variant.cpp 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495
  1. /*************************************************************************/
  2. /* variant.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2021 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2021 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "variant.h"
  31. #include "core/core_string_names.h"
  32. #include "core/debugger/engine_debugger.h"
  33. #include "core/io/json.h"
  34. #include "core/io/marshalls.h"
  35. #include "core/io/resource.h"
  36. #include "core/math/math_funcs.h"
  37. #include "core/string/print_string.h"
  38. #include "core/variant/variant_parser.h"
  39. #include "scene/gui/control.h"
  40. #include "scene/main/node.h"
  41. String Variant::get_type_name(Variant::Type p_type) {
  42. switch (p_type) {
  43. case NIL: {
  44. return "Nil";
  45. } break;
  46. // atomic types
  47. case BOOL: {
  48. return "bool";
  49. } break;
  50. case INT: {
  51. return "int";
  52. } break;
  53. case FLOAT: {
  54. return "float";
  55. } break;
  56. case STRING: {
  57. return "String";
  58. } break;
  59. // math types
  60. case VECTOR2: {
  61. return "Vector2";
  62. } break;
  63. case VECTOR2I: {
  64. return "Vector2i";
  65. } break;
  66. case RECT2: {
  67. return "Rect2";
  68. } break;
  69. case RECT2I: {
  70. return "Rect2i";
  71. } break;
  72. case TRANSFORM2D: {
  73. return "Transform2D";
  74. } break;
  75. case VECTOR3: {
  76. return "Vector3";
  77. } break;
  78. case VECTOR3I: {
  79. return "Vector3i";
  80. } break;
  81. case PLANE: {
  82. return "Plane";
  83. } break;
  84. case AABB: {
  85. return "AABB";
  86. } break;
  87. case QUATERNION: {
  88. return "Quaternion";
  89. } break;
  90. case BASIS: {
  91. return "Basis";
  92. } break;
  93. case TRANSFORM3D: {
  94. return "Transform3D";
  95. } break;
  96. // misc types
  97. case COLOR: {
  98. return "Color";
  99. } break;
  100. case RID: {
  101. return "RID";
  102. } break;
  103. case OBJECT: {
  104. return "Object";
  105. } break;
  106. case CALLABLE: {
  107. return "Callable";
  108. } break;
  109. case SIGNAL: {
  110. return "Signal";
  111. } break;
  112. case STRING_NAME: {
  113. return "StringName";
  114. } break;
  115. case NODE_PATH: {
  116. return "NodePath";
  117. } break;
  118. case DICTIONARY: {
  119. return "Dictionary";
  120. } break;
  121. case ARRAY: {
  122. return "Array";
  123. } break;
  124. // arrays
  125. case PACKED_BYTE_ARRAY: {
  126. return "PackedByteArray";
  127. } break;
  128. case PACKED_INT32_ARRAY: {
  129. return "PackedInt32Array";
  130. } break;
  131. case PACKED_INT64_ARRAY: {
  132. return "PackedInt64Array";
  133. } break;
  134. case PACKED_FLOAT32_ARRAY: {
  135. return "PackedFloat32Array";
  136. } break;
  137. case PACKED_FLOAT64_ARRAY: {
  138. return "PackedFloat64Array";
  139. } break;
  140. case PACKED_STRING_ARRAY: {
  141. return "PackedStringArray";
  142. } break;
  143. case PACKED_VECTOR2_ARRAY: {
  144. return "PackedVector2Array";
  145. } break;
  146. case PACKED_VECTOR3_ARRAY: {
  147. return "PackedVector3Array";
  148. } break;
  149. case PACKED_COLOR_ARRAY: {
  150. return "PackedColorArray";
  151. } break;
  152. default: {
  153. }
  154. }
  155. return "";
  156. }
  157. bool Variant::can_convert(Variant::Type p_type_from, Variant::Type p_type_to) {
  158. if (p_type_from == p_type_to) {
  159. return true;
  160. }
  161. if (p_type_to == NIL && p_type_from != NIL) { //nil can convert to anything
  162. return true;
  163. }
  164. if (p_type_from == NIL) {
  165. return (p_type_to == OBJECT);
  166. }
  167. const Type *valid_types = nullptr;
  168. const Type *invalid_types = nullptr;
  169. switch (p_type_to) {
  170. case BOOL: {
  171. static const Type valid[] = {
  172. INT,
  173. FLOAT,
  174. STRING,
  175. NIL,
  176. };
  177. valid_types = valid;
  178. } break;
  179. case INT: {
  180. static const Type valid[] = {
  181. BOOL,
  182. FLOAT,
  183. STRING,
  184. NIL,
  185. };
  186. valid_types = valid;
  187. } break;
  188. case FLOAT: {
  189. static const Type valid[] = {
  190. BOOL,
  191. INT,
  192. STRING,
  193. NIL,
  194. };
  195. valid_types = valid;
  196. } break;
  197. case STRING: {
  198. static const Type invalid[] = {
  199. OBJECT,
  200. NIL
  201. };
  202. invalid_types = invalid;
  203. } break;
  204. case VECTOR2: {
  205. static const Type valid[] = {
  206. VECTOR2I,
  207. NIL,
  208. };
  209. valid_types = valid;
  210. } break;
  211. case VECTOR2I: {
  212. static const Type valid[] = {
  213. VECTOR2,
  214. NIL,
  215. };
  216. valid_types = valid;
  217. } break;
  218. case RECT2: {
  219. static const Type valid[] = {
  220. RECT2I,
  221. NIL,
  222. };
  223. valid_types = valid;
  224. } break;
  225. case RECT2I: {
  226. static const Type valid[] = {
  227. RECT2,
  228. NIL,
  229. };
  230. valid_types = valid;
  231. } break;
  232. case TRANSFORM2D: {
  233. static const Type valid[] = {
  234. TRANSFORM3D,
  235. NIL
  236. };
  237. valid_types = valid;
  238. } break;
  239. case VECTOR3: {
  240. static const Type valid[] = {
  241. VECTOR3I,
  242. NIL,
  243. };
  244. valid_types = valid;
  245. } break;
  246. case VECTOR3I: {
  247. static const Type valid[] = {
  248. VECTOR3,
  249. NIL,
  250. };
  251. valid_types = valid;
  252. } break;
  253. case QUATERNION: {
  254. static const Type valid[] = {
  255. BASIS,
  256. NIL
  257. };
  258. valid_types = valid;
  259. } break;
  260. case BASIS: {
  261. static const Type valid[] = {
  262. QUATERNION,
  263. NIL
  264. };
  265. valid_types = valid;
  266. } break;
  267. case TRANSFORM3D: {
  268. static const Type valid[] = {
  269. TRANSFORM2D,
  270. QUATERNION,
  271. BASIS,
  272. NIL
  273. };
  274. valid_types = valid;
  275. } break;
  276. case COLOR: {
  277. static const Type valid[] = {
  278. STRING,
  279. INT,
  280. NIL,
  281. };
  282. valid_types = valid;
  283. } break;
  284. case RID: {
  285. static const Type valid[] = {
  286. OBJECT,
  287. NIL
  288. };
  289. valid_types = valid;
  290. } break;
  291. case OBJECT: {
  292. static const Type valid[] = {
  293. NIL
  294. };
  295. valid_types = valid;
  296. } break;
  297. case STRING_NAME: {
  298. static const Type valid[] = {
  299. STRING,
  300. NIL
  301. };
  302. valid_types = valid;
  303. } break;
  304. case NODE_PATH: {
  305. static const Type valid[] = {
  306. STRING,
  307. NIL
  308. };
  309. valid_types = valid;
  310. } break;
  311. case ARRAY: {
  312. static const Type valid[] = {
  313. PACKED_BYTE_ARRAY,
  314. PACKED_INT32_ARRAY,
  315. PACKED_INT64_ARRAY,
  316. PACKED_FLOAT32_ARRAY,
  317. PACKED_FLOAT64_ARRAY,
  318. PACKED_STRING_ARRAY,
  319. PACKED_COLOR_ARRAY,
  320. PACKED_VECTOR2_ARRAY,
  321. PACKED_VECTOR3_ARRAY,
  322. NIL
  323. };
  324. valid_types = valid;
  325. } break;
  326. // arrays
  327. case PACKED_BYTE_ARRAY: {
  328. static const Type valid[] = {
  329. ARRAY,
  330. NIL
  331. };
  332. valid_types = valid;
  333. } break;
  334. case PACKED_INT32_ARRAY: {
  335. static const Type valid[] = {
  336. ARRAY,
  337. NIL
  338. };
  339. valid_types = valid;
  340. } break;
  341. case PACKED_INT64_ARRAY: {
  342. static const Type valid[] = {
  343. ARRAY,
  344. NIL
  345. };
  346. valid_types = valid;
  347. } break;
  348. case PACKED_FLOAT32_ARRAY: {
  349. static const Type valid[] = {
  350. ARRAY,
  351. NIL
  352. };
  353. valid_types = valid;
  354. } break;
  355. case PACKED_FLOAT64_ARRAY: {
  356. static const Type valid[] = {
  357. ARRAY,
  358. NIL
  359. };
  360. valid_types = valid;
  361. } break;
  362. case PACKED_STRING_ARRAY: {
  363. static const Type valid[] = {
  364. ARRAY,
  365. NIL
  366. };
  367. valid_types = valid;
  368. } break;
  369. case PACKED_VECTOR2_ARRAY: {
  370. static const Type valid[] = {
  371. ARRAY,
  372. NIL
  373. };
  374. valid_types = valid;
  375. } break;
  376. case PACKED_VECTOR3_ARRAY: {
  377. static const Type valid[] = {
  378. ARRAY,
  379. NIL
  380. };
  381. valid_types = valid;
  382. } break;
  383. case PACKED_COLOR_ARRAY: {
  384. static const Type valid[] = {
  385. ARRAY,
  386. NIL
  387. };
  388. valid_types = valid;
  389. } break;
  390. default: {
  391. }
  392. }
  393. if (valid_types) {
  394. int i = 0;
  395. while (valid_types[i] != NIL) {
  396. if (p_type_from == valid_types[i]) {
  397. return true;
  398. }
  399. i++;
  400. }
  401. } else if (invalid_types) {
  402. int i = 0;
  403. while (invalid_types[i] != NIL) {
  404. if (p_type_from == invalid_types[i]) {
  405. return false;
  406. }
  407. i++;
  408. }
  409. return true;
  410. }
  411. return false;
  412. }
  413. bool Variant::can_convert_strict(Variant::Type p_type_from, Variant::Type p_type_to) {
  414. if (p_type_from == p_type_to) {
  415. return true;
  416. }
  417. if (p_type_to == NIL && p_type_from != NIL) { //nil can convert to anything
  418. return true;
  419. }
  420. if (p_type_from == NIL) {
  421. return (p_type_to == OBJECT);
  422. }
  423. const Type *valid_types = nullptr;
  424. switch (p_type_to) {
  425. case BOOL: {
  426. static const Type valid[] = {
  427. INT,
  428. FLOAT,
  429. //STRING,
  430. NIL,
  431. };
  432. valid_types = valid;
  433. } break;
  434. case INT: {
  435. static const Type valid[] = {
  436. BOOL,
  437. FLOAT,
  438. //STRING,
  439. NIL,
  440. };
  441. valid_types = valid;
  442. } break;
  443. case FLOAT: {
  444. static const Type valid[] = {
  445. BOOL,
  446. INT,
  447. //STRING,
  448. NIL,
  449. };
  450. valid_types = valid;
  451. } break;
  452. case STRING: {
  453. static const Type valid[] = {
  454. NODE_PATH,
  455. STRING_NAME,
  456. NIL
  457. };
  458. valid_types = valid;
  459. } break;
  460. case VECTOR2: {
  461. static const Type valid[] = {
  462. VECTOR2I,
  463. NIL,
  464. };
  465. valid_types = valid;
  466. } break;
  467. case VECTOR2I: {
  468. static const Type valid[] = {
  469. VECTOR2,
  470. NIL,
  471. };
  472. valid_types = valid;
  473. } break;
  474. case RECT2: {
  475. static const Type valid[] = {
  476. RECT2I,
  477. NIL,
  478. };
  479. valid_types = valid;
  480. } break;
  481. case RECT2I: {
  482. static const Type valid[] = {
  483. RECT2,
  484. NIL,
  485. };
  486. valid_types = valid;
  487. } break;
  488. case TRANSFORM2D: {
  489. static const Type valid[] = {
  490. TRANSFORM3D,
  491. NIL
  492. };
  493. valid_types = valid;
  494. } break;
  495. case VECTOR3: {
  496. static const Type valid[] = {
  497. VECTOR3I,
  498. NIL,
  499. };
  500. valid_types = valid;
  501. } break;
  502. case VECTOR3I: {
  503. static const Type valid[] = {
  504. VECTOR3,
  505. NIL,
  506. };
  507. valid_types = valid;
  508. } break;
  509. case QUATERNION: {
  510. static const Type valid[] = {
  511. BASIS,
  512. NIL
  513. };
  514. valid_types = valid;
  515. } break;
  516. case BASIS: {
  517. static const Type valid[] = {
  518. QUATERNION,
  519. NIL
  520. };
  521. valid_types = valid;
  522. } break;
  523. case TRANSFORM3D: {
  524. static const Type valid[] = {
  525. TRANSFORM2D,
  526. QUATERNION,
  527. BASIS,
  528. NIL
  529. };
  530. valid_types = valid;
  531. } break;
  532. case COLOR: {
  533. static const Type valid[] = {
  534. STRING,
  535. INT,
  536. NIL,
  537. };
  538. valid_types = valid;
  539. } break;
  540. case RID: {
  541. static const Type valid[] = {
  542. OBJECT,
  543. NIL
  544. };
  545. valid_types = valid;
  546. } break;
  547. case OBJECT: {
  548. static const Type valid[] = {
  549. NIL
  550. };
  551. valid_types = valid;
  552. } break;
  553. case STRING_NAME: {
  554. static const Type valid[] = {
  555. STRING,
  556. NIL
  557. };
  558. valid_types = valid;
  559. } break;
  560. case NODE_PATH: {
  561. static const Type valid[] = {
  562. STRING,
  563. NIL
  564. };
  565. valid_types = valid;
  566. } break;
  567. case ARRAY: {
  568. static const Type valid[] = {
  569. PACKED_BYTE_ARRAY,
  570. PACKED_INT32_ARRAY,
  571. PACKED_INT64_ARRAY,
  572. PACKED_FLOAT32_ARRAY,
  573. PACKED_FLOAT64_ARRAY,
  574. PACKED_STRING_ARRAY,
  575. PACKED_COLOR_ARRAY,
  576. PACKED_VECTOR2_ARRAY,
  577. PACKED_VECTOR3_ARRAY,
  578. NIL
  579. };
  580. valid_types = valid;
  581. } break;
  582. // arrays
  583. case PACKED_BYTE_ARRAY: {
  584. static const Type valid[] = {
  585. ARRAY,
  586. NIL
  587. };
  588. valid_types = valid;
  589. } break;
  590. case PACKED_INT32_ARRAY: {
  591. static const Type valid[] = {
  592. ARRAY,
  593. NIL
  594. };
  595. valid_types = valid;
  596. } break;
  597. case PACKED_INT64_ARRAY: {
  598. static const Type valid[] = {
  599. ARRAY,
  600. NIL
  601. };
  602. valid_types = valid;
  603. } break;
  604. case PACKED_FLOAT32_ARRAY: {
  605. static const Type valid[] = {
  606. ARRAY,
  607. NIL
  608. };
  609. valid_types = valid;
  610. } break;
  611. case PACKED_FLOAT64_ARRAY: {
  612. static const Type valid[] = {
  613. ARRAY,
  614. NIL
  615. };
  616. valid_types = valid;
  617. } break;
  618. case PACKED_STRING_ARRAY: {
  619. static const Type valid[] = {
  620. ARRAY,
  621. NIL
  622. };
  623. valid_types = valid;
  624. } break;
  625. case PACKED_VECTOR2_ARRAY: {
  626. static const Type valid[] = {
  627. ARRAY,
  628. NIL
  629. };
  630. valid_types = valid;
  631. } break;
  632. case PACKED_VECTOR3_ARRAY: {
  633. static const Type valid[] = {
  634. ARRAY,
  635. NIL
  636. };
  637. valid_types = valid;
  638. } break;
  639. case PACKED_COLOR_ARRAY: {
  640. static const Type valid[] = {
  641. ARRAY,
  642. NIL
  643. };
  644. valid_types = valid;
  645. } break;
  646. default: {
  647. }
  648. }
  649. if (valid_types) {
  650. int i = 0;
  651. while (valid_types[i] != NIL) {
  652. if (p_type_from == valid_types[i]) {
  653. return true;
  654. }
  655. i++;
  656. }
  657. }
  658. return false;
  659. }
  660. bool Variant::operator==(const Variant &p_variant) const {
  661. return hash_compare(p_variant);
  662. }
  663. bool Variant::operator!=(const Variant &p_variant) const {
  664. // Don't use `!hash_compare(p_variant)` given it makes use of OP_EQUAL
  665. if (type != p_variant.type) { //evaluation of operator== needs to be more strict
  666. return true;
  667. }
  668. bool v;
  669. Variant r;
  670. evaluate(OP_NOT_EQUAL, *this, p_variant, r, v);
  671. return r;
  672. }
  673. bool Variant::operator<(const Variant &p_variant) const {
  674. if (type != p_variant.type) { //if types differ, then order by type first
  675. return type < p_variant.type;
  676. }
  677. bool v;
  678. Variant r;
  679. evaluate(OP_LESS, *this, p_variant, r, v);
  680. return r;
  681. }
  682. bool Variant::is_zero() const {
  683. switch (type) {
  684. case NIL: {
  685. return true;
  686. } break;
  687. // atomic types
  688. case BOOL: {
  689. return !(_data._bool);
  690. } break;
  691. case INT: {
  692. return _data._int == 0;
  693. } break;
  694. case FLOAT: {
  695. return _data._float == 0;
  696. } break;
  697. case STRING: {
  698. return *reinterpret_cast<const String *>(_data._mem) == String();
  699. } break;
  700. // math types
  701. case VECTOR2: {
  702. return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2();
  703. } break;
  704. case VECTOR2I: {
  705. return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i();
  706. } break;
  707. case RECT2: {
  708. return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2();
  709. } break;
  710. case RECT2I: {
  711. return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i();
  712. } break;
  713. case TRANSFORM2D: {
  714. return *_data._transform2d == Transform2D();
  715. } break;
  716. case VECTOR3: {
  717. return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3();
  718. } break;
  719. case VECTOR3I: {
  720. return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i();
  721. } break;
  722. case PLANE: {
  723. return *reinterpret_cast<const Plane *>(_data._mem) == Plane();
  724. } break;
  725. case AABB: {
  726. return *_data._aabb == ::AABB();
  727. } break;
  728. case QUATERNION: {
  729. return *reinterpret_cast<const Quaternion *>(_data._mem) == Quaternion();
  730. } break;
  731. case BASIS: {
  732. return *_data._basis == Basis();
  733. } break;
  734. case TRANSFORM3D: {
  735. return *_data._transform3d == Transform3D();
  736. } break;
  737. // misc types
  738. case COLOR: {
  739. return *reinterpret_cast<const Color *>(_data._mem) == Color();
  740. } break;
  741. case RID: {
  742. return *reinterpret_cast<const ::RID *>(_data._mem) == ::RID();
  743. } break;
  744. case OBJECT: {
  745. return _get_obj().obj == nullptr;
  746. } break;
  747. case CALLABLE: {
  748. return reinterpret_cast<const Callable *>(_data._mem)->is_null();
  749. } break;
  750. case SIGNAL: {
  751. return reinterpret_cast<const Signal *>(_data._mem)->is_null();
  752. } break;
  753. case STRING_NAME: {
  754. return *reinterpret_cast<const StringName *>(_data._mem) != StringName();
  755. } break;
  756. case NODE_PATH: {
  757. return reinterpret_cast<const NodePath *>(_data._mem)->is_empty();
  758. } break;
  759. case DICTIONARY: {
  760. return reinterpret_cast<const Dictionary *>(_data._mem)->is_empty();
  761. } break;
  762. case ARRAY: {
  763. return reinterpret_cast<const Array *>(_data._mem)->is_empty();
  764. } break;
  765. // arrays
  766. case PACKED_BYTE_ARRAY: {
  767. return PackedArrayRef<uint8_t>::get_array(_data.packed_array).size() == 0;
  768. } break;
  769. case PACKED_INT32_ARRAY: {
  770. return PackedArrayRef<int32_t>::get_array(_data.packed_array).size() == 0;
  771. } break;
  772. case PACKED_INT64_ARRAY: {
  773. return PackedArrayRef<int64_t>::get_array(_data.packed_array).size() == 0;
  774. } break;
  775. case PACKED_FLOAT32_ARRAY: {
  776. return PackedArrayRef<float>::get_array(_data.packed_array).size() == 0;
  777. } break;
  778. case PACKED_FLOAT64_ARRAY: {
  779. return PackedArrayRef<double>::get_array(_data.packed_array).size() == 0;
  780. } break;
  781. case PACKED_STRING_ARRAY: {
  782. return PackedArrayRef<String>::get_array(_data.packed_array).size() == 0;
  783. } break;
  784. case PACKED_VECTOR2_ARRAY: {
  785. return PackedArrayRef<Vector2>::get_array(_data.packed_array).size() == 0;
  786. } break;
  787. case PACKED_VECTOR3_ARRAY: {
  788. return PackedArrayRef<Vector3>::get_array(_data.packed_array).size() == 0;
  789. } break;
  790. case PACKED_COLOR_ARRAY: {
  791. return PackedArrayRef<Color>::get_array(_data.packed_array).size() == 0;
  792. } break;
  793. default: {
  794. }
  795. }
  796. return false;
  797. }
  798. bool Variant::is_one() const {
  799. switch (type) {
  800. case NIL: {
  801. return true;
  802. } break;
  803. // atomic types
  804. case BOOL: {
  805. return _data._bool;
  806. } break;
  807. case INT: {
  808. return _data._int == 1;
  809. } break;
  810. case FLOAT: {
  811. return _data._float == 1;
  812. } break;
  813. case VECTOR2: {
  814. return *reinterpret_cast<const Vector2 *>(_data._mem) == Vector2(1, 1);
  815. } break;
  816. case VECTOR2I: {
  817. return *reinterpret_cast<const Vector2i *>(_data._mem) == Vector2i(1, 1);
  818. } break;
  819. case RECT2: {
  820. return *reinterpret_cast<const Rect2 *>(_data._mem) == Rect2(1, 1, 1, 1);
  821. } break;
  822. case RECT2I: {
  823. return *reinterpret_cast<const Rect2i *>(_data._mem) == Rect2i(1, 1, 1, 1);
  824. } break;
  825. case VECTOR3: {
  826. return *reinterpret_cast<const Vector3 *>(_data._mem) == Vector3(1, 1, 1);
  827. } break;
  828. case VECTOR3I: {
  829. return *reinterpret_cast<const Vector3i *>(_data._mem) == Vector3i(1, 1, 1);
  830. } break;
  831. case PLANE: {
  832. return *reinterpret_cast<const Plane *>(_data._mem) == Plane(1, 1, 1, 1);
  833. } break;
  834. case COLOR: {
  835. return *reinterpret_cast<const Color *>(_data._mem) == Color(1, 1, 1, 1);
  836. } break;
  837. default: {
  838. return !is_zero();
  839. }
  840. }
  841. return false;
  842. }
  843. bool Variant::is_null() const {
  844. if (type == OBJECT && _get_obj().obj) {
  845. return false;
  846. } else {
  847. return true;
  848. }
  849. }
  850. void Variant::reference(const Variant &p_variant) {
  851. switch (type) {
  852. case NIL:
  853. case BOOL:
  854. case INT:
  855. case FLOAT:
  856. break;
  857. default:
  858. clear();
  859. }
  860. type = p_variant.type;
  861. switch (p_variant.type) {
  862. case NIL: {
  863. // none
  864. } break;
  865. // atomic types
  866. case BOOL: {
  867. _data._bool = p_variant._data._bool;
  868. } break;
  869. case INT: {
  870. _data._int = p_variant._data._int;
  871. } break;
  872. case FLOAT: {
  873. _data._float = p_variant._data._float;
  874. } break;
  875. case STRING: {
  876. memnew_placement(_data._mem, String(*reinterpret_cast<const String *>(p_variant._data._mem)));
  877. } break;
  878. // math types
  879. case VECTOR2: {
  880. memnew_placement(_data._mem, Vector2(*reinterpret_cast<const Vector2 *>(p_variant._data._mem)));
  881. } break;
  882. case VECTOR2I: {
  883. memnew_placement(_data._mem, Vector2i(*reinterpret_cast<const Vector2i *>(p_variant._data._mem)));
  884. } break;
  885. case RECT2: {
  886. memnew_placement(_data._mem, Rect2(*reinterpret_cast<const Rect2 *>(p_variant._data._mem)));
  887. } break;
  888. case RECT2I: {
  889. memnew_placement(_data._mem, Rect2i(*reinterpret_cast<const Rect2i *>(p_variant._data._mem)));
  890. } break;
  891. case TRANSFORM2D: {
  892. _data._transform2d = memnew(Transform2D(*p_variant._data._transform2d));
  893. } break;
  894. case VECTOR3: {
  895. memnew_placement(_data._mem, Vector3(*reinterpret_cast<const Vector3 *>(p_variant._data._mem)));
  896. } break;
  897. case VECTOR3I: {
  898. memnew_placement(_data._mem, Vector3i(*reinterpret_cast<const Vector3i *>(p_variant._data._mem)));
  899. } break;
  900. case PLANE: {
  901. memnew_placement(_data._mem, Plane(*reinterpret_cast<const Plane *>(p_variant._data._mem)));
  902. } break;
  903. case AABB: {
  904. _data._aabb = memnew(::AABB(*p_variant._data._aabb));
  905. } break;
  906. case QUATERNION: {
  907. memnew_placement(_data._mem, Quaternion(*reinterpret_cast<const Quaternion *>(p_variant._data._mem)));
  908. } break;
  909. case BASIS: {
  910. _data._basis = memnew(Basis(*p_variant._data._basis));
  911. } break;
  912. case TRANSFORM3D: {
  913. _data._transform3d = memnew(Transform3D(*p_variant._data._transform3d));
  914. } break;
  915. // misc types
  916. case COLOR: {
  917. memnew_placement(_data._mem, Color(*reinterpret_cast<const Color *>(p_variant._data._mem)));
  918. } break;
  919. case RID: {
  920. memnew_placement(_data._mem, ::RID(*reinterpret_cast<const ::RID *>(p_variant._data._mem)));
  921. } break;
  922. case OBJECT: {
  923. memnew_placement(_data._mem, ObjData);
  924. if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) {
  925. RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj);
  926. if (!ref_counted->reference()) {
  927. _get_obj().obj = nullptr;
  928. _get_obj().id = ObjectID();
  929. break;
  930. }
  931. }
  932. _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj);
  933. _get_obj().id = p_variant._get_obj().id;
  934. } break;
  935. case CALLABLE: {
  936. memnew_placement(_data._mem, Callable(*reinterpret_cast<const Callable *>(p_variant._data._mem)));
  937. } break;
  938. case SIGNAL: {
  939. memnew_placement(_data._mem, Signal(*reinterpret_cast<const Signal *>(p_variant._data._mem)));
  940. } break;
  941. case STRING_NAME: {
  942. memnew_placement(_data._mem, StringName(*reinterpret_cast<const StringName *>(p_variant._data._mem)));
  943. } break;
  944. case NODE_PATH: {
  945. memnew_placement(_data._mem, NodePath(*reinterpret_cast<const NodePath *>(p_variant._data._mem)));
  946. } break;
  947. case DICTIONARY: {
  948. memnew_placement(_data._mem, Dictionary(*reinterpret_cast<const Dictionary *>(p_variant._data._mem)));
  949. } break;
  950. case ARRAY: {
  951. memnew_placement(_data._mem, Array(*reinterpret_cast<const Array *>(p_variant._data._mem)));
  952. } break;
  953. // arrays
  954. case PACKED_BYTE_ARRAY: {
  955. _data.packed_array = static_cast<PackedArrayRef<uint8_t> *>(p_variant._data.packed_array)->reference();
  956. if (!_data.packed_array) {
  957. _data.packed_array = PackedArrayRef<uint8_t>::create();
  958. }
  959. } break;
  960. case PACKED_INT32_ARRAY: {
  961. _data.packed_array = static_cast<PackedArrayRef<int32_t> *>(p_variant._data.packed_array)->reference();
  962. if (!_data.packed_array) {
  963. _data.packed_array = PackedArrayRef<int32_t>::create();
  964. }
  965. } break;
  966. case PACKED_INT64_ARRAY: {
  967. _data.packed_array = static_cast<PackedArrayRef<int64_t> *>(p_variant._data.packed_array)->reference();
  968. if (!_data.packed_array) {
  969. _data.packed_array = PackedArrayRef<int64_t>::create();
  970. }
  971. } break;
  972. case PACKED_FLOAT32_ARRAY: {
  973. _data.packed_array = static_cast<PackedArrayRef<float> *>(p_variant._data.packed_array)->reference();
  974. if (!_data.packed_array) {
  975. _data.packed_array = PackedArrayRef<float>::create();
  976. }
  977. } break;
  978. case PACKED_FLOAT64_ARRAY: {
  979. _data.packed_array = static_cast<PackedArrayRef<double> *>(p_variant._data.packed_array)->reference();
  980. if (!_data.packed_array) {
  981. _data.packed_array = PackedArrayRef<double>::create();
  982. }
  983. } break;
  984. case PACKED_STRING_ARRAY: {
  985. _data.packed_array = static_cast<PackedArrayRef<String> *>(p_variant._data.packed_array)->reference();
  986. if (!_data.packed_array) {
  987. _data.packed_array = PackedArrayRef<String>::create();
  988. }
  989. } break;
  990. case PACKED_VECTOR2_ARRAY: {
  991. _data.packed_array = static_cast<PackedArrayRef<Vector2> *>(p_variant._data.packed_array)->reference();
  992. if (!_data.packed_array) {
  993. _data.packed_array = PackedArrayRef<Vector2>::create();
  994. }
  995. } break;
  996. case PACKED_VECTOR3_ARRAY: {
  997. _data.packed_array = static_cast<PackedArrayRef<Vector3> *>(p_variant._data.packed_array)->reference();
  998. if (!_data.packed_array) {
  999. _data.packed_array = PackedArrayRef<Vector3>::create();
  1000. }
  1001. } break;
  1002. case PACKED_COLOR_ARRAY: {
  1003. _data.packed_array = static_cast<PackedArrayRef<Color> *>(p_variant._data.packed_array)->reference();
  1004. if (!_data.packed_array) {
  1005. _data.packed_array = PackedArrayRef<Color>::create();
  1006. }
  1007. } break;
  1008. default: {
  1009. }
  1010. }
  1011. }
  1012. void Variant::zero() {
  1013. switch (type) {
  1014. case NIL:
  1015. break;
  1016. case BOOL:
  1017. this->_data._bool = false;
  1018. break;
  1019. case INT:
  1020. this->_data._int = 0;
  1021. break;
  1022. case FLOAT:
  1023. this->_data._float = 0;
  1024. break;
  1025. case VECTOR2:
  1026. *reinterpret_cast<Vector2 *>(this->_data._mem) = Vector2();
  1027. break;
  1028. case VECTOR2I:
  1029. *reinterpret_cast<Vector2i *>(this->_data._mem) = Vector2i();
  1030. break;
  1031. case RECT2:
  1032. *reinterpret_cast<Rect2 *>(this->_data._mem) = Rect2();
  1033. break;
  1034. case RECT2I:
  1035. *reinterpret_cast<Rect2i *>(this->_data._mem) = Rect2i();
  1036. break;
  1037. case VECTOR3:
  1038. *reinterpret_cast<Vector3 *>(this->_data._mem) = Vector3();
  1039. break;
  1040. case VECTOR3I:
  1041. *reinterpret_cast<Vector3i *>(this->_data._mem) = Vector3i();
  1042. break;
  1043. case PLANE:
  1044. *reinterpret_cast<Plane *>(this->_data._mem) = Plane();
  1045. break;
  1046. case QUATERNION:
  1047. *reinterpret_cast<Quaternion *>(this->_data._mem) = Quaternion();
  1048. break;
  1049. case COLOR:
  1050. *reinterpret_cast<Color *>(this->_data._mem) = Color();
  1051. break;
  1052. default:
  1053. this->clear();
  1054. break;
  1055. }
  1056. }
  1057. void Variant::_clear_internal() {
  1058. switch (type) {
  1059. case STRING: {
  1060. reinterpret_cast<String *>(_data._mem)->~String();
  1061. } break;
  1062. /*
  1063. // no point, they don't allocate memory
  1064. VECTOR3,
  1065. PLANE,
  1066. QUATERNION,
  1067. COLOR,
  1068. VECTOR2,
  1069. RECT2
  1070. */
  1071. case TRANSFORM2D: {
  1072. memdelete(_data._transform2d);
  1073. } break;
  1074. case AABB: {
  1075. memdelete(_data._aabb);
  1076. } break;
  1077. case BASIS: {
  1078. memdelete(_data._basis);
  1079. } break;
  1080. case TRANSFORM3D: {
  1081. memdelete(_data._transform3d);
  1082. } break;
  1083. // misc types
  1084. case STRING_NAME: {
  1085. reinterpret_cast<StringName *>(_data._mem)->~StringName();
  1086. } break;
  1087. case NODE_PATH: {
  1088. reinterpret_cast<NodePath *>(_data._mem)->~NodePath();
  1089. } break;
  1090. case OBJECT: {
  1091. if (_get_obj().id.is_ref_counted()) {
  1092. //we are safe that there is a reference here
  1093. RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj);
  1094. if (ref_counted->unreference()) {
  1095. memdelete(ref_counted);
  1096. }
  1097. }
  1098. _get_obj().obj = nullptr;
  1099. _get_obj().id = ObjectID();
  1100. } break;
  1101. case RID: {
  1102. // not much need probably
  1103. // Can't seem to use destructor + scoping operator, so hack.
  1104. typedef ::RID RID_Class;
  1105. reinterpret_cast<RID_Class *>(_data._mem)->~RID_Class();
  1106. } break;
  1107. case CALLABLE: {
  1108. reinterpret_cast<Callable *>(_data._mem)->~Callable();
  1109. } break;
  1110. case SIGNAL: {
  1111. reinterpret_cast<Signal *>(_data._mem)->~Signal();
  1112. } break;
  1113. case DICTIONARY: {
  1114. reinterpret_cast<Dictionary *>(_data._mem)->~Dictionary();
  1115. } break;
  1116. case ARRAY: {
  1117. reinterpret_cast<Array *>(_data._mem)->~Array();
  1118. } break;
  1119. // arrays
  1120. case PACKED_BYTE_ARRAY: {
  1121. PackedArrayRefBase::destroy(_data.packed_array);
  1122. } break;
  1123. case PACKED_INT32_ARRAY: {
  1124. PackedArrayRefBase::destroy(_data.packed_array);
  1125. } break;
  1126. case PACKED_INT64_ARRAY: {
  1127. PackedArrayRefBase::destroy(_data.packed_array);
  1128. } break;
  1129. case PACKED_FLOAT32_ARRAY: {
  1130. PackedArrayRefBase::destroy(_data.packed_array);
  1131. } break;
  1132. case PACKED_FLOAT64_ARRAY: {
  1133. PackedArrayRefBase::destroy(_data.packed_array);
  1134. } break;
  1135. case PACKED_STRING_ARRAY: {
  1136. PackedArrayRefBase::destroy(_data.packed_array);
  1137. } break;
  1138. case PACKED_VECTOR2_ARRAY: {
  1139. PackedArrayRefBase::destroy(_data.packed_array);
  1140. } break;
  1141. case PACKED_VECTOR3_ARRAY: {
  1142. PackedArrayRefBase::destroy(_data.packed_array);
  1143. } break;
  1144. case PACKED_COLOR_ARRAY: {
  1145. PackedArrayRefBase::destroy(_data.packed_array);
  1146. } break;
  1147. default: {
  1148. } /* not needed */
  1149. }
  1150. }
  1151. Variant::operator signed int() const {
  1152. switch (type) {
  1153. case NIL:
  1154. return 0;
  1155. case BOOL:
  1156. return _data._bool ? 1 : 0;
  1157. case INT:
  1158. return _data._int;
  1159. case FLOAT:
  1160. return _data._float;
  1161. case STRING:
  1162. return operator String().to_int();
  1163. default: {
  1164. return 0;
  1165. }
  1166. }
  1167. }
  1168. Variant::operator unsigned int() const {
  1169. switch (type) {
  1170. case NIL:
  1171. return 0;
  1172. case BOOL:
  1173. return _data._bool ? 1 : 0;
  1174. case INT:
  1175. return _data._int;
  1176. case FLOAT:
  1177. return _data._float;
  1178. case STRING:
  1179. return operator String().to_int();
  1180. default: {
  1181. return 0;
  1182. }
  1183. }
  1184. }
  1185. Variant::operator int64_t() const {
  1186. switch (type) {
  1187. case NIL:
  1188. return 0;
  1189. case BOOL:
  1190. return _data._bool ? 1 : 0;
  1191. case INT:
  1192. return _data._int;
  1193. case FLOAT:
  1194. return _data._float;
  1195. case STRING:
  1196. return operator String().to_int();
  1197. default: {
  1198. return 0;
  1199. }
  1200. }
  1201. }
  1202. Variant::operator uint64_t() const {
  1203. switch (type) {
  1204. case NIL:
  1205. return 0;
  1206. case BOOL:
  1207. return _data._bool ? 1 : 0;
  1208. case INT:
  1209. return _data._int;
  1210. case FLOAT:
  1211. return _data._float;
  1212. case STRING:
  1213. return operator String().to_int();
  1214. default: {
  1215. return 0;
  1216. }
  1217. }
  1218. }
  1219. Variant::operator ObjectID() const {
  1220. if (type == INT) {
  1221. return ObjectID(_data._int);
  1222. } else if (type == OBJECT) {
  1223. return _get_obj().id;
  1224. } else {
  1225. return ObjectID();
  1226. }
  1227. }
  1228. #ifdef NEED_LONG_INT
  1229. Variant::operator signed long() const {
  1230. switch (type) {
  1231. case NIL:
  1232. return 0;
  1233. case BOOL:
  1234. return _data._bool ? 1 : 0;
  1235. case INT:
  1236. return _data._int;
  1237. case FLOAT:
  1238. return _data._float;
  1239. case STRING:
  1240. return operator String().to_int();
  1241. default: {
  1242. return 0;
  1243. }
  1244. }
  1245. return 0;
  1246. }
  1247. Variant::operator unsigned long() const {
  1248. switch (type) {
  1249. case NIL:
  1250. return 0;
  1251. case BOOL:
  1252. return _data._bool ? 1 : 0;
  1253. case INT:
  1254. return _data._int;
  1255. case FLOAT:
  1256. return _data._float;
  1257. case STRING:
  1258. return operator String().to_int();
  1259. default: {
  1260. return 0;
  1261. }
  1262. }
  1263. return 0;
  1264. }
  1265. #endif
  1266. Variant::operator signed short() const {
  1267. switch (type) {
  1268. case NIL:
  1269. return 0;
  1270. case BOOL:
  1271. return _data._bool ? 1 : 0;
  1272. case INT:
  1273. return _data._int;
  1274. case FLOAT:
  1275. return _data._float;
  1276. case STRING:
  1277. return operator String().to_int();
  1278. default: {
  1279. return 0;
  1280. }
  1281. }
  1282. }
  1283. Variant::operator unsigned short() const {
  1284. switch (type) {
  1285. case NIL:
  1286. return 0;
  1287. case BOOL:
  1288. return _data._bool ? 1 : 0;
  1289. case INT:
  1290. return _data._int;
  1291. case FLOAT:
  1292. return _data._float;
  1293. case STRING:
  1294. return operator String().to_int();
  1295. default: {
  1296. return 0;
  1297. }
  1298. }
  1299. }
  1300. Variant::operator signed char() const {
  1301. switch (type) {
  1302. case NIL:
  1303. return 0;
  1304. case BOOL:
  1305. return _data._bool ? 1 : 0;
  1306. case INT:
  1307. return _data._int;
  1308. case FLOAT:
  1309. return _data._float;
  1310. case STRING:
  1311. return operator String().to_int();
  1312. default: {
  1313. return 0;
  1314. }
  1315. }
  1316. }
  1317. Variant::operator unsigned char() const {
  1318. switch (type) {
  1319. case NIL:
  1320. return 0;
  1321. case BOOL:
  1322. return _data._bool ? 1 : 0;
  1323. case INT:
  1324. return _data._int;
  1325. case FLOAT:
  1326. return _data._float;
  1327. case STRING:
  1328. return operator String().to_int();
  1329. default: {
  1330. return 0;
  1331. }
  1332. }
  1333. }
  1334. Variant::operator char32_t() const {
  1335. return operator unsigned int();
  1336. }
  1337. Variant::operator float() const {
  1338. switch (type) {
  1339. case NIL:
  1340. return 0;
  1341. case BOOL:
  1342. return _data._bool ? 1.0 : 0.0;
  1343. case INT:
  1344. return (float)_data._int;
  1345. case FLOAT:
  1346. return _data._float;
  1347. case STRING:
  1348. return operator String().to_float();
  1349. default: {
  1350. return 0;
  1351. }
  1352. }
  1353. }
  1354. Variant::operator double() const {
  1355. switch (type) {
  1356. case NIL:
  1357. return 0;
  1358. case BOOL:
  1359. return _data._bool ? 1.0 : 0.0;
  1360. case INT:
  1361. return (double)_data._int;
  1362. case FLOAT:
  1363. return _data._float;
  1364. case STRING:
  1365. return operator String().to_float();
  1366. default: {
  1367. return 0;
  1368. }
  1369. }
  1370. }
  1371. Variant::operator StringName() const {
  1372. if (type == STRING_NAME) {
  1373. return *reinterpret_cast<const StringName *>(_data._mem);
  1374. } else if (type == STRING) {
  1375. return *reinterpret_cast<const String *>(_data._mem);
  1376. }
  1377. return StringName();
  1378. }
  1379. struct _VariantStrPair {
  1380. String key;
  1381. String value;
  1382. bool operator<(const _VariantStrPair &p) const {
  1383. return key < p.key;
  1384. }
  1385. };
  1386. Variant::operator String() const {
  1387. return stringify(0);
  1388. }
  1389. template <class T>
  1390. String stringify_vector(const T &vec, int recursion_count) {
  1391. String str("[");
  1392. for (int i = 0; i < vec.size(); i++) {
  1393. if (i > 0) {
  1394. str += ", ";
  1395. }
  1396. str = str + Variant(vec[i]).stringify(recursion_count);
  1397. }
  1398. str += "]";
  1399. return str;
  1400. }
  1401. String Variant::stringify(int recursion_count) const {
  1402. switch (type) {
  1403. case NIL:
  1404. return "null";
  1405. case BOOL:
  1406. return _data._bool ? "true" : "false";
  1407. case INT:
  1408. return itos(_data._int);
  1409. case FLOAT:
  1410. return rtos(_data._float);
  1411. case STRING:
  1412. return *reinterpret_cast<const String *>(_data._mem);
  1413. case VECTOR2:
  1414. return operator Vector2();
  1415. case VECTOR2I:
  1416. return operator Vector2i();
  1417. case RECT2:
  1418. return operator Rect2();
  1419. case RECT2I:
  1420. return operator Rect2i();
  1421. case TRANSFORM2D:
  1422. return operator Transform2D();
  1423. case VECTOR3:
  1424. return operator Vector3();
  1425. case VECTOR3I:
  1426. return operator Vector3i();
  1427. case PLANE:
  1428. return operator Plane();
  1429. case AABB:
  1430. return operator ::AABB();
  1431. case QUATERNION:
  1432. return operator Quaternion();
  1433. case BASIS:
  1434. return operator Basis();
  1435. case TRANSFORM3D:
  1436. return operator Transform3D();
  1437. case STRING_NAME:
  1438. return operator StringName();
  1439. case NODE_PATH:
  1440. return operator NodePath();
  1441. case COLOR:
  1442. return operator Color();
  1443. case DICTIONARY: {
  1444. const Dictionary &d = *reinterpret_cast<const Dictionary *>(_data._mem);
  1445. if (recursion_count > MAX_RECURSION) {
  1446. ERR_PRINT("Max recursion reached");
  1447. return "{...}";
  1448. }
  1449. String str("{");
  1450. List<Variant> keys;
  1451. d.get_key_list(&keys);
  1452. Vector<_VariantStrPair> pairs;
  1453. recursion_count++;
  1454. for (List<Variant>::Element *E = keys.front(); E; E = E->next()) {
  1455. _VariantStrPair sp;
  1456. sp.key = E->get().stringify(recursion_count);
  1457. sp.value = d[E->get()].stringify(recursion_count);
  1458. pairs.push_back(sp);
  1459. }
  1460. pairs.sort();
  1461. for (int i = 0; i < pairs.size(); i++) {
  1462. if (i > 0) {
  1463. str += ", ";
  1464. }
  1465. str += pairs[i].key + ":" + pairs[i].value;
  1466. }
  1467. str += "}";
  1468. return str;
  1469. } break;
  1470. case PACKED_VECTOR2_ARRAY: {
  1471. return stringify_vector(operator Vector<Vector2>(), recursion_count);
  1472. } break;
  1473. case PACKED_VECTOR3_ARRAY: {
  1474. return stringify_vector(operator Vector<Vector3>(), recursion_count);
  1475. } break;
  1476. case PACKED_COLOR_ARRAY: {
  1477. return stringify_vector(operator Vector<Color>(), recursion_count);
  1478. } break;
  1479. case PACKED_STRING_ARRAY: {
  1480. return stringify_vector(operator Vector<String>(), recursion_count);
  1481. } break;
  1482. case PACKED_BYTE_ARRAY: {
  1483. return stringify_vector(operator Vector<uint8_t>(), recursion_count);
  1484. } break;
  1485. case PACKED_INT32_ARRAY: {
  1486. return stringify_vector(operator Vector<int32_t>(), recursion_count);
  1487. } break;
  1488. case PACKED_INT64_ARRAY: {
  1489. return stringify_vector(operator Vector<int64_t>(), recursion_count);
  1490. } break;
  1491. case PACKED_FLOAT32_ARRAY: {
  1492. return stringify_vector(operator Vector<float>(), recursion_count);
  1493. } break;
  1494. case PACKED_FLOAT64_ARRAY: {
  1495. return stringify_vector(operator Vector<double>(), recursion_count);
  1496. } break;
  1497. case ARRAY: {
  1498. Array arr = operator Array();
  1499. if (recursion_count > MAX_RECURSION) {
  1500. ERR_PRINT("Max recursion reached");
  1501. return "[...]";
  1502. }
  1503. String str = stringify_vector(arr, recursion_count);
  1504. return str;
  1505. } break;
  1506. case OBJECT: {
  1507. if (_get_obj().obj) {
  1508. if (!_get_obj().id.is_ref_counted() && ObjectDB::get_instance(_get_obj().id) == nullptr) {
  1509. return "[Freed Object]";
  1510. }
  1511. return _get_obj().obj->to_string();
  1512. } else {
  1513. return "[Object:null]";
  1514. }
  1515. } break;
  1516. case CALLABLE: {
  1517. const Callable &c = *reinterpret_cast<const Callable *>(_data._mem);
  1518. return c;
  1519. } break;
  1520. case SIGNAL: {
  1521. const Signal &s = *reinterpret_cast<const Signal *>(_data._mem);
  1522. return s;
  1523. } break;
  1524. case RID: {
  1525. const ::RID &s = *reinterpret_cast<const ::RID *>(_data._mem);
  1526. return "RID(" + itos(s.get_id()) + ")";
  1527. } break;
  1528. default: {
  1529. return "[" + get_type_name(type) + "]";
  1530. }
  1531. }
  1532. return "";
  1533. }
  1534. String Variant::to_json_string() const {
  1535. JSON json;
  1536. return json.stringify(*this);
  1537. }
  1538. Variant::operator Vector2() const {
  1539. if (type == VECTOR2) {
  1540. return *reinterpret_cast<const Vector2 *>(_data._mem);
  1541. } else if (type == VECTOR2I) {
  1542. return *reinterpret_cast<const Vector2i *>(_data._mem);
  1543. } else if (type == VECTOR3) {
  1544. return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y);
  1545. } else if (type == VECTOR3I) {
  1546. return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y);
  1547. } else {
  1548. return Vector2();
  1549. }
  1550. }
  1551. Variant::operator Vector2i() const {
  1552. if (type == VECTOR2I) {
  1553. return *reinterpret_cast<const Vector2i *>(_data._mem);
  1554. } else if (type == VECTOR2) {
  1555. return *reinterpret_cast<const Vector2 *>(_data._mem);
  1556. } else if (type == VECTOR3) {
  1557. return Vector2(reinterpret_cast<const Vector3 *>(_data._mem)->x, reinterpret_cast<const Vector3 *>(_data._mem)->y);
  1558. } else if (type == VECTOR3I) {
  1559. return Vector2(reinterpret_cast<const Vector3i *>(_data._mem)->x, reinterpret_cast<const Vector3i *>(_data._mem)->y);
  1560. } else {
  1561. return Vector2i();
  1562. }
  1563. }
  1564. Variant::operator Rect2() const {
  1565. if (type == RECT2) {
  1566. return *reinterpret_cast<const Rect2 *>(_data._mem);
  1567. } else if (type == RECT2I) {
  1568. return *reinterpret_cast<const Rect2i *>(_data._mem);
  1569. } else {
  1570. return Rect2();
  1571. }
  1572. }
  1573. Variant::operator Rect2i() const {
  1574. if (type == RECT2I) {
  1575. return *reinterpret_cast<const Rect2i *>(_data._mem);
  1576. } else if (type == RECT2) {
  1577. return *reinterpret_cast<const Rect2 *>(_data._mem);
  1578. } else {
  1579. return Rect2i();
  1580. }
  1581. }
  1582. Variant::operator Vector3() const {
  1583. if (type == VECTOR3) {
  1584. return *reinterpret_cast<const Vector3 *>(_data._mem);
  1585. } else if (type == VECTOR3I) {
  1586. return *reinterpret_cast<const Vector3i *>(_data._mem);
  1587. } else if (type == VECTOR2) {
  1588. return Vector3(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0);
  1589. } else if (type == VECTOR2I) {
  1590. return Vector3(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0);
  1591. } else {
  1592. return Vector3();
  1593. }
  1594. }
  1595. Variant::operator Vector3i() const {
  1596. if (type == VECTOR3I) {
  1597. return *reinterpret_cast<const Vector3i *>(_data._mem);
  1598. } else if (type == VECTOR3) {
  1599. return *reinterpret_cast<const Vector3 *>(_data._mem);
  1600. } else if (type == VECTOR2) {
  1601. return Vector3i(reinterpret_cast<const Vector2 *>(_data._mem)->x, reinterpret_cast<const Vector2 *>(_data._mem)->y, 0.0);
  1602. } else if (type == VECTOR2I) {
  1603. return Vector3i(reinterpret_cast<const Vector2i *>(_data._mem)->x, reinterpret_cast<const Vector2i *>(_data._mem)->y, 0.0);
  1604. } else {
  1605. return Vector3i();
  1606. }
  1607. }
  1608. Variant::operator Plane() const {
  1609. if (type == PLANE) {
  1610. return *reinterpret_cast<const Plane *>(_data._mem);
  1611. } else {
  1612. return Plane();
  1613. }
  1614. }
  1615. Variant::operator ::AABB() const {
  1616. if (type == AABB) {
  1617. return *_data._aabb;
  1618. } else {
  1619. return ::AABB();
  1620. }
  1621. }
  1622. Variant::operator Basis() const {
  1623. if (type == BASIS) {
  1624. return *_data._basis;
  1625. } else if (type == QUATERNION) {
  1626. return *reinterpret_cast<const Quaternion *>(_data._mem);
  1627. } else if (type == TRANSFORM3D) { // unexposed in Variant::can_convert?
  1628. return _data._transform3d->basis;
  1629. } else {
  1630. return Basis();
  1631. }
  1632. }
  1633. Variant::operator Quaternion() const {
  1634. if (type == QUATERNION) {
  1635. return *reinterpret_cast<const Quaternion *>(_data._mem);
  1636. } else if (type == BASIS) {
  1637. return *_data._basis;
  1638. } else if (type == TRANSFORM3D) {
  1639. return _data._transform3d->basis;
  1640. } else {
  1641. return Quaternion();
  1642. }
  1643. }
  1644. Variant::operator Transform3D() const {
  1645. if (type == TRANSFORM3D) {
  1646. return *_data._transform3d;
  1647. } else if (type == BASIS) {
  1648. return Transform3D(*_data._basis, Vector3());
  1649. } else if (type == QUATERNION) {
  1650. return Transform3D(Basis(*reinterpret_cast<const Quaternion *>(_data._mem)), Vector3());
  1651. } else if (type == TRANSFORM2D) {
  1652. const Transform2D &t = *_data._transform2d;
  1653. Transform3D m;
  1654. m.basis.elements[0][0] = t.elements[0][0];
  1655. m.basis.elements[1][0] = t.elements[0][1];
  1656. m.basis.elements[0][1] = t.elements[1][0];
  1657. m.basis.elements[1][1] = t.elements[1][1];
  1658. m.origin[0] = t.elements[2][0];
  1659. m.origin[1] = t.elements[2][1];
  1660. return m;
  1661. } else {
  1662. return Transform3D();
  1663. }
  1664. }
  1665. Variant::operator Transform2D() const {
  1666. if (type == TRANSFORM2D) {
  1667. return *_data._transform2d;
  1668. } else if (type == TRANSFORM3D) {
  1669. const Transform3D &t = *_data._transform3d;
  1670. Transform2D m;
  1671. m.elements[0][0] = t.basis.elements[0][0];
  1672. m.elements[0][1] = t.basis.elements[1][0];
  1673. m.elements[1][0] = t.basis.elements[0][1];
  1674. m.elements[1][1] = t.basis.elements[1][1];
  1675. m.elements[2][0] = t.origin[0];
  1676. m.elements[2][1] = t.origin[1];
  1677. return m;
  1678. } else {
  1679. return Transform2D();
  1680. }
  1681. }
  1682. Variant::operator Color() const {
  1683. if (type == COLOR) {
  1684. return *reinterpret_cast<const Color *>(_data._mem);
  1685. } else if (type == STRING) {
  1686. return Color(operator String());
  1687. } else if (type == INT) {
  1688. return Color::hex(operator int());
  1689. } else {
  1690. return Color();
  1691. }
  1692. }
  1693. Variant::operator NodePath() const {
  1694. if (type == NODE_PATH) {
  1695. return *reinterpret_cast<const NodePath *>(_data._mem);
  1696. } else if (type == STRING) {
  1697. return NodePath(operator String());
  1698. } else {
  1699. return NodePath();
  1700. }
  1701. }
  1702. Variant::operator ::RID() const {
  1703. if (type == RID) {
  1704. return *reinterpret_cast<const ::RID *>(_data._mem);
  1705. } else if (type == OBJECT && _get_obj().obj == nullptr) {
  1706. return ::RID();
  1707. } else if (type == OBJECT && _get_obj().obj) {
  1708. #ifdef DEBUG_ENABLED
  1709. if (EngineDebugger::is_active()) {
  1710. ERR_FAIL_COND_V_MSG(ObjectDB::get_instance(_get_obj().id) == nullptr, ::RID(), "Invalid pointer (object was freed).");
  1711. }
  1712. #endif
  1713. Callable::CallError ce;
  1714. Variant ret = _get_obj().obj->call(CoreStringNames::get_singleton()->get_rid, nullptr, 0, ce);
  1715. if (ce.error == Callable::CallError::CALL_OK && ret.get_type() == Variant::RID) {
  1716. return ret;
  1717. }
  1718. return ::RID();
  1719. } else {
  1720. return ::RID();
  1721. }
  1722. }
  1723. Variant::operator Object *() const {
  1724. if (type == OBJECT) {
  1725. return _get_obj().obj;
  1726. } else {
  1727. return nullptr;
  1728. }
  1729. }
  1730. Object *Variant::get_validated_object_with_check(bool &r_previously_freed) const {
  1731. if (type == OBJECT) {
  1732. Object *instance = ObjectDB::get_instance(_get_obj().id);
  1733. r_previously_freed = !instance && _get_obj().id != ObjectID();
  1734. return instance;
  1735. } else {
  1736. r_previously_freed = false;
  1737. return nullptr;
  1738. }
  1739. }
  1740. Object *Variant::get_validated_object() const {
  1741. if (type == OBJECT) {
  1742. return ObjectDB::get_instance(_get_obj().id);
  1743. } else {
  1744. return nullptr;
  1745. }
  1746. }
  1747. Variant::operator Node *() const {
  1748. if (type == OBJECT) {
  1749. return Object::cast_to<Node>(_get_obj().obj);
  1750. } else {
  1751. return nullptr;
  1752. }
  1753. }
  1754. Variant::operator Control *() const {
  1755. if (type == OBJECT) {
  1756. return Object::cast_to<Control>(_get_obj().obj);
  1757. } else {
  1758. return nullptr;
  1759. }
  1760. }
  1761. Variant::operator Dictionary() const {
  1762. if (type == DICTIONARY) {
  1763. return *reinterpret_cast<const Dictionary *>(_data._mem);
  1764. } else {
  1765. return Dictionary();
  1766. }
  1767. }
  1768. Variant::operator Callable() const {
  1769. if (type == CALLABLE) {
  1770. return *reinterpret_cast<const Callable *>(_data._mem);
  1771. } else {
  1772. return Callable();
  1773. }
  1774. }
  1775. Variant::operator Signal() const {
  1776. if (type == SIGNAL) {
  1777. return *reinterpret_cast<const Signal *>(_data._mem);
  1778. } else {
  1779. return Signal();
  1780. }
  1781. }
  1782. template <class DA, class SA>
  1783. inline DA _convert_array(const SA &p_array) {
  1784. DA da;
  1785. da.resize(p_array.size());
  1786. for (int i = 0; i < p_array.size(); i++) {
  1787. da.set(i, Variant(p_array.get(i)));
  1788. }
  1789. return da;
  1790. }
  1791. template <class DA>
  1792. inline DA _convert_array_from_variant(const Variant &p_variant) {
  1793. switch (p_variant.get_type()) {
  1794. case Variant::ARRAY: {
  1795. return _convert_array<DA, Array>(p_variant.operator Array());
  1796. }
  1797. case Variant::PACKED_BYTE_ARRAY: {
  1798. return _convert_array<DA, Vector<uint8_t>>(p_variant.operator Vector<uint8_t>());
  1799. }
  1800. case Variant::PACKED_INT32_ARRAY: {
  1801. return _convert_array<DA, Vector<int32_t>>(p_variant.operator Vector<int32_t>());
  1802. }
  1803. case Variant::PACKED_INT64_ARRAY: {
  1804. return _convert_array<DA, Vector<int64_t>>(p_variant.operator Vector<int64_t>());
  1805. }
  1806. case Variant::PACKED_FLOAT32_ARRAY: {
  1807. return _convert_array<DA, Vector<float>>(p_variant.operator Vector<float>());
  1808. }
  1809. case Variant::PACKED_FLOAT64_ARRAY: {
  1810. return _convert_array<DA, Vector<double>>(p_variant.operator Vector<double>());
  1811. }
  1812. case Variant::PACKED_STRING_ARRAY: {
  1813. return _convert_array<DA, Vector<String>>(p_variant.operator Vector<String>());
  1814. }
  1815. case Variant::PACKED_VECTOR2_ARRAY: {
  1816. return _convert_array<DA, Vector<Vector2>>(p_variant.operator Vector<Vector2>());
  1817. }
  1818. case Variant::PACKED_VECTOR3_ARRAY: {
  1819. return _convert_array<DA, Vector<Vector3>>(p_variant.operator Vector<Vector3>());
  1820. }
  1821. case Variant::PACKED_COLOR_ARRAY: {
  1822. return _convert_array<DA, Vector<Color>>(p_variant.operator Vector<Color>());
  1823. }
  1824. default: {
  1825. return DA();
  1826. }
  1827. }
  1828. }
  1829. Variant::operator Array() const {
  1830. if (type == ARRAY) {
  1831. return *reinterpret_cast<const Array *>(_data._mem);
  1832. } else {
  1833. return _convert_array_from_variant<Array>(*this);
  1834. }
  1835. }
  1836. Variant::operator Vector<uint8_t>() const {
  1837. if (type == PACKED_BYTE_ARRAY) {
  1838. return static_cast<PackedArrayRef<uint8_t> *>(_data.packed_array)->array;
  1839. } else {
  1840. return _convert_array_from_variant<Vector<uint8_t>>(*this);
  1841. }
  1842. }
  1843. Variant::operator Vector<int32_t>() const {
  1844. if (type == PACKED_INT32_ARRAY) {
  1845. return static_cast<PackedArrayRef<int32_t> *>(_data.packed_array)->array;
  1846. } else {
  1847. return _convert_array_from_variant<Vector<int>>(*this);
  1848. }
  1849. }
  1850. Variant::operator Vector<int64_t>() const {
  1851. if (type == PACKED_INT64_ARRAY) {
  1852. return static_cast<PackedArrayRef<int64_t> *>(_data.packed_array)->array;
  1853. } else {
  1854. return _convert_array_from_variant<Vector<int64_t>>(*this);
  1855. }
  1856. }
  1857. Variant::operator Vector<float>() const {
  1858. if (type == PACKED_FLOAT32_ARRAY) {
  1859. return static_cast<PackedArrayRef<float> *>(_data.packed_array)->array;
  1860. } else {
  1861. return _convert_array_from_variant<Vector<float>>(*this);
  1862. }
  1863. }
  1864. Variant::operator Vector<double>() const {
  1865. if (type == PACKED_FLOAT64_ARRAY) {
  1866. return static_cast<PackedArrayRef<double> *>(_data.packed_array)->array;
  1867. } else {
  1868. return _convert_array_from_variant<Vector<double>>(*this);
  1869. }
  1870. }
  1871. Variant::operator Vector<String>() const {
  1872. if (type == PACKED_STRING_ARRAY) {
  1873. return static_cast<PackedArrayRef<String> *>(_data.packed_array)->array;
  1874. } else {
  1875. return _convert_array_from_variant<Vector<String>>(*this);
  1876. }
  1877. }
  1878. Variant::operator Vector<Vector3>() const {
  1879. if (type == PACKED_VECTOR3_ARRAY) {
  1880. return static_cast<PackedArrayRef<Vector3> *>(_data.packed_array)->array;
  1881. } else {
  1882. return _convert_array_from_variant<Vector<Vector3>>(*this);
  1883. }
  1884. }
  1885. Variant::operator Vector<Vector2>() const {
  1886. if (type == PACKED_VECTOR2_ARRAY) {
  1887. return static_cast<PackedArrayRef<Vector2> *>(_data.packed_array)->array;
  1888. } else {
  1889. return _convert_array_from_variant<Vector<Vector2>>(*this);
  1890. }
  1891. }
  1892. Variant::operator Vector<Color>() const {
  1893. if (type == PACKED_COLOR_ARRAY) {
  1894. return static_cast<PackedArrayRef<Color> *>(_data.packed_array)->array;
  1895. } else {
  1896. return _convert_array_from_variant<Vector<Color>>(*this);
  1897. }
  1898. }
  1899. /* helpers */
  1900. Variant::operator Vector<::RID>() const {
  1901. Array va = operator Array();
  1902. Vector<::RID> rids;
  1903. rids.resize(va.size());
  1904. for (int i = 0; i < rids.size(); i++) {
  1905. rids.write[i] = va[i];
  1906. }
  1907. return rids;
  1908. }
  1909. Variant::operator Vector<Plane>() const {
  1910. Array va = operator Array();
  1911. Vector<Plane> planes;
  1912. int va_size = va.size();
  1913. if (va_size == 0) {
  1914. return planes;
  1915. }
  1916. planes.resize(va_size);
  1917. Plane *w = planes.ptrw();
  1918. for (int i = 0; i < va_size; i++) {
  1919. w[i] = va[i];
  1920. }
  1921. return planes;
  1922. }
  1923. Variant::operator Vector<Face3>() const {
  1924. Vector<Vector3> va = operator Vector<Vector3>();
  1925. Vector<Face3> faces;
  1926. int va_size = va.size();
  1927. if (va_size == 0) {
  1928. return faces;
  1929. }
  1930. faces.resize(va_size / 3);
  1931. Face3 *w = faces.ptrw();
  1932. const Vector3 *r = va.ptr();
  1933. for (int i = 0; i < va_size; i++) {
  1934. w[i / 3].vertex[i % 3] = r[i];
  1935. }
  1936. return faces;
  1937. }
  1938. Variant::operator Vector<Variant>() const {
  1939. Array va = operator Array();
  1940. Vector<Variant> variants;
  1941. int va_size = va.size();
  1942. if (va_size == 0) {
  1943. return variants;
  1944. }
  1945. variants.resize(va_size);
  1946. Variant *w = variants.ptrw();
  1947. for (int i = 0; i < va_size; i++) {
  1948. w[i] = va[i];
  1949. }
  1950. return variants;
  1951. }
  1952. Variant::operator Vector<StringName>() const {
  1953. Vector<String> from = operator Vector<String>();
  1954. Vector<StringName> to;
  1955. int len = from.size();
  1956. to.resize(len);
  1957. for (int i = 0; i < len; i++) {
  1958. to.write[i] = from[i];
  1959. }
  1960. return to;
  1961. }
  1962. Variant::operator Side() const {
  1963. return (Side) operator int();
  1964. }
  1965. Variant::operator Orientation() const {
  1966. return (Orientation) operator int();
  1967. }
  1968. Variant::operator IPAddress() const {
  1969. if (type == PACKED_FLOAT32_ARRAY || type == PACKED_INT32_ARRAY || type == PACKED_FLOAT64_ARRAY || type == PACKED_INT64_ARRAY || type == PACKED_BYTE_ARRAY) {
  1970. Vector<int> addr = operator Vector<int>();
  1971. if (addr.size() == 4) {
  1972. return IPAddress(addr.get(0), addr.get(1), addr.get(2), addr.get(3));
  1973. }
  1974. }
  1975. return IPAddress(operator String());
  1976. }
  1977. Variant::Variant(bool p_bool) {
  1978. type = BOOL;
  1979. _data._bool = p_bool;
  1980. }
  1981. Variant::Variant(signed int p_int) {
  1982. type = INT;
  1983. _data._int = p_int;
  1984. }
  1985. Variant::Variant(unsigned int p_int) {
  1986. type = INT;
  1987. _data._int = p_int;
  1988. }
  1989. #ifdef NEED_LONG_INT
  1990. Variant::Variant(signed long p_int) {
  1991. type = INT;
  1992. _data._int = p_int;
  1993. }
  1994. Variant::Variant(unsigned long p_int) {
  1995. type = INT;
  1996. _data._int = p_int;
  1997. }
  1998. #endif
  1999. Variant::Variant(int64_t p_int) {
  2000. type = INT;
  2001. _data._int = p_int;
  2002. }
  2003. Variant::Variant(uint64_t p_int) {
  2004. type = INT;
  2005. _data._int = p_int;
  2006. }
  2007. Variant::Variant(signed short p_short) {
  2008. type = INT;
  2009. _data._int = p_short;
  2010. }
  2011. Variant::Variant(unsigned short p_short) {
  2012. type = INT;
  2013. _data._int = p_short;
  2014. }
  2015. Variant::Variant(signed char p_char) {
  2016. type = INT;
  2017. _data._int = p_char;
  2018. }
  2019. Variant::Variant(unsigned char p_char) {
  2020. type = INT;
  2021. _data._int = p_char;
  2022. }
  2023. Variant::Variant(float p_float) {
  2024. type = FLOAT;
  2025. _data._float = p_float;
  2026. }
  2027. Variant::Variant(double p_double) {
  2028. type = FLOAT;
  2029. _data._float = p_double;
  2030. }
  2031. Variant::Variant(const ObjectID &p_id) {
  2032. type = INT;
  2033. _data._int = p_id;
  2034. }
  2035. Variant::Variant(const StringName &p_string) {
  2036. type = STRING_NAME;
  2037. memnew_placement(_data._mem, StringName(p_string));
  2038. }
  2039. Variant::Variant(const String &p_string) {
  2040. type = STRING;
  2041. memnew_placement(_data._mem, String(p_string));
  2042. }
  2043. Variant::Variant(const char *const p_cstring) {
  2044. type = STRING;
  2045. memnew_placement(_data._mem, String((const char *)p_cstring));
  2046. }
  2047. Variant::Variant(const char32_t *p_wstring) {
  2048. type = STRING;
  2049. memnew_placement(_data._mem, String(p_wstring));
  2050. }
  2051. Variant::Variant(const Vector3 &p_vector3) {
  2052. type = VECTOR3;
  2053. memnew_placement(_data._mem, Vector3(p_vector3));
  2054. }
  2055. Variant::Variant(const Vector3i &p_vector3i) {
  2056. type = VECTOR3I;
  2057. memnew_placement(_data._mem, Vector3i(p_vector3i));
  2058. }
  2059. Variant::Variant(const Vector2 &p_vector2) {
  2060. type = VECTOR2;
  2061. memnew_placement(_data._mem, Vector2(p_vector2));
  2062. }
  2063. Variant::Variant(const Vector2i &p_vector2i) {
  2064. type = VECTOR2I;
  2065. memnew_placement(_data._mem, Vector2i(p_vector2i));
  2066. }
  2067. Variant::Variant(const Rect2 &p_rect2) {
  2068. type = RECT2;
  2069. memnew_placement(_data._mem, Rect2(p_rect2));
  2070. }
  2071. Variant::Variant(const Rect2i &p_rect2i) {
  2072. type = RECT2I;
  2073. memnew_placement(_data._mem, Rect2i(p_rect2i));
  2074. }
  2075. Variant::Variant(const Plane &p_plane) {
  2076. type = PLANE;
  2077. memnew_placement(_data._mem, Plane(p_plane));
  2078. }
  2079. Variant::Variant(const ::AABB &p_aabb) {
  2080. type = AABB;
  2081. _data._aabb = memnew(::AABB(p_aabb));
  2082. }
  2083. Variant::Variant(const Basis &p_matrix) {
  2084. type = BASIS;
  2085. _data._basis = memnew(Basis(p_matrix));
  2086. }
  2087. Variant::Variant(const Quaternion &p_quaternion) {
  2088. type = QUATERNION;
  2089. memnew_placement(_data._mem, Quaternion(p_quaternion));
  2090. }
  2091. Variant::Variant(const Transform3D &p_transform) {
  2092. type = TRANSFORM3D;
  2093. _data._transform3d = memnew(Transform3D(p_transform));
  2094. }
  2095. Variant::Variant(const Transform2D &p_transform) {
  2096. type = TRANSFORM2D;
  2097. _data._transform2d = memnew(Transform2D(p_transform));
  2098. }
  2099. Variant::Variant(const Color &p_color) {
  2100. type = COLOR;
  2101. memnew_placement(_data._mem, Color(p_color));
  2102. }
  2103. Variant::Variant(const NodePath &p_node_path) {
  2104. type = NODE_PATH;
  2105. memnew_placement(_data._mem, NodePath(p_node_path));
  2106. }
  2107. Variant::Variant(const ::RID &p_rid) {
  2108. type = RID;
  2109. memnew_placement(_data._mem, ::RID(p_rid));
  2110. }
  2111. Variant::Variant(const Object *p_object) {
  2112. type = OBJECT;
  2113. memnew_placement(_data._mem, ObjData);
  2114. if (p_object) {
  2115. if (p_object->is_ref_counted()) {
  2116. RefCounted *ref_counted = const_cast<RefCounted *>(static_cast<const RefCounted *>(p_object));
  2117. if (!ref_counted->init_ref()) {
  2118. _get_obj().obj = nullptr;
  2119. _get_obj().id = ObjectID();
  2120. return;
  2121. }
  2122. }
  2123. _get_obj().obj = const_cast<Object *>(p_object);
  2124. _get_obj().id = p_object->get_instance_id();
  2125. } else {
  2126. _get_obj().obj = nullptr;
  2127. _get_obj().id = ObjectID();
  2128. }
  2129. }
  2130. Variant::Variant(const Callable &p_callable) {
  2131. type = CALLABLE;
  2132. memnew_placement(_data._mem, Callable(p_callable));
  2133. }
  2134. Variant::Variant(const Signal &p_callable) {
  2135. type = SIGNAL;
  2136. memnew_placement(_data._mem, Signal(p_callable));
  2137. }
  2138. Variant::Variant(const Dictionary &p_dictionary) {
  2139. type = DICTIONARY;
  2140. memnew_placement(_data._mem, Dictionary(p_dictionary));
  2141. }
  2142. Variant::Variant(const Array &p_array) {
  2143. type = ARRAY;
  2144. memnew_placement(_data._mem, Array(p_array));
  2145. }
  2146. Variant::Variant(const Vector<Plane> &p_array) {
  2147. type = ARRAY;
  2148. Array *plane_array = memnew_placement(_data._mem, Array);
  2149. plane_array->resize(p_array.size());
  2150. for (int i = 0; i < p_array.size(); i++) {
  2151. plane_array->operator[](i) = Variant(p_array[i]);
  2152. }
  2153. }
  2154. Variant::Variant(const Vector<::RID> &p_array) {
  2155. type = ARRAY;
  2156. Array *rid_array = memnew_placement(_data._mem, Array);
  2157. rid_array->resize(p_array.size());
  2158. for (int i = 0; i < p_array.size(); i++) {
  2159. rid_array->set(i, Variant(p_array[i]));
  2160. }
  2161. }
  2162. Variant::Variant(const Vector<uint8_t> &p_byte_array) {
  2163. type = PACKED_BYTE_ARRAY;
  2164. _data.packed_array = PackedArrayRef<uint8_t>::create(p_byte_array);
  2165. }
  2166. Variant::Variant(const Vector<int32_t> &p_int32_array) {
  2167. type = PACKED_INT32_ARRAY;
  2168. _data.packed_array = PackedArrayRef<int32_t>::create(p_int32_array);
  2169. }
  2170. Variant::Variant(const Vector<int64_t> &p_int64_array) {
  2171. type = PACKED_INT64_ARRAY;
  2172. _data.packed_array = PackedArrayRef<int64_t>::create(p_int64_array);
  2173. }
  2174. Variant::Variant(const Vector<float> &p_float32_array) {
  2175. type = PACKED_FLOAT32_ARRAY;
  2176. _data.packed_array = PackedArrayRef<float>::create(p_float32_array);
  2177. }
  2178. Variant::Variant(const Vector<double> &p_float64_array) {
  2179. type = PACKED_FLOAT64_ARRAY;
  2180. _data.packed_array = PackedArrayRef<double>::create(p_float64_array);
  2181. }
  2182. Variant::Variant(const Vector<String> &p_string_array) {
  2183. type = PACKED_STRING_ARRAY;
  2184. _data.packed_array = PackedArrayRef<String>::create(p_string_array);
  2185. }
  2186. Variant::Variant(const Vector<Vector3> &p_vector3_array) {
  2187. type = PACKED_VECTOR3_ARRAY;
  2188. _data.packed_array = PackedArrayRef<Vector3>::create(p_vector3_array);
  2189. }
  2190. Variant::Variant(const Vector<Vector2> &p_vector2_array) {
  2191. type = PACKED_VECTOR2_ARRAY;
  2192. _data.packed_array = PackedArrayRef<Vector2>::create(p_vector2_array);
  2193. }
  2194. Variant::Variant(const Vector<Color> &p_color_array) {
  2195. type = PACKED_COLOR_ARRAY;
  2196. _data.packed_array = PackedArrayRef<Color>::create(p_color_array);
  2197. }
  2198. Variant::Variant(const Vector<Face3> &p_face_array) {
  2199. Vector<Vector3> vertices;
  2200. int face_count = p_face_array.size();
  2201. vertices.resize(face_count * 3);
  2202. if (face_count) {
  2203. const Face3 *r = p_face_array.ptr();
  2204. Vector3 *w = vertices.ptrw();
  2205. for (int i = 0; i < face_count; i++) {
  2206. for (int j = 0; j < 3; j++) {
  2207. w[i * 3 + j] = r[i].vertex[j];
  2208. }
  2209. }
  2210. }
  2211. type = NIL;
  2212. *this = vertices;
  2213. }
  2214. /* helpers */
  2215. Variant::Variant(const Vector<Variant> &p_array) {
  2216. type = NIL;
  2217. Array arr;
  2218. arr.resize(p_array.size());
  2219. for (int i = 0; i < p_array.size(); i++) {
  2220. arr[i] = p_array[i];
  2221. }
  2222. *this = arr;
  2223. }
  2224. Variant::Variant(const Vector<StringName> &p_array) {
  2225. type = NIL;
  2226. Vector<String> v;
  2227. int len = p_array.size();
  2228. v.resize(len);
  2229. for (int i = 0; i < len; i++) {
  2230. v.set(i, p_array[i]);
  2231. }
  2232. *this = v;
  2233. }
  2234. void Variant::operator=(const Variant &p_variant) {
  2235. if (unlikely(this == &p_variant)) {
  2236. return;
  2237. }
  2238. if (unlikely(type != p_variant.type)) {
  2239. reference(p_variant);
  2240. return;
  2241. }
  2242. switch (p_variant.type) {
  2243. case NIL: {
  2244. // none
  2245. } break;
  2246. // atomic types
  2247. case BOOL: {
  2248. _data._bool = p_variant._data._bool;
  2249. } break;
  2250. case INT: {
  2251. _data._int = p_variant._data._int;
  2252. } break;
  2253. case FLOAT: {
  2254. _data._float = p_variant._data._float;
  2255. } break;
  2256. case STRING: {
  2257. *reinterpret_cast<String *>(_data._mem) = *reinterpret_cast<const String *>(p_variant._data._mem);
  2258. } break;
  2259. // math types
  2260. case VECTOR2: {
  2261. *reinterpret_cast<Vector2 *>(_data._mem) = *reinterpret_cast<const Vector2 *>(p_variant._data._mem);
  2262. } break;
  2263. case VECTOR2I: {
  2264. *reinterpret_cast<Vector2i *>(_data._mem) = *reinterpret_cast<const Vector2i *>(p_variant._data._mem);
  2265. } break;
  2266. case RECT2: {
  2267. *reinterpret_cast<Rect2 *>(_data._mem) = *reinterpret_cast<const Rect2 *>(p_variant._data._mem);
  2268. } break;
  2269. case RECT2I: {
  2270. *reinterpret_cast<Rect2i *>(_data._mem) = *reinterpret_cast<const Rect2i *>(p_variant._data._mem);
  2271. } break;
  2272. case TRANSFORM2D: {
  2273. *_data._transform2d = *(p_variant._data._transform2d);
  2274. } break;
  2275. case VECTOR3: {
  2276. *reinterpret_cast<Vector3 *>(_data._mem) = *reinterpret_cast<const Vector3 *>(p_variant._data._mem);
  2277. } break;
  2278. case VECTOR3I: {
  2279. *reinterpret_cast<Vector3i *>(_data._mem) = *reinterpret_cast<const Vector3i *>(p_variant._data._mem);
  2280. } break;
  2281. case PLANE: {
  2282. *reinterpret_cast<Plane *>(_data._mem) = *reinterpret_cast<const Plane *>(p_variant._data._mem);
  2283. } break;
  2284. case AABB: {
  2285. *_data._aabb = *(p_variant._data._aabb);
  2286. } break;
  2287. case QUATERNION: {
  2288. *reinterpret_cast<Quaternion *>(_data._mem) = *reinterpret_cast<const Quaternion *>(p_variant._data._mem);
  2289. } break;
  2290. case BASIS: {
  2291. *_data._basis = *(p_variant._data._basis);
  2292. } break;
  2293. case TRANSFORM3D: {
  2294. *_data._transform3d = *(p_variant._data._transform3d);
  2295. } break;
  2296. // misc types
  2297. case COLOR: {
  2298. *reinterpret_cast<Color *>(_data._mem) = *reinterpret_cast<const Color *>(p_variant._data._mem);
  2299. } break;
  2300. case RID: {
  2301. *reinterpret_cast<::RID *>(_data._mem) = *reinterpret_cast<const ::RID *>(p_variant._data._mem);
  2302. } break;
  2303. case OBJECT: {
  2304. if (_get_obj().id.is_ref_counted()) {
  2305. //we are safe that there is a reference here
  2306. RefCounted *ref_counted = static_cast<RefCounted *>(_get_obj().obj);
  2307. if (ref_counted->unreference()) {
  2308. memdelete(ref_counted);
  2309. }
  2310. }
  2311. if (p_variant._get_obj().obj && p_variant._get_obj().id.is_ref_counted()) {
  2312. RefCounted *ref_counted = static_cast<RefCounted *>(p_variant._get_obj().obj);
  2313. if (!ref_counted->reference()) {
  2314. _get_obj().obj = nullptr;
  2315. _get_obj().id = ObjectID();
  2316. break;
  2317. }
  2318. }
  2319. _get_obj().obj = const_cast<Object *>(p_variant._get_obj().obj);
  2320. _get_obj().id = p_variant._get_obj().id;
  2321. } break;
  2322. case CALLABLE: {
  2323. *reinterpret_cast<Callable *>(_data._mem) = *reinterpret_cast<const Callable *>(p_variant._data._mem);
  2324. } break;
  2325. case SIGNAL: {
  2326. *reinterpret_cast<Signal *>(_data._mem) = *reinterpret_cast<const Signal *>(p_variant._data._mem);
  2327. } break;
  2328. case STRING_NAME: {
  2329. *reinterpret_cast<StringName *>(_data._mem) = *reinterpret_cast<const StringName *>(p_variant._data._mem);
  2330. } break;
  2331. case NODE_PATH: {
  2332. *reinterpret_cast<NodePath *>(_data._mem) = *reinterpret_cast<const NodePath *>(p_variant._data._mem);
  2333. } break;
  2334. case DICTIONARY: {
  2335. *reinterpret_cast<Dictionary *>(_data._mem) = *reinterpret_cast<const Dictionary *>(p_variant._data._mem);
  2336. } break;
  2337. case ARRAY: {
  2338. *reinterpret_cast<Array *>(_data._mem) = *reinterpret_cast<const Array *>(p_variant._data._mem);
  2339. } break;
  2340. // arrays
  2341. case PACKED_BYTE_ARRAY: {
  2342. _data.packed_array = PackedArrayRef<uint8_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2343. } break;
  2344. case PACKED_INT32_ARRAY: {
  2345. _data.packed_array = PackedArrayRef<int32_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2346. } break;
  2347. case PACKED_INT64_ARRAY: {
  2348. _data.packed_array = PackedArrayRef<int64_t>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2349. } break;
  2350. case PACKED_FLOAT32_ARRAY: {
  2351. _data.packed_array = PackedArrayRef<float>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2352. } break;
  2353. case PACKED_FLOAT64_ARRAY: {
  2354. _data.packed_array = PackedArrayRef<double>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2355. } break;
  2356. case PACKED_STRING_ARRAY: {
  2357. _data.packed_array = PackedArrayRef<String>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2358. } break;
  2359. case PACKED_VECTOR2_ARRAY: {
  2360. _data.packed_array = PackedArrayRef<Vector2>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2361. } break;
  2362. case PACKED_VECTOR3_ARRAY: {
  2363. _data.packed_array = PackedArrayRef<Vector3>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2364. } break;
  2365. case PACKED_COLOR_ARRAY: {
  2366. _data.packed_array = PackedArrayRef<Color>::reference_from(_data.packed_array, p_variant._data.packed_array);
  2367. } break;
  2368. default: {
  2369. }
  2370. }
  2371. }
  2372. Variant::Variant(const IPAddress &p_address) {
  2373. type = STRING;
  2374. memnew_placement(_data._mem, String(p_address));
  2375. }
  2376. Variant::Variant(const Variant &p_variant) {
  2377. reference(p_variant);
  2378. }
  2379. uint32_t Variant::hash() const {
  2380. return recursive_hash(0);
  2381. }
  2382. uint32_t Variant::recursive_hash(int recursion_count) const {
  2383. switch (type) {
  2384. case NIL: {
  2385. return 0;
  2386. } break;
  2387. case BOOL: {
  2388. return _data._bool ? 1 : 0;
  2389. } break;
  2390. case INT: {
  2391. return hash_one_uint64((uint64_t)_data._int);
  2392. } break;
  2393. case FLOAT: {
  2394. return hash_djb2_one_float(_data._float);
  2395. } break;
  2396. case STRING: {
  2397. return reinterpret_cast<const String *>(_data._mem)->hash();
  2398. } break;
  2399. // math types
  2400. case VECTOR2: {
  2401. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->x);
  2402. return hash_djb2_one_float(reinterpret_cast<const Vector2 *>(_data._mem)->y, hash);
  2403. } break;
  2404. case VECTOR2I: {
  2405. uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector2i *>(_data._mem)->x);
  2406. return hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector2i *>(_data._mem)->y, hash);
  2407. } break;
  2408. case RECT2: {
  2409. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.x);
  2410. hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->position.y, hash);
  2411. hash = hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.x, hash);
  2412. return hash_djb2_one_float(reinterpret_cast<const Rect2 *>(_data._mem)->size.y, hash);
  2413. } break;
  2414. case RECT2I: {
  2415. uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->position.x);
  2416. hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->position.y, hash);
  2417. hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->size.x, hash);
  2418. return hash_djb2_one_32((uint32_t) reinterpret_cast<const Rect2i *>(_data._mem)->size.y, hash);
  2419. } break;
  2420. case TRANSFORM2D: {
  2421. uint32_t hash = 5831;
  2422. for (int i = 0; i < 3; i++) {
  2423. for (int j = 0; j < 2; j++) {
  2424. hash = hash_djb2_one_float(_data._transform2d->elements[i][j], hash);
  2425. }
  2426. }
  2427. return hash;
  2428. } break;
  2429. case VECTOR3: {
  2430. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->x);
  2431. hash = hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->y, hash);
  2432. return hash_djb2_one_float(reinterpret_cast<const Vector3 *>(_data._mem)->z, hash);
  2433. } break;
  2434. case VECTOR3I: {
  2435. uint32_t hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->x);
  2436. hash = hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->y, hash);
  2437. return hash_djb2_one_32((uint32_t) reinterpret_cast<const Vector3i *>(_data._mem)->z, hash);
  2438. } break;
  2439. case PLANE: {
  2440. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.x);
  2441. hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.y, hash);
  2442. hash = hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->normal.z, hash);
  2443. return hash_djb2_one_float(reinterpret_cast<const Plane *>(_data._mem)->d, hash);
  2444. } break;
  2445. case AABB: {
  2446. uint32_t hash = 5831;
  2447. for (int i = 0; i < 3; i++) {
  2448. hash = hash_djb2_one_float(_data._aabb->position[i], hash);
  2449. hash = hash_djb2_one_float(_data._aabb->size[i], hash);
  2450. }
  2451. return hash;
  2452. } break;
  2453. case QUATERNION: {
  2454. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->x);
  2455. hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->y, hash);
  2456. hash = hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->z, hash);
  2457. return hash_djb2_one_float(reinterpret_cast<const Quaternion *>(_data._mem)->w, hash);
  2458. } break;
  2459. case BASIS: {
  2460. uint32_t hash = 5831;
  2461. for (int i = 0; i < 3; i++) {
  2462. for (int j = 0; j < 3; j++) {
  2463. hash = hash_djb2_one_float(_data._basis->elements[i][j], hash);
  2464. }
  2465. }
  2466. return hash;
  2467. } break;
  2468. case TRANSFORM3D: {
  2469. uint32_t hash = 5831;
  2470. for (int i = 0; i < 3; i++) {
  2471. for (int j = 0; j < 3; j++) {
  2472. hash = hash_djb2_one_float(_data._transform3d->basis.elements[i][j], hash);
  2473. }
  2474. hash = hash_djb2_one_float(_data._transform3d->origin[i], hash);
  2475. }
  2476. return hash;
  2477. } break;
  2478. // misc types
  2479. case COLOR: {
  2480. uint32_t hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->r);
  2481. hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->g, hash);
  2482. hash = hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->b, hash);
  2483. return hash_djb2_one_float(reinterpret_cast<const Color *>(_data._mem)->a, hash);
  2484. } break;
  2485. case RID: {
  2486. return hash_djb2_one_64(reinterpret_cast<const ::RID *>(_data._mem)->get_id());
  2487. } break;
  2488. case OBJECT: {
  2489. return hash_djb2_one_64(make_uint64_t(_get_obj().obj));
  2490. } break;
  2491. case STRING_NAME: {
  2492. return reinterpret_cast<const StringName *>(_data._mem)->hash();
  2493. } break;
  2494. case NODE_PATH: {
  2495. return reinterpret_cast<const NodePath *>(_data._mem)->hash();
  2496. } break;
  2497. case DICTIONARY: {
  2498. return reinterpret_cast<const Dictionary *>(_data._mem)->recursive_hash(recursion_count);
  2499. } break;
  2500. case CALLABLE: {
  2501. return reinterpret_cast<const Callable *>(_data._mem)->hash();
  2502. } break;
  2503. case SIGNAL: {
  2504. const Signal &s = *reinterpret_cast<const Signal *>(_data._mem);
  2505. uint32_t hash = s.get_name().hash();
  2506. return hash_djb2_one_64(s.get_object_id(), hash);
  2507. } break;
  2508. case ARRAY: {
  2509. const Array &arr = *reinterpret_cast<const Array *>(_data._mem);
  2510. return arr.recursive_hash(recursion_count);
  2511. } break;
  2512. case PACKED_BYTE_ARRAY: {
  2513. const Vector<uint8_t> &arr = PackedArrayRef<uint8_t>::get_array(_data.packed_array);
  2514. int len = arr.size();
  2515. if (likely(len)) {
  2516. const uint8_t *r = arr.ptr();
  2517. return hash_djb2_buffer((uint8_t *)&r[0], len);
  2518. } else {
  2519. return hash_djb2_one_64(0);
  2520. }
  2521. } break;
  2522. case PACKED_INT32_ARRAY: {
  2523. const Vector<int32_t> &arr = PackedArrayRef<int32_t>::get_array(_data.packed_array);
  2524. int len = arr.size();
  2525. if (likely(len)) {
  2526. const int32_t *r = arr.ptr();
  2527. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int32_t));
  2528. } else {
  2529. return hash_djb2_one_64(0);
  2530. }
  2531. } break;
  2532. case PACKED_INT64_ARRAY: {
  2533. const Vector<int64_t> &arr = PackedArrayRef<int64_t>::get_array(_data.packed_array);
  2534. int len = arr.size();
  2535. if (likely(len)) {
  2536. const int64_t *r = arr.ptr();
  2537. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(int64_t));
  2538. } else {
  2539. return hash_djb2_one_64(0);
  2540. }
  2541. } break;
  2542. case PACKED_FLOAT32_ARRAY: {
  2543. const Vector<float> &arr = PackedArrayRef<float>::get_array(_data.packed_array);
  2544. int len = arr.size();
  2545. if (likely(len)) {
  2546. const float *r = arr.ptr();
  2547. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(float));
  2548. } else {
  2549. return hash_djb2_one_float(0.0);
  2550. }
  2551. } break;
  2552. case PACKED_FLOAT64_ARRAY: {
  2553. const Vector<double> &arr = PackedArrayRef<double>::get_array(_data.packed_array);
  2554. int len = arr.size();
  2555. if (likely(len)) {
  2556. const double *r = arr.ptr();
  2557. return hash_djb2_buffer((uint8_t *)&r[0], len * sizeof(double));
  2558. } else {
  2559. return hash_djb2_one_float(0.0);
  2560. }
  2561. } break;
  2562. case PACKED_STRING_ARRAY: {
  2563. uint32_t hash = 5831;
  2564. const Vector<String> &arr = PackedArrayRef<String>::get_array(_data.packed_array);
  2565. int len = arr.size();
  2566. if (likely(len)) {
  2567. const String *r = arr.ptr();
  2568. for (int i = 0; i < len; i++) {
  2569. hash = hash_djb2_one_32(r[i].hash(), hash);
  2570. }
  2571. }
  2572. return hash;
  2573. } break;
  2574. case PACKED_VECTOR2_ARRAY: {
  2575. uint32_t hash = 5831;
  2576. const Vector<Vector2> &arr = PackedArrayRef<Vector2>::get_array(_data.packed_array);
  2577. int len = arr.size();
  2578. if (likely(len)) {
  2579. const Vector2 *r = arr.ptr();
  2580. for (int i = 0; i < len; i++) {
  2581. hash = hash_djb2_one_float(r[i].x, hash);
  2582. hash = hash_djb2_one_float(r[i].y, hash);
  2583. }
  2584. }
  2585. return hash;
  2586. } break;
  2587. case PACKED_VECTOR3_ARRAY: {
  2588. uint32_t hash = 5831;
  2589. const Vector<Vector3> &arr = PackedArrayRef<Vector3>::get_array(_data.packed_array);
  2590. int len = arr.size();
  2591. if (likely(len)) {
  2592. const Vector3 *r = arr.ptr();
  2593. for (int i = 0; i < len; i++) {
  2594. hash = hash_djb2_one_float(r[i].x, hash);
  2595. hash = hash_djb2_one_float(r[i].y, hash);
  2596. hash = hash_djb2_one_float(r[i].z, hash);
  2597. }
  2598. }
  2599. return hash;
  2600. } break;
  2601. case PACKED_COLOR_ARRAY: {
  2602. uint32_t hash = 5831;
  2603. const Vector<Color> &arr = PackedArrayRef<Color>::get_array(_data.packed_array);
  2604. int len = arr.size();
  2605. if (likely(len)) {
  2606. const Color *r = arr.ptr();
  2607. for (int i = 0; i < len; i++) {
  2608. hash = hash_djb2_one_float(r[i].r, hash);
  2609. hash = hash_djb2_one_float(r[i].g, hash);
  2610. hash = hash_djb2_one_float(r[i].b, hash);
  2611. hash = hash_djb2_one_float(r[i].a, hash);
  2612. }
  2613. }
  2614. return hash;
  2615. } break;
  2616. default: {
  2617. }
  2618. }
  2619. return 0;
  2620. }
  2621. #define hash_compare_scalar(p_lhs, p_rhs) \
  2622. ((p_lhs) == (p_rhs)) || (Math::is_nan(p_lhs) && Math::is_nan(p_rhs))
  2623. #define hash_compare_vector2(p_lhs, p_rhs) \
  2624. (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
  2625. (hash_compare_scalar((p_lhs).y, (p_rhs).y))
  2626. #define hash_compare_vector3(p_lhs, p_rhs) \
  2627. (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
  2628. (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \
  2629. (hash_compare_scalar((p_lhs).z, (p_rhs).z))
  2630. #define hash_compare_quaternion(p_lhs, p_rhs) \
  2631. (hash_compare_scalar((p_lhs).x, (p_rhs).x)) && \
  2632. (hash_compare_scalar((p_lhs).y, (p_rhs).y)) && \
  2633. (hash_compare_scalar((p_lhs).z, (p_rhs).z)) && \
  2634. (hash_compare_scalar((p_lhs).w, (p_rhs).w))
  2635. #define hash_compare_color(p_lhs, p_rhs) \
  2636. (hash_compare_scalar((p_lhs).r, (p_rhs).r)) && \
  2637. (hash_compare_scalar((p_lhs).g, (p_rhs).g)) && \
  2638. (hash_compare_scalar((p_lhs).b, (p_rhs).b)) && \
  2639. (hash_compare_scalar((p_lhs).a, (p_rhs).a))
  2640. #define hash_compare_packed_array(p_lhs, p_rhs, p_type, p_compare_func) \
  2641. const Vector<p_type> &l = PackedArrayRef<p_type>::get_array(p_lhs); \
  2642. const Vector<p_type> &r = PackedArrayRef<p_type>::get_array(p_rhs); \
  2643. \
  2644. if (l.size() != r.size()) \
  2645. return false; \
  2646. \
  2647. const p_type *lr = l.ptr(); \
  2648. const p_type *rr = r.ptr(); \
  2649. \
  2650. for (int i = 0; i < l.size(); ++i) { \
  2651. if (!p_compare_func((lr[i]), (rr[i]))) \
  2652. return false; \
  2653. } \
  2654. \
  2655. return true
  2656. bool Variant::hash_compare(const Variant &p_variant, int recursion_count) const {
  2657. if (type != p_variant.type) {
  2658. return false;
  2659. }
  2660. switch (type) {
  2661. case INT: {
  2662. return _data._int == p_variant._data._int;
  2663. } break;
  2664. case FLOAT: {
  2665. return hash_compare_scalar(_data._float, p_variant._data._float);
  2666. } break;
  2667. case STRING: {
  2668. return *reinterpret_cast<const String *>(_data._mem) == *reinterpret_cast<const String *>(p_variant._data._mem);
  2669. } break;
  2670. case VECTOR2: {
  2671. const Vector2 *l = reinterpret_cast<const Vector2 *>(_data._mem);
  2672. const Vector2 *r = reinterpret_cast<const Vector2 *>(p_variant._data._mem);
  2673. return hash_compare_vector2(*l, *r);
  2674. } break;
  2675. case VECTOR2I: {
  2676. const Vector2i *l = reinterpret_cast<const Vector2i *>(_data._mem);
  2677. const Vector2i *r = reinterpret_cast<const Vector2i *>(p_variant._data._mem);
  2678. return *l == *r;
  2679. } break;
  2680. case RECT2: {
  2681. const Rect2 *l = reinterpret_cast<const Rect2 *>(_data._mem);
  2682. const Rect2 *r = reinterpret_cast<const Rect2 *>(p_variant._data._mem);
  2683. return (hash_compare_vector2(l->position, r->position)) &&
  2684. (hash_compare_vector2(l->size, r->size));
  2685. } break;
  2686. case RECT2I: {
  2687. const Rect2i *l = reinterpret_cast<const Rect2i *>(_data._mem);
  2688. const Rect2i *r = reinterpret_cast<const Rect2i *>(p_variant._data._mem);
  2689. return *l == *r;
  2690. } break;
  2691. case TRANSFORM2D: {
  2692. Transform2D *l = _data._transform2d;
  2693. Transform2D *r = p_variant._data._transform2d;
  2694. for (int i = 0; i < 3; i++) {
  2695. if (!(hash_compare_vector2(l->elements[i], r->elements[i]))) {
  2696. return false;
  2697. }
  2698. }
  2699. return true;
  2700. } break;
  2701. case VECTOR3: {
  2702. const Vector3 *l = reinterpret_cast<const Vector3 *>(_data._mem);
  2703. const Vector3 *r = reinterpret_cast<const Vector3 *>(p_variant._data._mem);
  2704. return hash_compare_vector3(*l, *r);
  2705. } break;
  2706. case VECTOR3I: {
  2707. const Vector3i *l = reinterpret_cast<const Vector3i *>(_data._mem);
  2708. const Vector3i *r = reinterpret_cast<const Vector3i *>(p_variant._data._mem);
  2709. return *l == *r;
  2710. } break;
  2711. case PLANE: {
  2712. const Plane *l = reinterpret_cast<const Plane *>(_data._mem);
  2713. const Plane *r = reinterpret_cast<const Plane *>(p_variant._data._mem);
  2714. return (hash_compare_vector3(l->normal, r->normal)) &&
  2715. (hash_compare_scalar(l->d, r->d));
  2716. } break;
  2717. case AABB: {
  2718. const ::AABB *l = _data._aabb;
  2719. const ::AABB *r = p_variant._data._aabb;
  2720. return (hash_compare_vector3(l->position, r->position) &&
  2721. (hash_compare_vector3(l->size, r->size)));
  2722. } break;
  2723. case QUATERNION: {
  2724. const Quaternion *l = reinterpret_cast<const Quaternion *>(_data._mem);
  2725. const Quaternion *r = reinterpret_cast<const Quaternion *>(p_variant._data._mem);
  2726. return hash_compare_quaternion(*l, *r);
  2727. } break;
  2728. case BASIS: {
  2729. const Basis *l = _data._basis;
  2730. const Basis *r = p_variant._data._basis;
  2731. for (int i = 0; i < 3; i++) {
  2732. if (!(hash_compare_vector3(l->elements[i], r->elements[i]))) {
  2733. return false;
  2734. }
  2735. }
  2736. return true;
  2737. } break;
  2738. case TRANSFORM3D: {
  2739. const Transform3D *l = _data._transform3d;
  2740. const Transform3D *r = p_variant._data._transform3d;
  2741. for (int i = 0; i < 3; i++) {
  2742. if (!(hash_compare_vector3(l->basis.elements[i], r->basis.elements[i]))) {
  2743. return false;
  2744. }
  2745. }
  2746. return hash_compare_vector3(l->origin, r->origin);
  2747. } break;
  2748. case COLOR: {
  2749. const Color *l = reinterpret_cast<const Color *>(_data._mem);
  2750. const Color *r = reinterpret_cast<const Color *>(p_variant._data._mem);
  2751. return hash_compare_color(*l, *r);
  2752. } break;
  2753. case ARRAY: {
  2754. const Array &l = *(reinterpret_cast<const Array *>(_data._mem));
  2755. const Array &r = *(reinterpret_cast<const Array *>(p_variant._data._mem));
  2756. if (!l.recursive_equal(r, recursion_count + 1)) {
  2757. return false;
  2758. }
  2759. return true;
  2760. } break;
  2761. case DICTIONARY: {
  2762. const Dictionary &l = *(reinterpret_cast<const Dictionary *>(_data._mem));
  2763. const Dictionary &r = *(reinterpret_cast<const Dictionary *>(p_variant._data._mem));
  2764. if (!l.recursive_equal(r, recursion_count + 1)) {
  2765. return false;
  2766. }
  2767. return true;
  2768. } break;
  2769. // This is for floating point comparisons only.
  2770. case PACKED_FLOAT32_ARRAY: {
  2771. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, float, hash_compare_scalar);
  2772. } break;
  2773. case PACKED_FLOAT64_ARRAY: {
  2774. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, double, hash_compare_scalar);
  2775. } break;
  2776. case PACKED_VECTOR2_ARRAY: {
  2777. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector2, hash_compare_vector2);
  2778. } break;
  2779. case PACKED_VECTOR3_ARRAY: {
  2780. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Vector3, hash_compare_vector3);
  2781. } break;
  2782. case PACKED_COLOR_ARRAY: {
  2783. hash_compare_packed_array(_data.packed_array, p_variant._data.packed_array, Color, hash_compare_color);
  2784. } break;
  2785. default:
  2786. bool v;
  2787. Variant r;
  2788. evaluate(OP_EQUAL, *this, p_variant, r, v);
  2789. return r;
  2790. }
  2791. return false;
  2792. }
  2793. bool Variant::is_ref() const {
  2794. return type == OBJECT && _get_obj().id.is_ref_counted();
  2795. }
  2796. Vector<Variant> varray() {
  2797. return Vector<Variant>();
  2798. }
  2799. Vector<Variant> varray(const Variant &p_arg1) {
  2800. Vector<Variant> v;
  2801. v.push_back(p_arg1);
  2802. return v;
  2803. }
  2804. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2) {
  2805. Vector<Variant> v;
  2806. v.push_back(p_arg1);
  2807. v.push_back(p_arg2);
  2808. return v;
  2809. }
  2810. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3) {
  2811. Vector<Variant> v;
  2812. v.push_back(p_arg1);
  2813. v.push_back(p_arg2);
  2814. v.push_back(p_arg3);
  2815. return v;
  2816. }
  2817. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4) {
  2818. Vector<Variant> v;
  2819. v.push_back(p_arg1);
  2820. v.push_back(p_arg2);
  2821. v.push_back(p_arg3);
  2822. v.push_back(p_arg4);
  2823. return v;
  2824. }
  2825. Vector<Variant> varray(const Variant &p_arg1, const Variant &p_arg2, const Variant &p_arg3, const Variant &p_arg4, const Variant &p_arg5) {
  2826. Vector<Variant> v;
  2827. v.push_back(p_arg1);
  2828. v.push_back(p_arg2);
  2829. v.push_back(p_arg3);
  2830. v.push_back(p_arg4);
  2831. v.push_back(p_arg5);
  2832. return v;
  2833. }
  2834. void Variant::static_assign(const Variant &p_variant) {
  2835. }
  2836. bool Variant::is_shared() const {
  2837. switch (type) {
  2838. case OBJECT:
  2839. return true;
  2840. case ARRAY:
  2841. return true;
  2842. case DICTIONARY:
  2843. return true;
  2844. default: {
  2845. }
  2846. }
  2847. return false;
  2848. }
  2849. Variant Variant::call(const StringName &p_method, VARIANT_ARG_DECLARE) {
  2850. VARIANT_ARGPTRS;
  2851. int argc = 0;
  2852. for (int i = 0; i < VARIANT_ARG_MAX; i++) {
  2853. if (argptr[i]->get_type() == Variant::NIL) {
  2854. break;
  2855. }
  2856. argc++;
  2857. }
  2858. Callable::CallError error;
  2859. Variant ret;
  2860. call(p_method, argptr, argc, ret, error);
  2861. switch (error.error) {
  2862. case Callable::CallError::CALL_ERROR_INVALID_ARGUMENT: {
  2863. String err = "Invalid type for argument #" + itos(error.argument) + ", expected '" + Variant::get_type_name(Variant::Type(error.expected)) + "'.";
  2864. ERR_PRINT(err.utf8().get_data());
  2865. } break;
  2866. case Callable::CallError::CALL_ERROR_INVALID_METHOD: {
  2867. String err = "Invalid method '" + p_method + "' for type '" + Variant::get_type_name(type) + "'.";
  2868. ERR_PRINT(err.utf8().get_data());
  2869. } break;
  2870. case Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS: {
  2871. String err = "Too many arguments for method '" + p_method + "'";
  2872. ERR_PRINT(err.utf8().get_data());
  2873. } break;
  2874. default: {
  2875. }
  2876. }
  2877. return ret;
  2878. }
  2879. void Variant::construct_from_string(const String &p_string, Variant &r_value, ObjectConstruct p_obj_construct, void *p_construct_ud) {
  2880. r_value = Variant();
  2881. }
  2882. String Variant::get_construct_string() const {
  2883. String vars;
  2884. VariantWriter::write_to_string(*this, vars);
  2885. return vars;
  2886. }
  2887. String Variant::get_call_error_text(const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  2888. String err_text;
  2889. if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) {
  2890. int errorarg = ce.argument;
  2891. if (p_argptrs) {
  2892. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2893. } else {
  2894. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2895. }
  2896. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
  2897. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2898. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
  2899. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2900. } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) {
  2901. err_text = "Method not found.";
  2902. } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
  2903. err_text = "Instance is null";
  2904. } else if (ce.error == Callable::CallError::CALL_OK) {
  2905. return "Call OK";
  2906. }
  2907. return "'" + String(p_method) + "': " + err_text;
  2908. }
  2909. String Variant::get_call_error_text(Object *p_base, const StringName &p_method, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  2910. String err_text;
  2911. if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) {
  2912. int errorarg = ce.argument;
  2913. if (p_argptrs) {
  2914. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2915. } else {
  2916. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2917. }
  2918. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
  2919. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2920. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
  2921. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2922. } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) {
  2923. err_text = "Method not found.";
  2924. } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
  2925. err_text = "Instance is null";
  2926. } else if (ce.error == Callable::CallError::CALL_OK) {
  2927. return "Call OK";
  2928. }
  2929. String class_name = p_base->get_class();
  2930. Ref<Script> script = p_base->get_script();
  2931. if (script.is_valid() && script->get_path().is_resource_file()) {
  2932. class_name += "(" + script->get_path().get_file() + ")";
  2933. }
  2934. return "'" + class_name + "::" + String(p_method) + "': " + err_text;
  2935. }
  2936. String Variant::get_callable_error_text(const Callable &p_callable, const Variant **p_argptrs, int p_argcount, const Callable::CallError &ce) {
  2937. String err_text;
  2938. if (ce.error == Callable::CallError::CALL_ERROR_INVALID_ARGUMENT) {
  2939. int errorarg = ce.argument;
  2940. if (p_argptrs) {
  2941. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from " + Variant::get_type_name(p_argptrs[errorarg]->get_type()) + " to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2942. } else {
  2943. err_text = "Cannot convert argument " + itos(errorarg + 1) + " from [missing argptr, type unknown] to " + Variant::get_type_name(Variant::Type(ce.expected)) + ".";
  2944. }
  2945. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_MANY_ARGUMENTS) {
  2946. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2947. } else if (ce.error == Callable::CallError::CALL_ERROR_TOO_FEW_ARGUMENTS) {
  2948. err_text = "Method expected " + itos(ce.argument) + " arguments, but called with " + itos(p_argcount) + ".";
  2949. } else if (ce.error == Callable::CallError::CALL_ERROR_INVALID_METHOD) {
  2950. err_text = "Method not found.";
  2951. } else if (ce.error == Callable::CallError::CALL_ERROR_INSTANCE_IS_NULL) {
  2952. err_text = "Instance is null";
  2953. } else if (ce.error == Callable::CallError::CALL_OK) {
  2954. return "Call OK";
  2955. }
  2956. return String(p_callable) + " : " + err_text;
  2957. }
  2958. String vformat(const String &p_text, const Variant &p1, const Variant &p2, const Variant &p3, const Variant &p4, const Variant &p5) {
  2959. Array args;
  2960. if (p1.get_type() != Variant::NIL) {
  2961. args.push_back(p1);
  2962. if (p2.get_type() != Variant::NIL) {
  2963. args.push_back(p2);
  2964. if (p3.get_type() != Variant::NIL) {
  2965. args.push_back(p3);
  2966. if (p4.get_type() != Variant::NIL) {
  2967. args.push_back(p4);
  2968. if (p5.get_type() != Variant::NIL) {
  2969. args.push_back(p5);
  2970. }
  2971. }
  2972. }
  2973. }
  2974. }
  2975. bool error = false;
  2976. String fmt = p_text.sprintf(args, &error);
  2977. ERR_FAIL_COND_V_MSG(error, String(), fmt);
  2978. return fmt;
  2979. }
  2980. void Variant::register_types() {
  2981. _register_variant_operators();
  2982. _register_variant_methods();
  2983. _register_variant_setters_getters();
  2984. _register_variant_constructors();
  2985. _register_variant_destructors();
  2986. _register_variant_utility_functions();
  2987. }
  2988. void Variant::unregister_types() {
  2989. _unregister_variant_operators();
  2990. _unregister_variant_methods();
  2991. _unregister_variant_setters_getters();
  2992. _unregister_variant_destructors();
  2993. _unregister_variant_utility_functions();
  2994. }