basis.h 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326
  1. /**************************************************************************/
  2. /* basis.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifndef BASIS_H
  31. #define BASIS_H
  32. #include "core/math/quaternion.h"
  33. #include "core/math/vector3.h"
  34. struct [[nodiscard]] Basis {
  35. Vector3 rows[3] = {
  36. Vector3(1, 0, 0),
  37. Vector3(0, 1, 0),
  38. Vector3(0, 0, 1)
  39. };
  40. _FORCE_INLINE_ const Vector3 &operator[](int p_row) const {
  41. return rows[p_row];
  42. }
  43. _FORCE_INLINE_ Vector3 &operator[](int p_row) {
  44. return rows[p_row];
  45. }
  46. void invert();
  47. void transpose();
  48. Basis inverse() const;
  49. Basis transposed() const;
  50. _FORCE_INLINE_ real_t determinant() const;
  51. void rotate(const Vector3 &p_axis, real_t p_angle);
  52. Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
  53. void rotate_local(const Vector3 &p_axis, real_t p_angle);
  54. Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
  55. void rotate(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ);
  56. Basis rotated(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) const;
  57. void rotate(const Quaternion &p_quaternion);
  58. Basis rotated(const Quaternion &p_quaternion) const;
  59. Vector3 get_euler_normalized(EulerOrder p_order = EulerOrder::YXZ) const;
  60. void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
  61. void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
  62. Quaternion get_rotation_quaternion() const;
  63. void rotate_to_align(Vector3 p_start_direction, Vector3 p_end_direction);
  64. Vector3 rotref_posscale_decomposition(Basis &rotref) const;
  65. Vector3 get_euler(EulerOrder p_order = EulerOrder::YXZ) const;
  66. void set_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ);
  67. static Basis from_euler(const Vector3 &p_euler, EulerOrder p_order = EulerOrder::YXZ) {
  68. Basis b;
  69. b.set_euler(p_euler, p_order);
  70. return b;
  71. }
  72. Quaternion get_quaternion() const;
  73. void set_quaternion(const Quaternion &p_quaternion);
  74. void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
  75. void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
  76. void scale(const Vector3 &p_scale);
  77. Basis scaled(const Vector3 &p_scale) const;
  78. void scale_local(const Vector3 &p_scale);
  79. Basis scaled_local(const Vector3 &p_scale) const;
  80. void scale_orthogonal(const Vector3 &p_scale);
  81. Basis scaled_orthogonal(const Vector3 &p_scale) const;
  82. real_t get_uniform_scale() const;
  83. Vector3 get_scale() const;
  84. Vector3 get_scale_abs() const;
  85. Vector3 get_scale_global() const;
  86. void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
  87. void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale, EulerOrder p_order = EulerOrder::YXZ);
  88. void set_quaternion_scale(const Quaternion &p_quaternion, const Vector3 &p_scale);
  89. // transposed dot products
  90. _FORCE_INLINE_ real_t tdotx(const Vector3 &p_v) const {
  91. return rows[0][0] * p_v[0] + rows[1][0] * p_v[1] + rows[2][0] * p_v[2];
  92. }
  93. _FORCE_INLINE_ real_t tdoty(const Vector3 &p_v) const {
  94. return rows[0][1] * p_v[0] + rows[1][1] * p_v[1] + rows[2][1] * p_v[2];
  95. }
  96. _FORCE_INLINE_ real_t tdotz(const Vector3 &p_v) const {
  97. return rows[0][2] * p_v[0] + rows[1][2] * p_v[1] + rows[2][2] * p_v[2];
  98. }
  99. bool is_equal_approx(const Basis &p_basis) const;
  100. bool is_finite() const;
  101. bool operator==(const Basis &p_matrix) const;
  102. bool operator!=(const Basis &p_matrix) const;
  103. _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
  104. _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
  105. _FORCE_INLINE_ void operator*=(const Basis &p_matrix);
  106. _FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
  107. _FORCE_INLINE_ void operator+=(const Basis &p_matrix);
  108. _FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
  109. _FORCE_INLINE_ void operator-=(const Basis &p_matrix);
  110. _FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
  111. _FORCE_INLINE_ void operator*=(real_t p_val);
  112. _FORCE_INLINE_ Basis operator*(real_t p_val) const;
  113. _FORCE_INLINE_ void operator/=(real_t p_val);
  114. _FORCE_INLINE_ Basis operator/(real_t p_val) const;
  115. bool is_orthogonal() const;
  116. bool is_orthonormal() const;
  117. bool is_conformal() const;
  118. bool is_diagonal() const;
  119. bool is_rotation() const;
  120. Basis lerp(const Basis &p_to, real_t p_weight) const;
  121. Basis slerp(const Basis &p_to, real_t p_weight) const;
  122. void rotate_sh(real_t *p_values);
  123. operator String() const;
  124. /* create / set */
  125. _FORCE_INLINE_ void set(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
  126. rows[0][0] = p_xx;
  127. rows[0][1] = p_xy;
  128. rows[0][2] = p_xz;
  129. rows[1][0] = p_yx;
  130. rows[1][1] = p_yy;
  131. rows[1][2] = p_yz;
  132. rows[2][0] = p_zx;
  133. rows[2][1] = p_zy;
  134. rows[2][2] = p_zz;
  135. }
  136. _FORCE_INLINE_ void set_columns(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
  137. set_column(0, p_x);
  138. set_column(1, p_y);
  139. set_column(2, p_z);
  140. }
  141. _FORCE_INLINE_ Vector3 get_column(int p_index) const {
  142. // Get actual basis axis column (we store transposed as rows for performance).
  143. return Vector3(rows[0][p_index], rows[1][p_index], rows[2][p_index]);
  144. }
  145. _FORCE_INLINE_ void set_column(int p_index, const Vector3 &p_value) {
  146. // Set actual basis axis column (we store transposed as rows for performance).
  147. rows[0][p_index] = p_value.x;
  148. rows[1][p_index] = p_value.y;
  149. rows[2][p_index] = p_value.z;
  150. }
  151. _FORCE_INLINE_ Vector3 get_main_diagonal() const {
  152. return Vector3(rows[0][0], rows[1][1], rows[2][2]);
  153. }
  154. _FORCE_INLINE_ void set_zero() {
  155. rows[0].zero();
  156. rows[1].zero();
  157. rows[2].zero();
  158. }
  159. _FORCE_INLINE_ Basis transpose_xform(const Basis &p_m) const {
  160. return Basis(
  161. rows[0].x * p_m[0].x + rows[1].x * p_m[1].x + rows[2].x * p_m[2].x,
  162. rows[0].x * p_m[0].y + rows[1].x * p_m[1].y + rows[2].x * p_m[2].y,
  163. rows[0].x * p_m[0].z + rows[1].x * p_m[1].z + rows[2].x * p_m[2].z,
  164. rows[0].y * p_m[0].x + rows[1].y * p_m[1].x + rows[2].y * p_m[2].x,
  165. rows[0].y * p_m[0].y + rows[1].y * p_m[1].y + rows[2].y * p_m[2].y,
  166. rows[0].y * p_m[0].z + rows[1].y * p_m[1].z + rows[2].y * p_m[2].z,
  167. rows[0].z * p_m[0].x + rows[1].z * p_m[1].x + rows[2].z * p_m[2].x,
  168. rows[0].z * p_m[0].y + rows[1].z * p_m[1].y + rows[2].z * p_m[2].y,
  169. rows[0].z * p_m[0].z + rows[1].z * p_m[1].z + rows[2].z * p_m[2].z);
  170. }
  171. Basis(real_t p_xx, real_t p_xy, real_t p_xz, real_t p_yx, real_t p_yy, real_t p_yz, real_t p_zx, real_t p_zy, real_t p_zz) {
  172. set(p_xx, p_xy, p_xz, p_yx, p_yy, p_yz, p_zx, p_zy, p_zz);
  173. }
  174. void orthonormalize();
  175. Basis orthonormalized() const;
  176. void orthogonalize();
  177. Basis orthogonalized() const;
  178. #ifdef MATH_CHECKS
  179. bool is_symmetric() const;
  180. #endif
  181. Basis diagonalize();
  182. operator Quaternion() const { return get_quaternion(); }
  183. static Basis looking_at(const Vector3 &p_target, const Vector3 &p_up = Vector3(0, 1, 0), bool p_use_model_front = false);
  184. Basis(const Quaternion &p_quaternion) { set_quaternion(p_quaternion); }
  185. Basis(const Quaternion &p_quaternion, const Vector3 &p_scale) { set_quaternion_scale(p_quaternion, p_scale); }
  186. Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
  187. Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
  188. static Basis from_scale(const Vector3 &p_scale);
  189. _FORCE_INLINE_ Basis(const Vector3 &p_x_axis, const Vector3 &p_y_axis, const Vector3 &p_z_axis) {
  190. set_columns(p_x_axis, p_y_axis, p_z_axis);
  191. }
  192. _FORCE_INLINE_ Basis() {}
  193. private:
  194. // Helper method.
  195. void _set_diagonal(const Vector3 &p_diag);
  196. };
  197. _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
  198. set(
  199. p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
  200. p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
  201. p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
  202. }
  203. _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
  204. return Basis(
  205. p_matrix.tdotx(rows[0]), p_matrix.tdoty(rows[0]), p_matrix.tdotz(rows[0]),
  206. p_matrix.tdotx(rows[1]), p_matrix.tdoty(rows[1]), p_matrix.tdotz(rows[1]),
  207. p_matrix.tdotx(rows[2]), p_matrix.tdoty(rows[2]), p_matrix.tdotz(rows[2]));
  208. }
  209. _FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
  210. rows[0] += p_matrix.rows[0];
  211. rows[1] += p_matrix.rows[1];
  212. rows[2] += p_matrix.rows[2];
  213. }
  214. _FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
  215. Basis ret(*this);
  216. ret += p_matrix;
  217. return ret;
  218. }
  219. _FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
  220. rows[0] -= p_matrix.rows[0];
  221. rows[1] -= p_matrix.rows[1];
  222. rows[2] -= p_matrix.rows[2];
  223. }
  224. _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
  225. Basis ret(*this);
  226. ret -= p_matrix;
  227. return ret;
  228. }
  229. _FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
  230. rows[0] *= p_val;
  231. rows[1] *= p_val;
  232. rows[2] *= p_val;
  233. }
  234. _FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
  235. Basis ret(*this);
  236. ret *= p_val;
  237. return ret;
  238. }
  239. _FORCE_INLINE_ void Basis::operator/=(real_t p_val) {
  240. rows[0] /= p_val;
  241. rows[1] /= p_val;
  242. rows[2] /= p_val;
  243. }
  244. _FORCE_INLINE_ Basis Basis::operator/(real_t p_val) const {
  245. Basis ret(*this);
  246. ret /= p_val;
  247. return ret;
  248. }
  249. Vector3 Basis::xform(const Vector3 &p_vector) const {
  250. return Vector3(
  251. rows[0].dot(p_vector),
  252. rows[1].dot(p_vector),
  253. rows[2].dot(p_vector));
  254. }
  255. Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
  256. return Vector3(
  257. (rows[0][0] * p_vector.x) + (rows[1][0] * p_vector.y) + (rows[2][0] * p_vector.z),
  258. (rows[0][1] * p_vector.x) + (rows[1][1] * p_vector.y) + (rows[2][1] * p_vector.z),
  259. (rows[0][2] * p_vector.x) + (rows[1][2] * p_vector.y) + (rows[2][2] * p_vector.z));
  260. }
  261. real_t Basis::determinant() const {
  262. return rows[0][0] * (rows[1][1] * rows[2][2] - rows[2][1] * rows[1][2]) -
  263. rows[1][0] * (rows[0][1] * rows[2][2] - rows[2][1] * rows[0][2]) +
  264. rows[2][0] * (rows[0][1] * rows[1][2] - rows[1][1] * rows[0][2]);
  265. }
  266. #endif // BASIS_H