buffer.is_valid()) {
  613. RD::get_singleton()->free(s.index_buffer);
  614. }
  615. if (s.lod_count) {
  616. for (uint32_t j = 0; j < s.lod_count; j++) {
  617. RD::get_singleton()->free(s.lods[j].index_buffer);
  618. }
  619. memdelete_arr(s.lods);
  620. }
  621. if (s.blend_shape_buffer.is_valid()) {
  622. RD::get_singleton()->free(s.blend_shape_buffer);
  623. }
  624. memdelete(mesh->surfaces[i]);
  625. }
  626. if (mesh->surfaces) {
  627. memfree(mesh->surfaces);
  628. }
  629. mesh->surfaces = nullptr;
  630. mesh->surface_count = 0;
  631. mesh->material_cache.clear();
  632. //clear instance data
  633. for (MeshInstance *mi : mesh->instances) {
  634. _mesh_instance_clear(mi);
  635. }
  636. mesh->has_bone_weights = false;
  637. mesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  638. for (Mesh *E : mesh->shadow_owners) {
  639. Mesh *shadow_owner = E;
  640. shadow_owner->shadow_mesh = RID();
  641. shadow_owner->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  642. }
  643. }
  644. bool MeshStorage::mesh_needs_instance(RID p_mesh, bool p_has_skeleton) {
  645. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  646. ERR_FAIL_COND_V(!mesh, false);
  647. return mesh->blend_shape_count > 0 || (mesh->has_bone_weights && p_has_skeleton);
  648. }
  649. Dependency *MeshStorage::mesh_get_dependency(RID p_mesh) const {
  650. Mesh *mesh = mesh_owner.get_or_null(p_mesh);
  651. ERR_FAIL_COND_V(!mesh, nullptr);
  652. return &mesh->dependency;
  653. }
  654. /* MESH INSTANCE */
  655. RID MeshStorage::mesh_instance_create(RID p_base) {
  656. Mesh *mesh = mesh_owner.get_or_null(p_base);
  657. ERR_FAIL_COND_V(!mesh, RID());
  658. RID rid = mesh_instance_owner.make_rid();
  659. MeshInstance *mi = mesh_instance_owner.get_or_null(rid);
  660. mi->mesh = mesh;
  661. for (uint32_t i = 0; i < mesh->surface_count; i++) {
  662. _mesh_instance_add_surface(mi, mesh, i);
  663. }
  664. mi->I = mesh->instances.push_back(mi);
  665. mi->dirty = true;
  666. return rid;
  667. }
  668. void MeshStorage::mesh_instance_free(RID p_rid) {
  669. MeshInstance *mi = mesh_instance_owner.get_or_null(p_rid);
  670. _mesh_instance_clear(mi);
  671. mi->mesh->instances.erase(mi->I);
  672. mi->I = nullptr;
  673. mesh_instance_owner.free(p_rid);
  674. }
  675. void MeshStorage::mesh_instance_set_skeleton(RID p_mesh_instance, RID p_skeleton) {
  676. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  677. if (mi->skeleton == p_skeleton) {
  678. return;
  679. }
  680. mi->skeleton = p_skeleton;
  681. mi->skeleton_version = 0;
  682. mi->dirty = true;
  683. }
  684. void MeshStorage::mesh_instance_set_blend_shape_weight(RID p_mesh_instance, int p_shape, float p_weight) {
  685. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  686. ERR_FAIL_COND(!mi);
  687. ERR_FAIL_INDEX(p_shape, (int)mi->blend_weights.size());
  688. mi->blend_weights[p_shape] = p_weight;
  689. mi->weights_dirty = true;
  690. //will be eventually updated
  691. }
  692. void MeshStorage::_mesh_instance_clear(MeshInstance *mi) {
  693. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  694. if (mi->surfaces[i].versions) {
  695. for (uint32_t j = 0; j < mi->surfaces[i].version_count; j++) {
  696. RD::get_singleton()->free(mi->surfaces[i].versions[j].vertex_array);
  697. }
  698. memfree(mi->surfaces[i].versions);
  699. }
  700. if (mi->surfaces[i].vertex_buffer.is_valid()) {
  701. RD::get_singleton()->free(mi->surfaces[i].vertex_buffer);
  702. }
  703. }
  704. mi->surfaces.clear();
  705. if (mi->blend_weights_buffer.is_valid()) {
  706. RD::get_singleton()->free(mi->blend_weights_buffer);
  707. }
  708. mi->blend_weights.clear();
  709. mi->weights_dirty = false;
  710. mi->skeleton_version = 0;
  711. }
  712. void MeshStorage::_mesh_instance_add_surface(MeshInstance *mi, Mesh *mesh, uint32_t p_surface) {
  713. if (mesh->blend_shape_count > 0 && mi->blend_weights_buffer.is_null()) {
  714. mi->blend_weights.resize(mesh->blend_shape_count);
  715. for (uint32_t i = 0; i < mi->blend_weights.size(); i++) {
  716. mi->blend_weights[i] = 0;
  717. }
  718. mi->blend_weights_buffer = RD::get_singleton()->storage_buffer_create(sizeof(float) * mi->blend_weights.size(), mi->blend_weights.to_byte_array());
  719. mi->weights_dirty = true;
  720. }
  721. MeshInstance::Surface s;
  722. if ((mesh->blend_shape_count > 0 || (mesh->surfaces[p_surface]->format & RS::ARRAY_FORMAT_BONES)) && mesh->surfaces[p_surface]->vertex_buffer_size > 0) {
  723. //surface warrants transform
  724. s.vertex_buffer = RD::get_singleton()->vertex_buffer_create(mesh->surfaces[p_surface]->vertex_buffer_size, Vector<uint8_t>(), true);
  725. Vector<RD::Uniform> uniforms;
  726. {
  727. RD::Uniform u;
  728. u.binding = 1;
  729. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  730. u.append_id(s.vertex_buffer);
  731. uniforms.push_back(u);
  732. }
  733. {
  734. RD::Uniform u;
  735. u.binding = 2;
  736. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  737. if (mi->blend_weights_buffer.is_valid()) {
  738. u.append_id(mi->blend_weights_buffer);
  739. } else {
  740. u.append_id(default_rd_storage_buffer);
  741. }
  742. uniforms.push_back(u);
  743. }
  744. s.uniform_set = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_INSTANCE);
  745. }
  746. mi->surfaces.push_back(s);
  747. mi->dirty = true;
  748. }
  749. void MeshStorage::mesh_instance_check_for_update(RID p_mesh_instance) {
  750. MeshInstance *mi = mesh_instance_owner.get_or_null(p_mesh_instance);
  751. bool needs_update = mi->dirty;
  752. if (mi->weights_dirty && !mi->weight_update_list.in_list()) {
  753. dirty_mesh_instance_weights.add(&mi->weight_update_list);
  754. needs_update = true;
  755. }
  756. if (mi->array_update_list.in_list()) {
  757. return;
  758. }
  759. if (!needs_update && mi->skeleton.is_valid()) {
  760. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  761. if (sk && sk->version != mi->skeleton_version) {
  762. needs_update = true;
  763. }
  764. }
  765. if (needs_update) {
  766. dirty_mesh_instance_arrays.add(&mi->array_update_list);
  767. }
  768. }
  769. void MeshStorage::update_mesh_instances() {
  770. while (dirty_mesh_instance_weights.first()) {
  771. MeshInstance *mi = dirty_mesh_instance_weights.first()->self();
  772. if (mi->blend_weights_buffer.is_valid()) {
  773. RD::get_singleton()->buffer_update(mi->blend_weights_buffer, 0, mi->blend_weights.size() * sizeof(float), mi->blend_weights.ptr());
  774. }
  775. dirty_mesh_instance_weights.remove(&mi->weight_update_list);
  776. mi->weights_dirty = false;
  777. }
  778. if (dirty_mesh_instance_arrays.first() == nullptr) {
  779. return; //nothing to do
  780. }
  781. //process skeletons and blend shapes
  782. RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
  783. while (dirty_mesh_instance_arrays.first()) {
  784. MeshInstance *mi = dirty_mesh_instance_arrays.first()->self();
  785. Skeleton *sk = skeleton_owner.get_or_null(mi->skeleton);
  786. for (uint32_t i = 0; i < mi->surfaces.size(); i++) {
  787. if (mi->surfaces[i].uniform_set == RID() || mi->mesh->surfaces[i]->uniform_set == RID()) {
  788. continue;
  789. }
  790. bool array_is_2d = mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_2D_VERTICES;
  791. RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, skeleton_shader.pipeline[array_is_2d ? SkeletonShader::SHADER_MODE_2D : SkeletonShader::SHADER_MODE_3D]);
  792. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->surfaces[i].uniform_set, SkeletonShader::UNIFORM_SET_INSTANCE);
  793. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, mi->mesh->surfaces[i]->uniform_set, SkeletonShader::UNIFORM_SET_SURFACE);
  794. if (sk && sk->uniform_set_mi.is_valid()) {
  795. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, sk->uniform_set_mi, SkeletonShader::UNIFORM_SET_SKELETON);
  796. } else {
  797. RD::get_singleton()->compute_list_bind_uniform_set(compute_list, skeleton_shader.default_skeleton_uniform_set, SkeletonShader::UNIFORM_SET_SKELETON);
  798. }
  799. SkeletonShader::PushConstant push_constant;
  800. push_constant.has_normal = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_NORMAL;
  801. push_constant.has_tangent = mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_TANGENT;
  802. push_constant.has_skeleton = sk != nullptr && sk->use_2d == array_is_2d && (mi->mesh->surfaces[i]->format & RS::ARRAY_FORMAT_BONES);
  803. push_constant.has_blend_shape = mi->mesh->blend_shape_count > 0;
  804. push_constant.vertex_count = mi->mesh->surfaces[i]->vertex_count;
  805. push_constant.vertex_stride = (mi->mesh->surfaces[i]->vertex_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  806. push_constant.skin_stride = (mi->mesh->surfaces[i]->skin_buffer_size / mi->mesh->surfaces[i]->vertex_count) / 4;
  807. push_constant.skin_weight_offset = (mi->mesh->surfaces[i]->format & RS::ARRAY_FLAG_USE_8_BONE_WEIGHTS) ? 4 : 2;
  808. push_constant.blend_shape_count = mi->mesh->blend_shape_count;
  809. push_constant.normalized_blend_shapes = mi->mesh->blend_shape_mode == RS::BLEND_SHAPE_MODE_NORMALIZED;
  810. push_constant.pad0 = 0;
  811. push_constant.pad1 = 0;
  812. RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(SkeletonShader::PushConstant));
  813. //dispatch without barrier, so all is done at the same time
  814. RD::get_singleton()->compute_list_dispatch_threads(compute_list, push_constant.vertex_count, 1, 1);
  815. }
  816. mi->dirty = false;
  817. if (sk) {
  818. mi->skeleton_version = sk->version;
  819. }
  820. dirty_mesh_instance_arrays.remove(&mi->array_update_list);
  821. }
  822. RD::get_singleton()->compute_list_end();
  823. }
  824. void MeshStorage::_mesh_surface_generate_version_for_input_mask(Mesh::Surface::Version &v, Mesh::Surface *s, uint32_t p_input_mask, MeshInstance::Surface *mis) {
  825. Vector<RD::VertexAttribute> attributes;
  826. Vector<RID> buffers;
  827. uint32_t stride = 0;
  828. uint32_t attribute_stride = 0;
  829. uint32_t skin_stride = 0;
  830. for (int i = 0; i < RS::ARRAY_INDEX; i++) {
  831. RD::VertexAttribute vd;
  832. RID buffer;
  833. vd.location = i;
  834. if (!(s->format & (1 << i))) {
  835. // Not supplied by surface, use default value
  836. buffer = mesh_default_rd_buffers[i];
  837. vd.stride = 0;
  838. switch (i) {
  839. case RS::ARRAY_VERTEX: {
  840. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  841. } break;
  842. case RS::ARRAY_NORMAL: {
  843. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  844. } break;
  845. case RS::ARRAY_TANGENT: {
  846. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  847. } break;
  848. case RS::ARRAY_COLOR: {
  849. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  850. } break;
  851. case RS::ARRAY_TEX_UV: {
  852. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  853. } break;
  854. case RS::ARRAY_TEX_UV2: {
  855. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  856. } break;
  857. case RS::ARRAY_CUSTOM0:
  858. case RS::ARRAY_CUSTOM1:
  859. case RS::ARRAY_CUSTOM2:
  860. case RS::ARRAY_CUSTOM3: {
  861. //assumed weights too
  862. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  863. } break;
  864. case RS::ARRAY_BONES: {
  865. //assumed weights too
  866. vd.format = RD::DATA_FORMAT_R32G32B32A32_UINT;
  867. } break;
  868. case RS::ARRAY_WEIGHTS: {
  869. //assumed weights too
  870. vd.format = RD::DATA_FORMAT_R32G32B32A32_SFLOAT;
  871. } break;
  872. }
  873. } else {
  874. //Supplied, use it
  875. vd.stride = 1; //mark that it needs a stride set (default uses 0)
  876. switch (i) {
  877. case RS::ARRAY_VERTEX: {
  878. vd.offset = stride;
  879. if (s->format & RS::ARRAY_FLAG_USE_2D_VERTICES) {
  880. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  881. stride += sizeof(float) * 2;
  882. } else {
  883. vd.format = RD::DATA_FORMAT_R32G32B32_SFLOAT;
  884. stride += sizeof(float) * 3;
  885. }
  886. if (mis) {
  887. buffer = mis->vertex_buffer;
  888. } else {
  889. buffer = s->vertex_buffer;
  890. }
  891. } break;
  892. case RS::ARRAY_NORMAL: {
  893. vd.offset = stride;
  894. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  895. stride += sizeof(uint16_t) * 2;
  896. if (mis) {
  897. buffer = mis->vertex_buffer;
  898. } else {
  899. buffer = s->vertex_buffer;
  900. }
  901. } break;
  902. case RS::ARRAY_TANGENT: {
  903. vd.offset = stride;
  904. vd.format = RD::DATA_FORMAT_R16G16_UNORM;
  905. stride += sizeof(uint16_t) * 2;
  906. if (mis) {
  907. buffer = mis->vertex_buffer;
  908. } else {
  909. buffer = s->vertex_buffer;
  910. }
  911. } break;
  912. case RS::ARRAY_COLOR: {
  913. vd.offset = attribute_stride;
  914. vd.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  915. attribute_stride += sizeof(int8_t) * 4;
  916. buffer = s->attribute_buffer;
  917. } break;
  918. case RS::ARRAY_TEX_UV: {
  919. vd.offset = attribute_stride;
  920. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  921. attribute_stride += sizeof(float) * 2;
  922. buffer = s->attribute_buffer;
  923. } break;
  924. case RS::ARRAY_TEX_UV2: {
  925. vd.offset = attribute_stride;
  926. vd.format = RD::DATA_FORMAT_R32G32_SFLOAT;
  927. attribute_stride += sizeof(float) * 2;
  928. buffer = s->attribute_buffer;
  929. } break;
  930. case RS::ARRAY_CUSTOM0:
  931. case RS::ARRAY_CUSTOM1:
  932. case RS::ARRAY_CUSTOM2:
  933. case RS::ARRAY_CUSTOM3: {
  934. vd.offset = attribute_stride;
  935. int idx = i - RS::ARRAY_CUSTOM0;
  936. const uint32_t fmt_shift[RS::ARRAY_CUSTOM_COUNT] = { RS::ARRAY_FORMAT_CUSTOM0_SHIFT, RS::ARRAY_FORMAT_CUSTOM1_SHIFT, RS::ARRAY_FORMAT_CUSTOM2_SHIFT, RS::ARRAY_FORMAT_CUSTOM3_SHIFT };
  937. uint32_t fmt = (s->format >> fmt_shift[idx]) & RS::ARRAY_FORMAT_CUSTOM_MASK;
  938. const uint32_t fmtsize[RS::ARRAY_CUSTOM_MAX] = { 4, 4, 4, 8, 4, 8, 12, 16 };
  939. const RD::DataFormat fmtrd[RS::ARRAY_CUSTOM_MAX] = { RD::DATA_FORMAT_R8G8B8A8_UNORM, RD::DATA_FORMAT_R8G8B8A8_SNORM, RD::DATA_FORMAT_R16G16_SFLOAT, RD::DATA_FORMAT_R16G16B16A16_SFLOAT, RD::DATA_FORMAT_R32_SFLOAT, RD::DATA_FORMAT_R32G32_SFLOAT, RD::DATA_FORMAT_R32G32B32_SFLOAT, RD::DATA_FORMAT_R32G32B32A32_SFLOAT };
  940. vd.format = fmtrd[fmt];
  941. attribute_stride += fmtsize[fmt];
  942. buffer = s->attribute_buffer;
  943. } break;
  944. case RS::ARRAY_BONES: {
  945. vd.offset = skin_stride;
  946. vd.format = RD::DATA_FORMAT_R16G16B16A16_UINT;
  947. skin_stride += sizeof(int16_t) * 4;
  948. buffer = s->skin_buffer;
  949. } break;
  950. case RS::ARRAY_WEIGHTS: {
  951. vd.offset = skin_stride;
  952. vd.format = RD::DATA_FORMAT_R16G16B16A16_UNORM;
  953. skin_stride += sizeof(int16_t) * 4;
  954. buffer = s->skin_buffer;
  955. } break;
  956. }
  957. }
  958. if (!(p_input_mask & (1 << i))) {
  959. continue; // Shader does not need this, skip it (but computing stride was important anyway)
  960. }
  961. attributes.push_back(vd);
  962. buffers.push_back(buffer);
  963. }
  964. //update final stride
  965. for (int i = 0; i < attributes.size(); i++) {
  966. if (attributes[i].stride == 0) {
  967. continue; //default location
  968. }
  969. int loc = attributes[i].location;
  970. if (loc < RS::ARRAY_COLOR) {
  971. attributes.write[i].stride = stride;
  972. } else if (loc < RS::ARRAY_BONES) {
  973. attributes.write[i].stride = attribute_stride;
  974. } else {
  975. attributes.write[i].stride = skin_stride;
  976. }
  977. }
  978. v.input_mask = p_input_mask;
  979. v.vertex_format = RD::get_singleton()->vertex_format_create(attributes);
  980. v.vertex_array = RD::get_singleton()->vertex_array_create(s->vertex_count, v.vertex_format, buffers);
  981. }
  982. ////////////////// MULTIMESH
  983. RID MeshStorage::multimesh_allocate() {
  984. return multimesh_owner.allocate_rid();
  985. }
  986. void MeshStorage::multimesh_initialize(RID p_rid) {
  987. multimesh_owner.initialize_rid(p_rid, MultiMesh());
  988. }
  989. void MeshStorage::multimesh_free(RID p_rid) {
  990. _update_dirty_multimeshes();
  991. multimesh_allocate_data(p_rid, 0, RS::MULTIMESH_TRANSFORM_2D);
  992. MultiMesh *multimesh = multimesh_owner.get_or_null(p_rid);
  993. multimesh->dependency.deleted_notify(p_rid);
  994. multimesh_owner.free(p_rid);
  995. }
  996. void MeshStorage::multimesh_allocate_data(RID p_multimesh, int p_instances, RS::MultimeshTransformFormat p_transform_format, bool p_use_colors, bool p_use_custom_data) {
  997. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  998. ERR_FAIL_COND(!multimesh);
  999. if (multimesh->instances == p_instances && multimesh->xform_format == p_transform_format && multimesh->uses_colors == p_use_colors && multimesh->uses_custom_data == p_use_custom_data) {
  1000. return;
  1001. }
  1002. if (multimesh->buffer.is_valid()) {
  1003. RD::get_singleton()->free(multimesh->buffer);
  1004. multimesh->buffer = RID();
  1005. multimesh->uniform_set_2d = RID(); //cleared by dependency
  1006. multimesh->uniform_set_3d = RID(); //cleared by dependency
  1007. }
  1008. if (multimesh->data_cache_dirty_regions) {
  1009. memdelete_arr(multimesh->data_cache_dirty_regions);
  1010. multimesh->data_cache_dirty_regions = nullptr;
  1011. multimesh->data_cache_dirty_region_count = 0;
  1012. }
  1013. if (multimesh->previous_data_cache_dirty_regions) {
  1014. memdelete_arr(multimesh->previous_data_cache_dirty_regions);
  1015. multimesh->previous_data_cache_dirty_regions = nullptr;
  1016. multimesh->previous_data_cache_dirty_region_count = 0;
  1017. }
  1018. multimesh->instances = p_instances;
  1019. multimesh->xform_format = p_transform_format;
  1020. multimesh->uses_colors = p_use_colors;
  1021. multimesh->color_offset_cache = p_transform_format == RS::MULTIMESH_TRANSFORM_2D ? 8 : 12;
  1022. multimesh->uses_custom_data = p_use_custom_data;
  1023. multimesh->custom_data_offset_cache = multimesh->color_offset_cache + (p_use_colors ? 4 : 0);
  1024. multimesh->stride_cache = multimesh->custom_data_offset_cache + (p_use_custom_data ? 4 : 0);
  1025. multimesh->buffer_set = false;
  1026. //print_line("allocate, elements: " + itos(p_instances) + " 2D: " + itos(p_transform_format == RS::MULTIMESH_TRANSFORM_2D) + " colors " + itos(multimesh->uses_colors) + " data " + itos(multimesh->uses_custom_data) + " stride " + itos(multimesh->stride_cache) + " total size " + itos(multimesh->stride_cache * multimesh->instances));
  1027. multimesh->data_cache = Vector<float>();
  1028. multimesh->aabb = AABB();
  1029. multimesh->aabb_dirty = false;
  1030. multimesh->visible_instances = MIN(multimesh->visible_instances, multimesh->instances);
  1031. multimesh->motion_vectors_current_offset = 0;
  1032. multimesh->motion_vectors_previous_offset = 0;
  1033. multimesh->motion_vectors_last_change = -1;
  1034. if (multimesh->instances) {
  1035. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float);
  1036. if (multimesh->motion_vectors_enabled) {
  1037. buffer_size *= 2;
  1038. }
  1039. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1040. }
  1041. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH);
  1042. }
  1043. bool MeshStorage::_multimesh_enable_motion_vectors(RID p_multimesh) {
  1044. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1045. ERR_FAIL_COND_V(!multimesh, false);
  1046. if (multimesh->motion_vectors_enabled) {
  1047. return false;
  1048. }
  1049. multimesh->motion_vectors_enabled = true;
  1050. multimesh->motion_vectors_current_offset = 0;
  1051. multimesh->motion_vectors_previous_offset = 0;
  1052. multimesh->motion_vectors_last_change = -1;
  1053. if (!multimesh->data_cache.is_empty()) {
  1054. multimesh->data_cache.append_array(multimesh->data_cache);
  1055. }
  1056. if (multimesh->buffer_set) {
  1057. RD::get_singleton()->barrier();
  1058. Vector<uint8_t> buffer_data = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1059. if (!multimesh->data_cache.is_empty()) {
  1060. memcpy(buffer_data.ptrw(), multimesh->data_cache.ptr(), buffer_data.size());
  1061. }
  1062. RD::get_singleton()->free(multimesh->buffer);
  1063. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache * sizeof(float) * 2;
  1064. multimesh->buffer = RD::get_singleton()->storage_buffer_create(buffer_size);
  1065. RD::get_singleton()->buffer_update(multimesh->buffer, 0, buffer_data.size(), buffer_data.ptr(), RD::BARRIER_MASK_NO_BARRIER);
  1066. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_data.size(), buffer_data.size(), buffer_data.ptr());
  1067. multimesh->uniform_set_3d = RID(); // Cleared by dependency
  1068. return true;
  1069. }
  1070. return false; // Update the transforms uniform set cache
  1071. }
  1072. void MeshStorage::_multimesh_get_motion_vectors_offsets(RID p_multimesh, uint32_t &r_current_offset, uint32_t &r_prev_offset) {
  1073. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1074. ERR_FAIL_COND(!multimesh);
  1075. r_current_offset = multimesh->motion_vectors_current_offset;
  1076. if (RSG::rasterizer->get_frame_number() - multimesh->motion_vectors_last_change >= 2) {
  1077. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1078. }
  1079. r_prev_offset = multimesh->motion_vectors_previous_offset;
  1080. }
  1081. int MeshStorage::multimesh_get_instance_count(RID p_multimesh) const {
  1082. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1083. ERR_FAIL_COND_V(!multimesh, 0);
  1084. return multimesh->instances;
  1085. }
  1086. void MeshStorage::multimesh_set_mesh(RID p_multimesh, RID p_mesh) {
  1087. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1088. ERR_FAIL_COND(!multimesh);
  1089. if (multimesh->mesh == p_mesh) {
  1090. return;
  1091. }
  1092. multimesh->mesh = p_mesh;
  1093. if (multimesh->instances == 0) {
  1094. return;
  1095. }
  1096. if (multimesh->data_cache.size()) {
  1097. //we have a data cache, just mark it dirt
  1098. _multimesh_mark_all_dirty(multimesh, false, true);
  1099. } else if (multimesh->instances) {
  1100. //need to re-create AABB unfortunately, calling this has a penalty
  1101. if (multimesh->buffer_set) {
  1102. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1103. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1104. const float *data = reinterpret_cast<const float *>(r);
  1105. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1106. }
  1107. }
  1108. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MESH);
  1109. }
  1110. #define MULTIMESH_DIRTY_REGION_SIZE 512
  1111. void MeshStorage::_multimesh_make_local(MultiMesh *multimesh) const {
  1112. if (multimesh->data_cache.size() > 0) {
  1113. return; //already local
  1114. }
  1115. // this means that the user wants to load/save individual elements,
  1116. // for this, the data must reside on CPU, so just copy it there.
  1117. uint32_t buffer_size = multimesh->instances * multimesh->stride_cache;
  1118. if (multimesh->motion_vectors_enabled) {
  1119. buffer_size *= 2;
  1120. }
  1121. multimesh->data_cache.resize(buffer_size);
  1122. {
  1123. float *w = multimesh->data_cache.ptrw();
  1124. if (multimesh->buffer_set) {
  1125. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1126. {
  1127. const uint8_t *r = buffer.ptr();
  1128. memcpy(w, r, buffer.size());
  1129. }
  1130. } else {
  1131. memset(w, 0, buffer_size * sizeof(float));
  1132. }
  1133. }
  1134. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1135. multimesh->data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1136. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1137. multimesh->data_cache_dirty_region_count = 0;
  1138. multimesh->previous_data_cache_dirty_regions = memnew_arr(bool, data_cache_dirty_region_count);
  1139. memset(multimesh->previous_data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1140. multimesh->previous_data_cache_dirty_region_count = 0;
  1141. }
  1142. void MeshStorage::_multimesh_update_motion_vectors_data_cache(MultiMesh *multimesh) {
  1143. ERR_FAIL_COND(multimesh->data_cache.is_empty());
  1144. if (!multimesh->motion_vectors_enabled) {
  1145. return;
  1146. }
  1147. uint32_t frame = RSG::rasterizer->get_frame_number();
  1148. if (multimesh->motion_vectors_last_change != frame) {
  1149. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1150. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1151. multimesh->motion_vectors_last_change = frame;
  1152. if (multimesh->previous_data_cache_dirty_region_count > 0) {
  1153. uint8_t *data = (uint8_t *)multimesh->data_cache.ptrw();
  1154. uint32_t current_ofs = multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1155. uint32_t previous_ofs = multimesh->motion_vectors_previous_offset * multimesh->stride_cache * sizeof(float);
  1156. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1157. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1158. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1159. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1160. for (uint32_t i = 0; i < visible_region_count; i++) {
  1161. if (multimesh->previous_data_cache_dirty_regions[i]) {
  1162. uint32_t offset = i * region_size;
  1163. memcpy(data + current_ofs + offset, data + previous_ofs + offset, MIN(region_size, size - offset));
  1164. }
  1165. }
  1166. }
  1167. }
  1168. }
  1169. void MeshStorage::_multimesh_mark_dirty(MultiMesh *multimesh, int p_index, bool p_aabb) {
  1170. uint32_t region_index = p_index / MULTIMESH_DIRTY_REGION_SIZE;
  1171. #ifdef DEBUG_ENABLED
  1172. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1173. ERR_FAIL_UNSIGNED_INDEX(region_index, data_cache_dirty_region_count); //bug
  1174. #endif
  1175. if (!multimesh->data_cache_dirty_regions[region_index]) {
  1176. multimesh->data_cache_dirty_regions[region_index] = true;
  1177. multimesh->data_cache_dirty_region_count++;
  1178. }
  1179. if (p_aabb) {
  1180. multimesh->aabb_dirty = true;
  1181. }
  1182. if (!multimesh->dirty) {
  1183. multimesh->dirty_list = multimesh_dirty_list;
  1184. multimesh_dirty_list = multimesh;
  1185. multimesh->dirty = true;
  1186. }
  1187. }
  1188. void MeshStorage::_multimesh_mark_all_dirty(MultiMesh *multimesh, bool p_data, bool p_aabb) {
  1189. if (p_data) {
  1190. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1191. for (uint32_t i = 0; i < data_cache_dirty_region_count; i++) {
  1192. if (!multimesh->data_cache_dirty_regions[i]) {
  1193. multimesh->data_cache_dirty_regions[i] = true;
  1194. multimesh->data_cache_dirty_region_count++;
  1195. }
  1196. }
  1197. }
  1198. if (p_aabb) {
  1199. multimesh->aabb_dirty = true;
  1200. }
  1201. if (!multimesh->dirty) {
  1202. multimesh->dirty_list = multimesh_dirty_list;
  1203. multimesh_dirty_list = multimesh;
  1204. multimesh->dirty = true;
  1205. }
  1206. }
  1207. void MeshStorage::_multimesh_re_create_aabb(MultiMesh *multimesh, const float *p_data, int p_instances) {
  1208. ERR_FAIL_COND(multimesh->mesh.is_null());
  1209. AABB aabb;
  1210. AABB mesh_aabb = mesh_get_aabb(multimesh->mesh);
  1211. for (int i = 0; i < p_instances; i++) {
  1212. const float *data = p_data + multimesh->stride_cache * i;
  1213. Transform3D t;
  1214. if (multimesh->xform_format == RS::MULTIMESH_TRANSFORM_3D) {
  1215. t.basis.rows[0][0] = data[0];
  1216. t.basis.rows[0][1] = data[1];
  1217. t.basis.rows[0][2] = data[2];
  1218. t.origin.x = data[3];
  1219. t.basis.rows[1][0] = data[4];
  1220. t.basis.rows[1][1] = data[5];
  1221. t.basis.rows[1][2] = data[6];
  1222. t.origin.y = data[7];
  1223. t.basis.rows[2][0] = data[8];
  1224. t.basis.rows[2][1] = data[9];
  1225. t.basis.rows[2][2] = data[10];
  1226. t.origin.z = data[11];
  1227. } else {
  1228. t.basis.rows[0].x = data[0];
  1229. t.basis.rows[1].x = data[1];
  1230. t.origin.x = data[3];
  1231. t.basis.rows[0].y = data[4];
  1232. t.basis.rows[1].y = data[5];
  1233. t.origin.y = data[7];
  1234. }
  1235. if (i == 0) {
  1236. aabb = t.xform(mesh_aabb);
  1237. } else {
  1238. aabb.merge_with(t.xform(mesh_aabb));
  1239. }
  1240. }
  1241. multimesh->aabb = aabb;
  1242. }
  1243. void MeshStorage::multimesh_instance_set_transform(RID p_multimesh, int p_index, const Transform3D &p_transform) {
  1244. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1245. ERR_FAIL_COND(!multimesh);
  1246. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1247. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D);
  1248. _multimesh_make_local(multimesh);
  1249. _multimesh_update_motion_vectors_data_cache(multimesh);
  1250. {
  1251. float *w = multimesh->data_cache.ptrw();
  1252. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1253. dataptr[0] = p_transform.basis.rows[0][0];
  1254. dataptr[1] = p_transform.basis.rows[0][1];
  1255. dataptr[2] = p_transform.basis.rows[0][2];
  1256. dataptr[3] = p_transform.origin.x;
  1257. dataptr[4] = p_transform.basis.rows[1][0];
  1258. dataptr[5] = p_transform.basis.rows[1][1];
  1259. dataptr[6] = p_transform.basis.rows[1][2];
  1260. dataptr[7] = p_transform.origin.y;
  1261. dataptr[8] = p_transform.basis.rows[2][0];
  1262. dataptr[9] = p_transform.basis.rows[2][1];
  1263. dataptr[10] = p_transform.basis.rows[2][2];
  1264. dataptr[11] = p_transform.origin.z;
  1265. }
  1266. _multimesh_mark_dirty(multimesh, p_index, true);
  1267. }
  1268. void MeshStorage::multimesh_instance_set_transform_2d(RID p_multimesh, int p_index, const Transform2D &p_transform) {
  1269. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1270. ERR_FAIL_COND(!multimesh);
  1271. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1272. ERR_FAIL_COND(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D);
  1273. _multimesh_make_local(multimesh);
  1274. _multimesh_update_motion_vectors_data_cache(multimesh);
  1275. {
  1276. float *w = multimesh->data_cache.ptrw();
  1277. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1278. dataptr[0] = p_transform.columns[0][0];
  1279. dataptr[1] = p_transform.columns[1][0];
  1280. dataptr[2] = 0;
  1281. dataptr[3] = p_transform.columns[2][0];
  1282. dataptr[4] = p_transform.columns[0][1];
  1283. dataptr[5] = p_transform.columns[1][1];
  1284. dataptr[6] = 0;
  1285. dataptr[7] = p_transform.columns[2][1];
  1286. }
  1287. _multimesh_mark_dirty(multimesh, p_index, true);
  1288. }
  1289. void MeshStorage::multimesh_instance_set_color(RID p_multimesh, int p_index, const Color &p_color) {
  1290. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1291. ERR_FAIL_COND(!multimesh);
  1292. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1293. ERR_FAIL_COND(!multimesh->uses_colors);
  1294. _multimesh_make_local(multimesh);
  1295. _multimesh_update_motion_vectors_data_cache(multimesh);
  1296. {
  1297. float *w = multimesh->data_cache.ptrw();
  1298. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1299. dataptr[0] = p_color.r;
  1300. dataptr[1] = p_color.g;
  1301. dataptr[2] = p_color.b;
  1302. dataptr[3] = p_color.a;
  1303. }
  1304. _multimesh_mark_dirty(multimesh, p_index, false);
  1305. }
  1306. void MeshStorage::multimesh_instance_set_custom_data(RID p_multimesh, int p_index, const Color &p_color) {
  1307. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1308. ERR_FAIL_COND(!multimesh);
  1309. ERR_FAIL_INDEX(p_index, multimesh->instances);
  1310. ERR_FAIL_COND(!multimesh->uses_custom_data);
  1311. _multimesh_make_local(multimesh);
  1312. _multimesh_update_motion_vectors_data_cache(multimesh);
  1313. {
  1314. float *w = multimesh->data_cache.ptrw();
  1315. float *dataptr = w + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1316. dataptr[0] = p_color.r;
  1317. dataptr[1] = p_color.g;
  1318. dataptr[2] = p_color.b;
  1319. dataptr[3] = p_color.a;
  1320. }
  1321. _multimesh_mark_dirty(multimesh, p_index, false);
  1322. }
  1323. RID MeshStorage::multimesh_get_mesh(RID p_multimesh) const {
  1324. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1325. ERR_FAIL_COND_V(!multimesh, RID());
  1326. return multimesh->mesh;
  1327. }
  1328. Dependency *MeshStorage::multimesh_get_dependency(RID p_multimesh) const {
  1329. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1330. ERR_FAIL_COND_V(!multimesh, nullptr);
  1331. return &multimesh->dependency;
  1332. }
  1333. Transform3D MeshStorage::multimesh_instance_get_transform(RID p_multimesh, int p_index) const {
  1334. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1335. ERR_FAIL_COND_V(!multimesh, Transform3D());
  1336. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform3D());
  1337. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_3D, Transform3D());
  1338. _multimesh_make_local(multimesh);
  1339. Transform3D t;
  1340. {
  1341. const float *r = multimesh->data_cache.ptr();
  1342. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1343. t.basis.rows[0][0] = dataptr[0];
  1344. t.basis.rows[0][1] = dataptr[1];
  1345. t.basis.rows[0][2] = dataptr[2];
  1346. t.origin.x = dataptr[3];
  1347. t.basis.rows[1][0] = dataptr[4];
  1348. t.basis.rows[1][1] = dataptr[5];
  1349. t.basis.rows[1][2] = dataptr[6];
  1350. t.origin.y = dataptr[7];
  1351. t.basis.rows[2][0] = dataptr[8];
  1352. t.basis.rows[2][1] = dataptr[9];
  1353. t.basis.rows[2][2] = dataptr[10];
  1354. t.origin.z = dataptr[11];
  1355. }
  1356. return t;
  1357. }
  1358. Transform2D MeshStorage::multimesh_instance_get_transform_2d(RID p_multimesh, int p_index) const {
  1359. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1360. ERR_FAIL_COND_V(!multimesh, Transform2D());
  1361. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Transform2D());
  1362. ERR_FAIL_COND_V(multimesh->xform_format != RS::MULTIMESH_TRANSFORM_2D, Transform2D());
  1363. _multimesh_make_local(multimesh);
  1364. Transform2D t;
  1365. {
  1366. const float *r = multimesh->data_cache.ptr();
  1367. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache;
  1368. t.columns[0][0] = dataptr[0];
  1369. t.columns[1][0] = dataptr[1];
  1370. t.columns[2][0] = dataptr[3];
  1371. t.columns[0][1] = dataptr[4];
  1372. t.columns[1][1] = dataptr[5];
  1373. t.columns[2][1] = dataptr[7];
  1374. }
  1375. return t;
  1376. }
  1377. Color MeshStorage::multimesh_instance_get_color(RID p_multimesh, int p_index) const {
  1378. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1379. ERR_FAIL_COND_V(!multimesh, Color());
  1380. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1381. ERR_FAIL_COND_V(!multimesh->uses_colors, Color());
  1382. _multimesh_make_local(multimesh);
  1383. Color c;
  1384. {
  1385. const float *r = multimesh->data_cache.ptr();
  1386. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->color_offset_cache;
  1387. c.r = dataptr[0];
  1388. c.g = dataptr[1];
  1389. c.b = dataptr[2];
  1390. c.a = dataptr[3];
  1391. }
  1392. return c;
  1393. }
  1394. Color MeshStorage::multimesh_instance_get_custom_data(RID p_multimesh, int p_index) const {
  1395. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1396. ERR_FAIL_COND_V(!multimesh, Color());
  1397. ERR_FAIL_INDEX_V(p_index, multimesh->instances, Color());
  1398. ERR_FAIL_COND_V(!multimesh->uses_custom_data, Color());
  1399. _multimesh_make_local(multimesh);
  1400. Color c;
  1401. {
  1402. const float *r = multimesh->data_cache.ptr();
  1403. const float *dataptr = r + (multimesh->motion_vectors_current_offset + p_index) * multimesh->stride_cache + multimesh->custom_data_offset_cache;
  1404. c.r = dataptr[0];
  1405. c.g = dataptr[1];
  1406. c.b = dataptr[2];
  1407. c.a = dataptr[3];
  1408. }
  1409. return c;
  1410. }
  1411. void MeshStorage::multimesh_set_buffer(RID p_multimesh, const Vector<float> &p_buffer) {
  1412. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1413. ERR_FAIL_COND(!multimesh);
  1414. ERR_FAIL_COND(p_buffer.size() != (multimesh->instances * (int)multimesh->stride_cache));
  1415. if (multimesh->motion_vectors_enabled) {
  1416. uint32_t frame = RSG::rasterizer->get_frame_number();
  1417. if (multimesh->motion_vectors_last_change != frame) {
  1418. multimesh->motion_vectors_previous_offset = multimesh->motion_vectors_current_offset;
  1419. multimesh->motion_vectors_current_offset = multimesh->instances - multimesh->motion_vectors_current_offset;
  1420. multimesh->motion_vectors_last_change = frame;
  1421. }
  1422. }
  1423. {
  1424. const float *r = p_buffer.ptr();
  1425. RD::get_singleton()->buffer_update(multimesh->buffer, multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float), p_buffer.size() * sizeof(float), r);
  1426. multimesh->buffer_set = true;
  1427. }
  1428. if (multimesh->data_cache.size()) {
  1429. float *cache_data = multimesh->data_cache.ptrw();
  1430. memcpy(cache_data + (multimesh->motion_vectors_current_offset * multimesh->stride_cache), p_buffer.ptr(), p_buffer.size() * sizeof(float));
  1431. _multimesh_mark_all_dirty(multimesh, true, true); //update AABB
  1432. } else if (multimesh->mesh.is_valid()) {
  1433. //if we have a mesh set, we need to re-generate the AABB from the new data
  1434. const float *data = p_buffer.ptr();
  1435. _multimesh_re_create_aabb(multimesh, data, multimesh->instances);
  1436. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1437. }
  1438. }
  1439. Vector<float> MeshStorage::multimesh_get_buffer(RID p_multimesh) const {
  1440. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1441. ERR_FAIL_COND_V(!multimesh, Vector<float>());
  1442. if (multimesh->buffer.is_null()) {
  1443. return Vector<float>();
  1444. } else {
  1445. Vector<float> ret;
  1446. ret.resize(multimesh->instances * multimesh->stride_cache);
  1447. float *w = ret.ptrw();
  1448. if (multimesh->data_cache.size()) {
  1449. const uint8_t *r = (uint8_t *)multimesh->data_cache.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1450. memcpy(w, r, ret.size() * sizeof(float));
  1451. } else {
  1452. Vector<uint8_t> buffer = RD::get_singleton()->buffer_get_data(multimesh->buffer);
  1453. const uint8_t *r = buffer.ptr() + multimesh->motion_vectors_current_offset * multimesh->stride_cache * sizeof(float);
  1454. memcpy(w, r, ret.size() * sizeof(float));
  1455. }
  1456. return ret;
  1457. }
  1458. }
  1459. void MeshStorage::multimesh_set_visible_instances(RID p_multimesh, int p_visible) {
  1460. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1461. ERR_FAIL_COND(!multimesh);
  1462. ERR_FAIL_COND(p_visible < -1 || p_visible > multimesh->instances);
  1463. if (multimesh->visible_instances == p_visible) {
  1464. return;
  1465. }
  1466. if (multimesh->data_cache.size()) {
  1467. //there is a data cache..
  1468. _multimesh_mark_all_dirty(multimesh, false, true);
  1469. }
  1470. multimesh->visible_instances = p_visible;
  1471. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_MULTIMESH_VISIBLE_INSTANCES);
  1472. }
  1473. int MeshStorage::multimesh_get_visible_instances(RID p_multimesh) const {
  1474. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1475. ERR_FAIL_COND_V(!multimesh, 0);
  1476. return multimesh->visible_instances;
  1477. }
  1478. AABB MeshStorage::multimesh_get_aabb(RID p_multimesh) const {
  1479. MultiMesh *multimesh = multimesh_owner.get_or_null(p_multimesh);
  1480. ERR_FAIL_COND_V(!multimesh, AABB());
  1481. if (multimesh->aabb_dirty) {
  1482. const_cast<MeshStorage *>(this)->_update_dirty_multimeshes();
  1483. }
  1484. return multimesh->aabb;
  1485. }
  1486. void MeshStorage::_update_dirty_multimeshes() {
  1487. while (multimesh_dirty_list) {
  1488. MultiMesh *multimesh = multimesh_dirty_list;
  1489. if (multimesh->data_cache.size()) { //may have been cleared, so only process if it exists
  1490. uint32_t visible_instances = multimesh->visible_instances >= 0 ? multimesh->visible_instances : multimesh->instances;
  1491. uint32_t buffer_offset = multimesh->motion_vectors_current_offset * multimesh->stride_cache;
  1492. const float *data = multimesh->data_cache.ptr() + buffer_offset;
  1493. uint32_t total_dirty_regions = multimesh->data_cache_dirty_region_count + multimesh->previous_data_cache_dirty_region_count;
  1494. if (total_dirty_regions != 0) {
  1495. uint32_t data_cache_dirty_region_count = (multimesh->instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1496. uint32_t visible_region_count = visible_instances == 0 ? 0 : (visible_instances - 1) / MULTIMESH_DIRTY_REGION_SIZE + 1;
  1497. uint32_t region_size = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * sizeof(float);
  1498. if (total_dirty_regions > 32 || total_dirty_regions > visible_region_count / 2) {
  1499. //if there too many dirty regions, or represent the majority of regions, just copy all, else transfer cost piles up too much
  1500. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float), MIN(visible_region_count * region_size, multimesh->instances * (uint32_t)multimesh->stride_cache * (uint32_t)sizeof(float)), data);
  1501. } else {
  1502. //not that many regions? update them all
  1503. for (uint32_t i = 0; i < visible_region_count; i++) {
  1504. if (multimesh->data_cache_dirty_regions[i] || multimesh->previous_data_cache_dirty_regions[i]) {
  1505. uint32_t offset = i * region_size;
  1506. uint32_t size = multimesh->stride_cache * (uint32_t)multimesh->instances * (uint32_t)sizeof(float);
  1507. uint32_t region_start_index = multimesh->stride_cache * MULTIMESH_DIRTY_REGION_SIZE * i;
  1508. RD::get_singleton()->buffer_update(multimesh->buffer, buffer_offset * sizeof(float) + offset, MIN(region_size, size - offset), &data[region_start_index], RD::BARRIER_MASK_NO_BARRIER);
  1509. }
  1510. }
  1511. RD::get_singleton()->barrier(RD::BARRIER_MASK_NO_BARRIER, RD::BARRIER_MASK_ALL);
  1512. }
  1513. memcpy(multimesh->previous_data_cache_dirty_regions, multimesh->data_cache_dirty_regions, data_cache_dirty_region_count * sizeof(bool));
  1514. memset(multimesh->data_cache_dirty_regions, 0, data_cache_dirty_region_count * sizeof(bool));
  1515. multimesh->previous_data_cache_dirty_region_count = multimesh->data_cache_dirty_region_count;
  1516. multimesh->data_cache_dirty_region_count = 0;
  1517. }
  1518. if (multimesh->aabb_dirty) {
  1519. //aabb is dirty..
  1520. _multimesh_re_create_aabb(multimesh, data, visible_instances);
  1521. multimesh->aabb_dirty = false;
  1522. multimesh->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_AABB);
  1523. }
  1524. }
  1525. multimesh_dirty_list = multimesh->dirty_list;
  1526. multimesh->dirty_list = nullptr;
  1527. multimesh->dirty = false;
  1528. }
  1529. multimesh_dirty_list = nullptr;
  1530. }
  1531. /* SKELETON API */
  1532. RID MeshStorage::skeleton_allocate() {
  1533. return skeleton_owner.allocate_rid();
  1534. }
  1535. void MeshStorage::skeleton_initialize(RID p_rid) {
  1536. skeleton_owner.initialize_rid(p_rid, Skeleton());
  1537. }
  1538. void MeshStorage::skeleton_free(RID p_rid) {
  1539. _update_dirty_skeletons();
  1540. skeleton_allocate_data(p_rid, 0);
  1541. Skeleton *skeleton = skeleton_owner.get_or_null(p_rid);
  1542. skeleton->dependency.deleted_notify(p_rid);
  1543. skeleton_owner.free(p_rid);
  1544. }
  1545. void MeshStorage::_skeleton_make_dirty(Skeleton *skeleton) {
  1546. if (!skeleton->dirty) {
  1547. skeleton->dirty = true;
  1548. skeleton->dirty_list = skeleton_dirty_list;
  1549. skeleton_dirty_list = skeleton;
  1550. }
  1551. }
  1552. void MeshStorage::skeleton_allocate_data(RID p_skeleton, int p_bones, bool p_2d_skeleton) {
  1553. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1554. ERR_FAIL_COND(!skeleton);
  1555. ERR_FAIL_COND(p_bones < 0);
  1556. if (skeleton->size == p_bones && skeleton->use_2d == p_2d_skeleton) {
  1557. return;
  1558. }
  1559. skeleton->size = p_bones;
  1560. skeleton->use_2d = p_2d_skeleton;
  1561. skeleton->uniform_set_3d = RID();
  1562. if (skeleton->buffer.is_valid()) {
  1563. RD::get_singleton()->free(skeleton->buffer);
  1564. skeleton->buffer = RID();
  1565. skeleton->data.clear();
  1566. skeleton->uniform_set_mi = RID();
  1567. }
  1568. if (skeleton->size) {
  1569. skeleton->data.resize(skeleton->size * (skeleton->use_2d ? 8 : 12));
  1570. skeleton->buffer = RD::get_singleton()->storage_buffer_create(skeleton->data.size() * sizeof(float));
  1571. memset(skeleton->data.ptrw(), 0, skeleton->data.size() * sizeof(float));
  1572. _skeleton_make_dirty(skeleton);
  1573. {
  1574. Vector<RD::Uniform> uniforms;
  1575. {
  1576. RD::Uniform u;
  1577. u.binding = 0;
  1578. u.uniform_type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
  1579. u.append_id(skeleton->buffer);
  1580. uniforms.push_back(u);
  1581. }
  1582. skeleton->uniform_set_mi = RD::get_singleton()->uniform_set_create(uniforms, skeleton_shader.version_shader[0], SkeletonShader::UNIFORM_SET_SKELETON);
  1583. }
  1584. }
  1585. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_DATA);
  1586. }
  1587. int MeshStorage::skeleton_get_bone_count(RID p_skeleton) const {
  1588. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1589. ERR_FAIL_COND_V(!skeleton, 0);
  1590. return skeleton->size;
  1591. }
  1592. void MeshStorage::skeleton_bone_set_transform(RID p_skeleton, int p_bone, const Transform3D &p_transform) {
  1593. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1594. ERR_FAIL_COND(!skeleton);
  1595. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1596. ERR_FAIL_COND(skeleton->use_2d);
  1597. float *dataptr = skeleton->data.ptrw() + p_bone * 12;
  1598. dataptr[0] = p_transform.basis.rows[0][0];
  1599. dataptr[1] = p_transform.basis.rows[0][1];
  1600. dataptr[2] = p_transform.basis.rows[0][2];
  1601. dataptr[3] = p_transform.origin.x;
  1602. dataptr[4] = p_transform.basis.rows[1][0];
  1603. dataptr[5] = p_transform.basis.rows[1][1];
  1604. dataptr[6] = p_transform.basis.rows[1][2];
  1605. dataptr[7] = p_transform.origin.y;
  1606. dataptr[8] = p_transform.basis.rows[2][0];
  1607. dataptr[9] = p_transform.basis.rows[2][1];
  1608. dataptr[10] = p_transform.basis.rows[2][2];
  1609. dataptr[11] = p_transform.origin.z;
  1610. _skeleton_make_dirty(skeleton);
  1611. }
  1612. Transform3D MeshStorage::skeleton_bone_get_transform(RID p_skeleton, int p_bone) const {
  1613. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1614. ERR_FAIL_COND_V(!skeleton, Transform3D());
  1615. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform3D());
  1616. ERR_FAIL_COND_V(skeleton->use_2d, Transform3D());
  1617. const float *dataptr = skeleton->data.ptr() + p_bone * 12;
  1618. Transform3D t;
  1619. t.basis.rows[0][0] = dataptr[0];
  1620. t.basis.rows[0][1] = dataptr[1];
  1621. t.basis.rows[0][2] = dataptr[2];
  1622. t.origin.x = dataptr[3];
  1623. t.basis.rows[1][0] = dataptr[4];
  1624. t.basis.rows[1][1] = dataptr[5];
  1625. t.basis.rows[1][2] = dataptr[6];
  1626. t.origin.y = dataptr[7];
  1627. t.basis.rows[2][0] = dataptr[8];
  1628. t.basis.rows[2][1] = dataptr[9];
  1629. t.basis.rows[2][2] = dataptr[10];
  1630. t.origin.z = dataptr[11];
  1631. return t;
  1632. }
  1633. void MeshStorage::skeleton_bone_set_transform_2d(RID p_skeleton, int p_bone, const Transform2D &p_transform) {
  1634. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1635. ERR_FAIL_COND(!skeleton);
  1636. ERR_FAIL_INDEX(p_bone, skeleton->size);
  1637. ERR_FAIL_COND(!skeleton->use_2d);
  1638. float *dataptr = skeleton->data.ptrw() + p_bone * 8;
  1639. dataptr[0] = p_transform.columns[0][0];
  1640. dataptr[1] = p_transform.columns[1][0];
  1641. dataptr[2] = 0;
  1642. dataptr[3] = p_transform.columns[2][0];
  1643. dataptr[4] = p_transform.columns[0][1];
  1644. dataptr[5] = p_transform.columns[1][1];
  1645. dataptr[6] = 0;
  1646. dataptr[7] = p_transform.columns[2][1];
  1647. _skeleton_make_dirty(skeleton);
  1648. }
  1649. Transform2D MeshStorage::skeleton_bone_get_transform_2d(RID p_skeleton, int p_bone) const {
  1650. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1651. ERR_FAIL_COND_V(!skeleton, Transform2D());
  1652. ERR_FAIL_INDEX_V(p_bone, skeleton->size, Transform2D());
  1653. ERR_FAIL_COND_V(!skeleton->use_2d, Transform2D());
  1654. const float *dataptr = skeleton->data.ptr() + p_bone * 8;
  1655. Transform2D t;
  1656. t.columns[0][0] = dataptr[0];
  1657. t.columns[1][0] = dataptr[1];
  1658. t.columns[2][0] = dataptr[3];
  1659. t.columns[0][1] = dataptr[4];
  1660. t.columns[1][1] = dataptr[5];
  1661. t.columns[2][1] = dataptr[7];
  1662. return t;
  1663. }
  1664. void MeshStorage::skeleton_set_base_transform_2d(RID p_skeleton, const Transform2D &p_base_transform) {
  1665. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1666. ERR_FAIL_COND(!skeleton->use_2d);
  1667. skeleton->base_transform_2d = p_base_transform;
  1668. }
  1669. void MeshStorage::_update_dirty_skeletons() {
  1670. while (skeleton_dirty_list) {
  1671. Skeleton *skeleton = skeleton_dirty_list;
  1672. if (skeleton->size) {
  1673. RD::get_singleton()->buffer_update(skeleton->buffer, 0, skeleton->data.size() * sizeof(float), skeleton->data.ptr());
  1674. }
  1675. skeleton_dirty_list = skeleton->dirty_list;
  1676. skeleton->dependency.changed_notify(Dependency::DEPENDENCY_CHANGED_SKELETON_BONES);
  1677. skeleton->version++;
  1678. skeleton->dirty = false;
  1679. skeleton->dirty_list = nullptr;
  1680. }
  1681. skeleton_dirty_list = nullptr;
  1682. }
  1683. void MeshStorage::skeleton_update_dependency(RID p_skeleton, DependencyTracker *p_instance) {
  1684. Skeleton *skeleton = skeleton_owner.get_or_null(p_skeleton);
  1685. ERR_FAIL_COND(!skeleton);
  1686. p_instance->update_dependency(&skeleton->dependency);
  1687. }