godot_collision_solver_3d_sat.cpp 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420
  1. /**************************************************************************/
  2. /* godot_collision_solver_3d_sat.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "godot_collision_solver_3d_sat.h"
  31. #include "gjk_epa.h"
  32. #include "core/math/geometry_3d.h"
  33. #define fallback_collision_solver gjk_epa_calculate_penetration
  34. #define _BACKFACE_NORMAL_THRESHOLD -0.0002
  35. // Cylinder SAT analytic methods and face-circle contact points for cylinder-trimesh and cylinder-box collision are based on ODE colliders.
  36. /*
  37. * Cylinder-trimesh and Cylinder-box colliders by Alen Ladavac
  38. * Ported to ODE by Nguyen Binh
  39. */
  40. /*************************************************************************
  41. * *
  42. * Open Dynamics Engine, Copyright (C) 2001-2003 Russell L. Smith. *
  43. * All rights reserved. Email: [email protected] Web: www.q12.org *
  44. * *
  45. * This library is free software; you can redistribute it and/or *
  46. * modify it under the terms of EITHER: *
  47. * (1) The GNU Lesser General Public License as published by the Free *
  48. * Software Foundation; either version 2.1 of the License, or (at *
  49. * your option) any later version. The text of the GNU Lesser *
  50. * General Public License is included with this library in the *
  51. * file LICENSE.TXT. *
  52. * (2) The BSD-style license that is included with this library in *
  53. * the file LICENSE-BSD.TXT. *
  54. * *
  55. * This library is distributed in the hope that it will be useful, *
  56. * but WITHOUT ANY WARRANTY; without even the implied warranty of *
  57. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
  58. * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
  59. * *
  60. *************************************************************************/
  61. struct _CollectorCallback {
  62. GodotCollisionSolver3D::CallbackResult callback = nullptr;
  63. void *userdata = nullptr;
  64. bool swap = false;
  65. bool collided = false;
  66. Vector3 normal;
  67. Vector3 *prev_axis = nullptr;
  68. _FORCE_INLINE_ void call(const Vector3 &p_point_A, const Vector3 &p_point_B, Vector3 p_normal) {
  69. if (p_normal.dot(p_point_B - p_point_A) < 0) {
  70. p_normal = -p_normal;
  71. }
  72. if (swap) {
  73. callback(p_point_B, 0, p_point_A, 0, -p_normal, userdata);
  74. } else {
  75. callback(p_point_A, 0, p_point_B, 0, p_normal, userdata);
  76. }
  77. }
  78. };
  79. typedef void (*GenerateContactsFunc)(const Vector3 *, int, const Vector3 *, int, _CollectorCallback *);
  80. static void _generate_contacts_point_point(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  81. #ifdef DEBUG_ENABLED
  82. ERR_FAIL_COND(p_point_count_A != 1);
  83. ERR_FAIL_COND(p_point_count_B != 1);
  84. #endif
  85. p_callback->call(*p_points_A, *p_points_B, p_callback->normal);
  86. }
  87. static void _generate_contacts_point_edge(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  88. #ifdef DEBUG_ENABLED
  89. ERR_FAIL_COND(p_point_count_A != 1);
  90. ERR_FAIL_COND(p_point_count_B != 2);
  91. #endif
  92. Vector3 closest_B = Geometry3D::get_closest_point_to_segment_uncapped(*p_points_A, p_points_B);
  93. p_callback->call(*p_points_A, closest_B, p_callback->normal);
  94. }
  95. static void _generate_contacts_point_face(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  96. #ifdef DEBUG_ENABLED
  97. ERR_FAIL_COND(p_point_count_A != 1);
  98. ERR_FAIL_COND(p_point_count_B < 3);
  99. #endif
  100. Plane plane(p_points_B[0], p_points_B[1], p_points_B[2]);
  101. Vector3 closest_B = plane.project(*p_points_A);
  102. p_callback->call(*p_points_A, closest_B, plane.get_normal());
  103. }
  104. static void _generate_contacts_point_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  105. #ifdef DEBUG_ENABLED
  106. ERR_FAIL_COND(p_point_count_A != 1);
  107. ERR_FAIL_COND(p_point_count_B != 3);
  108. #endif
  109. Plane plane(p_points_B[0], p_points_B[1], p_points_B[2]);
  110. Vector3 closest_B = plane.project(*p_points_A);
  111. p_callback->call(*p_points_A, closest_B, plane.get_normal());
  112. }
  113. static void _generate_contacts_edge_edge(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  114. #ifdef DEBUG_ENABLED
  115. ERR_FAIL_COND(p_point_count_A != 2);
  116. ERR_FAIL_COND(p_point_count_B != 2); // circle is actually a 4x3 matrix
  117. #endif
  118. Vector3 rel_A = p_points_A[1] - p_points_A[0];
  119. Vector3 rel_B = p_points_B[1] - p_points_B[0];
  120. Vector3 c = rel_A.cross(rel_B).cross(rel_B);
  121. if (Math::is_zero_approx(rel_A.dot(c))) {
  122. // should handle somehow..
  123. //ERR_PRINT("TODO FIX");
  124. //return;
  125. Vector3 axis = rel_A.normalized(); //make an axis
  126. Vector3 base_A = p_points_A[0] - axis * axis.dot(p_points_A[0]);
  127. Vector3 base_B = p_points_B[0] - axis * axis.dot(p_points_B[0]);
  128. //sort all 4 points in axis
  129. real_t dvec[4] = { axis.dot(p_points_A[0]), axis.dot(p_points_A[1]), axis.dot(p_points_B[0]), axis.dot(p_points_B[1]) };
  130. SortArray<real_t> sa;
  131. sa.sort(dvec, 4);
  132. //use the middle ones as contacts
  133. p_callback->call(base_A + axis * dvec[1], base_B + axis * dvec[1], p_callback->normal);
  134. p_callback->call(base_A + axis * dvec[2], base_B + axis * dvec[2], p_callback->normal);
  135. return;
  136. }
  137. real_t d = (c.dot(p_points_B[0]) - p_points_A[0].dot(c)) / rel_A.dot(c);
  138. if (d < 0.0) {
  139. d = 0.0;
  140. } else if (d > 1.0) {
  141. d = 1.0;
  142. }
  143. Vector3 closest_A = p_points_A[0] + rel_A * d;
  144. Vector3 closest_B = Geometry3D::get_closest_point_to_segment_uncapped(closest_A, p_points_B);
  145. // The normal should be perpendicular to both edges.
  146. Vector3 normal = rel_A.cross(rel_B);
  147. real_t normal_len = normal.length();
  148. if (normal_len > 1e-3) {
  149. normal /= normal_len;
  150. } else {
  151. normal = p_callback->normal;
  152. }
  153. p_callback->call(closest_A, closest_B, normal);
  154. }
  155. static void _generate_contacts_edge_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  156. #ifdef DEBUG_ENABLED
  157. ERR_FAIL_COND(p_point_count_A != 2);
  158. ERR_FAIL_COND(p_point_count_B != 3);
  159. #endif
  160. const Vector3 &circle_B_pos = p_points_B[0];
  161. Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
  162. Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
  163. real_t circle_B_radius = circle_B_line_1.length();
  164. Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
  165. Plane circle_plane(circle_B_normal, circle_B_pos);
  166. static const int max_clip = 2;
  167. Vector3 contact_points[max_clip];
  168. int num_points = 0;
  169. // Project edge point in circle plane.
  170. const Vector3 &edge_A_1 = p_points_A[0];
  171. Vector3 proj_point_1 = circle_plane.project(edge_A_1);
  172. Vector3 dist_vec = proj_point_1 - circle_B_pos;
  173. real_t dist_sq = dist_vec.length_squared();
  174. // Point 1 is inside disk, add as contact point.
  175. if (dist_sq <= circle_B_radius * circle_B_radius) {
  176. contact_points[num_points] = edge_A_1;
  177. ++num_points;
  178. }
  179. const Vector3 &edge_A_2 = p_points_A[1];
  180. Vector3 proj_point_2 = circle_plane.project(edge_A_2);
  181. Vector3 dist_vec_2 = proj_point_2 - circle_B_pos;
  182. real_t dist_sq_2 = dist_vec_2.length_squared();
  183. // Point 2 is inside disk, add as contact point.
  184. if (dist_sq_2 <= circle_B_radius * circle_B_radius) {
  185. contact_points[num_points] = edge_A_2;
  186. ++num_points;
  187. }
  188. if (num_points < 2) {
  189. Vector3 line_vec = proj_point_2 - proj_point_1;
  190. real_t line_length_sq = line_vec.length_squared();
  191. // Create a quadratic formula of the form ax^2 + bx + c = 0
  192. real_t a, b, c;
  193. a = line_length_sq;
  194. b = 2.0 * dist_vec.dot(line_vec);
  195. c = dist_sq - circle_B_radius * circle_B_radius;
  196. // Solve for t.
  197. real_t sqrtterm = b * b - 4.0 * a * c;
  198. // If the term we intend to square root is less than 0 then the answer won't be real,
  199. // so the line doesn't intersect.
  200. if (sqrtterm >= 0) {
  201. sqrtterm = Math::sqrt(sqrtterm);
  202. Vector3 edge_dir = edge_A_2 - edge_A_1;
  203. real_t fraction_1 = (-b - sqrtterm) / (2.0 * a);
  204. if ((fraction_1 > 0.0) && (fraction_1 < 1.0)) {
  205. Vector3 face_point_1 = edge_A_1 + fraction_1 * edge_dir;
  206. ERR_FAIL_COND(num_points >= max_clip);
  207. contact_points[num_points] = face_point_1;
  208. ++num_points;
  209. }
  210. real_t fraction_2 = (-b + sqrtterm) / (2.0 * a);
  211. if ((fraction_2 > 0.0) && (fraction_2 < 1.0) && !Math::is_equal_approx(fraction_1, fraction_2)) {
  212. Vector3 face_point_2 = edge_A_1 + fraction_2 * edge_dir;
  213. ERR_FAIL_COND(num_points >= max_clip);
  214. contact_points[num_points] = face_point_2;
  215. ++num_points;
  216. }
  217. }
  218. }
  219. // Generate contact points.
  220. for (int i = 0; i < num_points; i++) {
  221. const Vector3 &contact_point_A = contact_points[i];
  222. real_t d = circle_plane.distance_to(contact_point_A);
  223. Vector3 closest_B = contact_point_A - circle_plane.normal * d;
  224. if (p_callback->normal.dot(contact_point_A) >= p_callback->normal.dot(closest_B)) {
  225. continue;
  226. }
  227. p_callback->call(contact_point_A, closest_B, circle_plane.get_normal());
  228. }
  229. }
  230. static void _generate_contacts_face_face(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  231. #ifdef DEBUG_ENABLED
  232. ERR_FAIL_COND(p_point_count_A < 2);
  233. ERR_FAIL_COND(p_point_count_B < 3);
  234. #endif
  235. static const int max_clip = 32;
  236. Vector3 _clipbuf1[max_clip];
  237. Vector3 _clipbuf2[max_clip];
  238. Vector3 *clipbuf_src = _clipbuf1;
  239. Vector3 *clipbuf_dst = _clipbuf2;
  240. int clipbuf_len = p_point_count_A;
  241. // copy A points to clipbuf_src
  242. for (int i = 0; i < p_point_count_A; i++) {
  243. clipbuf_src[i] = p_points_A[i];
  244. }
  245. Plane plane_B(p_points_B[0], p_points_B[1], p_points_B[2]);
  246. // go through all of B points
  247. for (int i = 0; i < p_point_count_B; i++) {
  248. int i_n = (i + 1) % p_point_count_B;
  249. Vector3 edge0_B = p_points_B[i];
  250. Vector3 edge1_B = p_points_B[i_n];
  251. Vector3 clip_normal = (edge0_B - edge1_B).cross(plane_B.normal).normalized();
  252. // make a clip plane
  253. Plane clip(clip_normal, edge0_B);
  254. // avoid double clip if A is edge
  255. int dst_idx = 0;
  256. bool edge = clipbuf_len == 2;
  257. for (int j = 0; j < clipbuf_len; j++) {
  258. int j_n = (j + 1) % clipbuf_len;
  259. Vector3 edge0_A = clipbuf_src[j];
  260. Vector3 edge1_A = clipbuf_src[j_n];
  261. real_t dist0 = clip.distance_to(edge0_A);
  262. real_t dist1 = clip.distance_to(edge1_A);
  263. if (dist0 <= 0) { // behind plane
  264. ERR_FAIL_COND(dst_idx >= max_clip);
  265. clipbuf_dst[dst_idx++] = clipbuf_src[j];
  266. }
  267. // check for different sides and non coplanar
  268. //if ( (dist0*dist1) < -CMP_EPSILON && !(edge && j)) {
  269. if ((dist0 * dist1) < 0 && !(edge && j)) {
  270. // calculate intersection
  271. Vector3 rel = edge1_A - edge0_A;
  272. real_t den = clip.normal.dot(rel);
  273. real_t dist = -(clip.normal.dot(edge0_A) - clip.d) / den;
  274. Vector3 inters = edge0_A + rel * dist;
  275. ERR_FAIL_COND(dst_idx >= max_clip);
  276. clipbuf_dst[dst_idx] = inters;
  277. dst_idx++;
  278. }
  279. }
  280. clipbuf_len = dst_idx;
  281. SWAP(clipbuf_src, clipbuf_dst);
  282. }
  283. // generate contacts
  284. //Plane plane_A(p_points_A[0],p_points_A[1],p_points_A[2]);
  285. for (int i = 0; i < clipbuf_len; i++) {
  286. real_t d = plane_B.distance_to(clipbuf_src[i]);
  287. Vector3 closest_B = clipbuf_src[i] - plane_B.normal * d;
  288. if (p_callback->normal.dot(clipbuf_src[i]) >= p_callback->normal.dot(closest_B)) {
  289. continue;
  290. }
  291. p_callback->call(clipbuf_src[i], closest_B, plane_B.get_normal());
  292. }
  293. }
  294. static void _generate_contacts_face_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  295. #ifdef DEBUG_ENABLED
  296. ERR_FAIL_COND(p_point_count_A < 3);
  297. ERR_FAIL_COND(p_point_count_B != 3);
  298. #endif
  299. const Vector3 &circle_B_pos = p_points_B[0];
  300. Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
  301. Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
  302. // Clip face with circle segments.
  303. static const int circle_segments = 8;
  304. Vector3 circle_points[circle_segments];
  305. real_t angle_delta = 2.0 * Math_PI / circle_segments;
  306. for (int i = 0; i < circle_segments; ++i) {
  307. Vector3 point_pos = circle_B_pos;
  308. point_pos += circle_B_line_1 * Math::cos(i * angle_delta);
  309. point_pos += circle_B_line_2 * Math::sin(i * angle_delta);
  310. circle_points[i] = point_pos;
  311. }
  312. _generate_contacts_face_face(p_points_A, p_point_count_A, circle_points, circle_segments, p_callback);
  313. // Clip face with circle plane.
  314. Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
  315. Plane circle_plane(circle_B_normal, circle_B_pos);
  316. static const int max_clip = 32;
  317. Vector3 contact_points[max_clip];
  318. int num_points = 0;
  319. for (int i = 0; i < p_point_count_A; i++) {
  320. int i_n = (i + 1) % p_point_count_A;
  321. const Vector3 &edge0_A = p_points_A[i];
  322. const Vector3 &edge1_A = p_points_A[i_n];
  323. real_t dist0 = circle_plane.distance_to(edge0_A);
  324. real_t dist1 = circle_plane.distance_to(edge1_A);
  325. // First point in front of plane, generate contact point.
  326. if (dist0 * circle_plane.d >= 0) {
  327. ERR_FAIL_COND(num_points >= max_clip);
  328. contact_points[num_points] = edge0_A;
  329. ++num_points;
  330. }
  331. // Points on different sides, generate contact point.
  332. if (dist0 * dist1 < 0) {
  333. // calculate intersection
  334. Vector3 rel = edge1_A - edge0_A;
  335. real_t den = circle_plane.normal.dot(rel);
  336. real_t dist = -(circle_plane.normal.dot(edge0_A) - circle_plane.d) / den;
  337. Vector3 inters = edge0_A + rel * dist;
  338. ERR_FAIL_COND(num_points >= max_clip);
  339. contact_points[num_points] = inters;
  340. ++num_points;
  341. }
  342. }
  343. // Generate contact points.
  344. for (int i = 0; i < num_points; i++) {
  345. const Vector3 &contact_point_A = contact_points[i];
  346. real_t d = circle_plane.distance_to(contact_point_A);
  347. Vector3 closest_B = contact_point_A - circle_plane.normal * d;
  348. if (p_callback->normal.dot(contact_point_A) >= p_callback->normal.dot(closest_B)) {
  349. continue;
  350. }
  351. p_callback->call(contact_point_A, closest_B, circle_plane.get_normal());
  352. }
  353. }
  354. static void _generate_contacts_circle_circle(const Vector3 *p_points_A, int p_point_count_A, const Vector3 *p_points_B, int p_point_count_B, _CollectorCallback *p_callback) {
  355. #ifdef DEBUG_ENABLED
  356. ERR_FAIL_COND(p_point_count_A != 3);
  357. ERR_FAIL_COND(p_point_count_B != 3);
  358. #endif
  359. const Vector3 &circle_A_pos = p_points_A[0];
  360. Vector3 circle_A_line_1 = p_points_A[1] - circle_A_pos;
  361. Vector3 circle_A_line_2 = p_points_A[2] - circle_A_pos;
  362. real_t circle_A_radius = circle_A_line_1.length();
  363. Vector3 circle_A_normal = circle_A_line_1.cross(circle_A_line_2).normalized();
  364. const Vector3 &circle_B_pos = p_points_B[0];
  365. Vector3 circle_B_line_1 = p_points_B[1] - circle_B_pos;
  366. Vector3 circle_B_line_2 = p_points_B[2] - circle_B_pos;
  367. real_t circle_B_radius = circle_B_line_1.length();
  368. Vector3 circle_B_normal = circle_B_line_1.cross(circle_B_line_2).normalized();
  369. static const int max_clip = 4;
  370. Vector3 contact_points[max_clip];
  371. int num_points = 0;
  372. Vector3 centers_diff = circle_B_pos - circle_A_pos;
  373. Vector3 norm_proj = circle_A_normal.dot(centers_diff) * circle_A_normal;
  374. Vector3 comp_proj = centers_diff - norm_proj;
  375. real_t proj_dist = comp_proj.length();
  376. if (!Math::is_zero_approx(proj_dist)) {
  377. comp_proj /= proj_dist;
  378. if ((proj_dist > circle_A_radius - circle_B_radius) && (proj_dist > circle_B_radius - circle_A_radius)) {
  379. // Circles are overlapping, use the 2 points of intersection as contacts.
  380. real_t radius_a_sqr = circle_A_radius * circle_A_radius;
  381. real_t radius_b_sqr = circle_B_radius * circle_B_radius;
  382. real_t d_sqr = proj_dist * proj_dist;
  383. real_t s = (1.0 + (radius_a_sqr - radius_b_sqr) / d_sqr) * 0.5;
  384. real_t h = Math::sqrt(MAX(radius_a_sqr - d_sqr * s * s, 0.0));
  385. Vector3 midpoint = circle_A_pos + s * comp_proj * proj_dist;
  386. Vector3 h_vec = h * circle_A_normal.cross(comp_proj);
  387. Vector3 point_A = midpoint + h_vec;
  388. contact_points[num_points] = point_A;
  389. ++num_points;
  390. point_A = midpoint - h_vec;
  391. contact_points[num_points] = point_A;
  392. ++num_points;
  393. // Add 2 points from circle A and B along the line between the centers.
  394. point_A = circle_A_pos + comp_proj * circle_A_radius;
  395. contact_points[num_points] = point_A;
  396. ++num_points;
  397. point_A = circle_B_pos - comp_proj * circle_B_radius - norm_proj;
  398. contact_points[num_points] = point_A;
  399. ++num_points;
  400. } // Otherwise one circle is inside the other one, use 3 arbitrary equidistant points.
  401. } // Otherwise circles are concentric, use 3 arbitrary equidistant points.
  402. if (num_points == 0) {
  403. // Generate equidistant points.
  404. if (circle_A_radius < circle_B_radius) {
  405. // Circle A inside circle B.
  406. for (int i = 0; i < 3; ++i) {
  407. Vector3 circle_A_point = circle_A_pos;
  408. circle_A_point += circle_A_line_1 * Math::cos(2.0 * Math_PI * i / 3.0);
  409. circle_A_point += circle_A_line_2 * Math::sin(2.0 * Math_PI * i / 3.0);
  410. contact_points[num_points] = circle_A_point;
  411. ++num_points;
  412. }
  413. } else {
  414. // Circle B inside circle A.
  415. for (int i = 0; i < 3; ++i) {
  416. Vector3 circle_B_point = circle_B_pos;
  417. circle_B_point += circle_B_line_1 * Math::cos(2.0 * Math_PI * i / 3.0);
  418. circle_B_point += circle_B_line_2 * Math::sin(2.0 * Math_PI * i / 3.0);
  419. Vector3 circle_A_point = circle_B_point - norm_proj;
  420. contact_points[num_points] = circle_A_point;
  421. ++num_points;
  422. }
  423. }
  424. }
  425. Plane circle_B_plane(circle_B_normal, circle_B_pos);
  426. // Generate contact points.
  427. for (int i = 0; i < num_points; i++) {
  428. const Vector3 &contact_point_A = contact_points[i];
  429. real_t d = circle_B_plane.distance_to(contact_point_A);
  430. Vector3 closest_B = contact_point_A - circle_B_plane.normal * d;
  431. if (p_callback->normal.dot(contact_point_A) >= p_callback->normal.dot(closest_B)) {
  432. continue;
  433. }
  434. p_callback->call(contact_point_A, closest_B, circle_B_plane.get_normal());
  435. }
  436. }
  437. static void _generate_contacts_from_supports(const Vector3 *p_points_A, int p_point_count_A, GodotShape3D::FeatureType p_feature_type_A, const Vector3 *p_points_B, int p_point_count_B, GodotShape3D::FeatureType p_feature_type_B, _CollectorCallback *p_callback) {
  438. #ifdef DEBUG_ENABLED
  439. ERR_FAIL_COND(p_point_count_A < 1);
  440. ERR_FAIL_COND(p_point_count_B < 1);
  441. #endif
  442. static const GenerateContactsFunc generate_contacts_func_table[4][4] = {
  443. {
  444. _generate_contacts_point_point,
  445. _generate_contacts_point_edge,
  446. _generate_contacts_point_face,
  447. _generate_contacts_point_circle,
  448. },
  449. {
  450. nullptr,
  451. _generate_contacts_edge_edge,
  452. _generate_contacts_face_face,
  453. _generate_contacts_edge_circle,
  454. },
  455. {
  456. nullptr,
  457. nullptr,
  458. _generate_contacts_face_face,
  459. _generate_contacts_face_circle,
  460. },
  461. {
  462. nullptr,
  463. nullptr,
  464. nullptr,
  465. _generate_contacts_circle_circle,
  466. },
  467. };
  468. int pointcount_B;
  469. int pointcount_A;
  470. const Vector3 *points_A;
  471. const Vector3 *points_B;
  472. int version_A;
  473. int version_B;
  474. if (p_feature_type_A > p_feature_type_B) {
  475. //swap
  476. p_callback->swap = !p_callback->swap;
  477. p_callback->normal = -p_callback->normal;
  478. pointcount_B = p_point_count_A;
  479. pointcount_A = p_point_count_B;
  480. points_A = p_points_B;
  481. points_B = p_points_A;
  482. version_A = p_feature_type_B;
  483. version_B = p_feature_type_A;
  484. } else {
  485. pointcount_B = p_point_count_B;
  486. pointcount_A = p_point_count_A;
  487. points_A = p_points_A;
  488. points_B = p_points_B;
  489. version_A = p_feature_type_A;
  490. version_B = p_feature_type_B;
  491. }
  492. GenerateContactsFunc contacts_func = generate_contacts_func_table[version_A][version_B];
  493. ERR_FAIL_NULL(contacts_func);
  494. contacts_func(points_A, pointcount_A, points_B, pointcount_B, p_callback);
  495. }
  496. template <typename ShapeA, typename ShapeB, bool withMargin = false>
  497. class SeparatorAxisTest {
  498. const ShapeA *shape_A = nullptr;
  499. const ShapeB *shape_B = nullptr;
  500. const Transform3D *transform_A = nullptr;
  501. const Transform3D *transform_B = nullptr;
  502. real_t best_depth = 1e15;
  503. _CollectorCallback *callback = nullptr;
  504. real_t margin_A = 0.0;
  505. real_t margin_B = 0.0;
  506. Vector3 separator_axis;
  507. public:
  508. Vector3 best_axis;
  509. _FORCE_INLINE_ bool test_previous_axis() {
  510. if (callback && callback->prev_axis && *callback->prev_axis != Vector3()) {
  511. return test_axis(*callback->prev_axis);
  512. } else {
  513. return true;
  514. }
  515. }
  516. _FORCE_INLINE_ bool test_axis(const Vector3 &p_axis) {
  517. Vector3 axis = p_axis;
  518. if (axis.is_zero_approx()) {
  519. // strange case, try an upwards separator
  520. axis = Vector3(0.0, 1.0, 0.0);
  521. }
  522. real_t min_A = 0.0, max_A = 0.0, min_B = 0.0, max_B = 0.0;
  523. shape_A->project_range(axis, *transform_A, min_A, max_A);
  524. shape_B->project_range(axis, *transform_B, min_B, max_B);
  525. if (withMargin) {
  526. min_A -= margin_A;
  527. max_A += margin_A;
  528. min_B -= margin_B;
  529. max_B += margin_B;
  530. }
  531. min_B -= (max_A - min_A) * 0.5;
  532. max_B += (max_A - min_A) * 0.5;
  533. min_B -= (min_A + max_A) * 0.5;
  534. max_B -= (min_A + max_A) * 0.5;
  535. if (min_B > 0.0 || max_B < 0.0) {
  536. separator_axis = axis;
  537. return false; // doesn't contain 0
  538. }
  539. //use the smallest depth
  540. if (min_B < 0.0) { // could be +0.0, we don't want it to become -0.0
  541. min_B = -min_B;
  542. }
  543. if (max_B < min_B) {
  544. if (max_B < best_depth) {
  545. best_depth = max_B;
  546. best_axis = axis;
  547. }
  548. } else {
  549. if (min_B < best_depth) {
  550. best_depth = min_B;
  551. best_axis = -axis; // keep it as A axis
  552. }
  553. }
  554. return true;
  555. }
  556. static _FORCE_INLINE_ void test_contact_points(const Vector3 &p_point_A, int p_index_A, const Vector3 &p_point_B, int p_index_B, const Vector3 &normal, void *p_userdata) {
  557. SeparatorAxisTest<ShapeA, ShapeB, withMargin> *separator = (SeparatorAxisTest<ShapeA, ShapeB, withMargin> *)p_userdata;
  558. Vector3 axis = (p_point_B - p_point_A);
  559. real_t depth = axis.length();
  560. // Filter out bogus directions with a threshold and re-testing axis.
  561. if (separator->best_depth - depth > 0.001) {
  562. separator->test_axis(axis / depth);
  563. }
  564. }
  565. _FORCE_INLINE_ void generate_contacts() {
  566. // nothing to do, don't generate
  567. if (best_axis == Vector3(0.0, 0.0, 0.0)) {
  568. return;
  569. }
  570. if (!callback->callback) {
  571. //just was checking intersection?
  572. callback->collided = true;
  573. if (callback->prev_axis) {
  574. *callback->prev_axis = best_axis;
  575. }
  576. return;
  577. }
  578. static const int max_supports = 16;
  579. Vector3 supports_A[max_supports];
  580. int support_count_A;
  581. GodotShape3D::FeatureType support_type_A;
  582. shape_A->get_supports(transform_A->basis.xform_inv(-best_axis).normalized(), max_supports, supports_A, support_count_A, support_type_A);
  583. for (int i = 0; i < support_count_A; i++) {
  584. supports_A[i] = transform_A->xform(supports_A[i]);
  585. }
  586. if (withMargin) {
  587. for (int i = 0; i < support_count_A; i++) {
  588. supports_A[i] += -best_axis * margin_A;
  589. }
  590. }
  591. Vector3 supports_B[max_supports];
  592. int support_count_B;
  593. GodotShape3D::FeatureType support_type_B;
  594. shape_B->get_supports(transform_B->basis.xform_inv(best_axis).normalized(), max_supports, supports_B, support_count_B, support_type_B);
  595. for (int i = 0; i < support_count_B; i++) {
  596. supports_B[i] = transform_B->xform(supports_B[i]);
  597. }
  598. if (withMargin) {
  599. for (int i = 0; i < support_count_B; i++) {
  600. supports_B[i] += best_axis * margin_B;
  601. }
  602. }
  603. callback->normal = best_axis;
  604. if (callback->prev_axis) {
  605. *callback->prev_axis = best_axis;
  606. }
  607. _generate_contacts_from_supports(supports_A, support_count_A, support_type_A, supports_B, support_count_B, support_type_B, callback);
  608. callback->collided = true;
  609. }
  610. _FORCE_INLINE_ SeparatorAxisTest(const ShapeA *p_shape_A, const Transform3D &p_transform_A, const ShapeB *p_shape_B, const Transform3D &p_transform_B, _CollectorCallback *p_callback, real_t p_margin_A = 0, real_t p_margin_B = 0) {
  611. shape_A = p_shape_A;
  612. shape_B = p_shape_B;
  613. transform_A = &p_transform_A;
  614. transform_B = &p_transform_B;
  615. callback = p_callback;
  616. margin_A = p_margin_A;
  617. margin_B = p_margin_B;
  618. }
  619. };
  620. /****** SAT TESTS *******/
  621. typedef void (*CollisionFunc)(const GodotShape3D *, const Transform3D &, const GodotShape3D *, const Transform3D &, _CollectorCallback *p_callback, real_t, real_t);
  622. // Perform analytic sphere-sphere collision and report results to collector
  623. template <bool withMargin>
  624. static void analytic_sphere_collision(const Vector3 &p_origin_a, real_t p_radius_a, const Vector3 &p_origin_b, real_t p_radius_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  625. // Expand the spheres by the margins if enabled
  626. if (withMargin) {
  627. p_radius_a += p_margin_a;
  628. p_radius_b += p_margin_b;
  629. }
  630. // Get the vector from sphere B to A
  631. Vector3 b_to_a = p_origin_a - p_origin_b;
  632. // Get the length from B to A
  633. real_t b_to_a_len = b_to_a.length();
  634. // Calculate the sphere overlap, and bail if not overlapping
  635. real_t overlap = p_radius_a + p_radius_b - b_to_a_len;
  636. if (overlap < 0) {
  637. return;
  638. }
  639. // Report collision
  640. p_collector->collided = true;
  641. // Bail if there is no callback to receive the A and B collision points.
  642. if (!p_collector->callback) {
  643. return;
  644. }
  645. // Normalize the B to A vector
  646. if (b_to_a_len < CMP_EPSILON) {
  647. b_to_a = Vector3(0, 1, 0); // Spheres coincident, use arbitrary direction
  648. } else {
  649. b_to_a /= b_to_a_len;
  650. }
  651. // Report collision points. The operations below are intended to minimize
  652. // floating-point precision errors. This is done by calculating the first
  653. // collision point from the smaller sphere, and then jumping across to
  654. // the larger spheres collision point using the overlap distance. This
  655. // jump is usually small even if the large sphere is massive, and so the
  656. // second point will not suffer from precision errors.
  657. if (p_radius_a < p_radius_b) {
  658. Vector3 point_a = p_origin_a - b_to_a * p_radius_a;
  659. Vector3 point_b = point_a + b_to_a * overlap;
  660. p_collector->call(point_a, point_b, b_to_a); // Consider adding b_to_a vector
  661. } else {
  662. Vector3 point_b = p_origin_b + b_to_a * p_radius_b;
  663. Vector3 point_a = point_b - b_to_a * overlap;
  664. p_collector->call(point_a, point_b, b_to_a); // Consider adding b_to_a vector
  665. }
  666. }
  667. template <bool withMargin>
  668. static void _collision_sphere_sphere(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  669. const GodotSphereShape3D *sphere_A = static_cast<const GodotSphereShape3D *>(p_a);
  670. const GodotSphereShape3D *sphere_B = static_cast<const GodotSphereShape3D *>(p_b);
  671. // Perform an analytic sphere collision between the two spheres
  672. analytic_sphere_collision<withMargin>(
  673. p_transform_a.origin,
  674. sphere_A->get_radius() * p_transform_a.basis[0].length(),
  675. p_transform_b.origin,
  676. sphere_B->get_radius() * p_transform_b.basis[0].length(),
  677. p_collector,
  678. p_margin_a,
  679. p_margin_b);
  680. }
  681. template <bool withMargin>
  682. static void _collision_sphere_box(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  683. const GodotSphereShape3D *sphere_A = static_cast<const GodotSphereShape3D *>(p_a);
  684. const GodotBoxShape3D *box_B = static_cast<const GodotBoxShape3D *>(p_b);
  685. // Find the point on the box nearest to the center of the sphere.
  686. Vector3 center = p_transform_b.affine_inverse().xform(p_transform_a.origin);
  687. Vector3 extents = box_B->get_half_extents();
  688. Vector3 nearest(MIN(MAX(center.x, -extents.x), extents.x),
  689. MIN(MAX(center.y, -extents.y), extents.y),
  690. MIN(MAX(center.z, -extents.z), extents.z));
  691. nearest = p_transform_b.xform(nearest);
  692. // See if it is inside the sphere.
  693. Vector3 delta = nearest - p_transform_a.origin;
  694. real_t length = delta.length();
  695. real_t radius = sphere_A->get_radius() * p_transform_a.basis[0].length();
  696. if (length > radius + p_margin_a + p_margin_b) {
  697. return;
  698. }
  699. p_collector->collided = true;
  700. if (!p_collector->callback) {
  701. return;
  702. }
  703. Vector3 axis;
  704. if (length == 0) {
  705. // The box passes through the sphere center. Select an axis based on the box's center.
  706. axis = (p_transform_b.origin - nearest).normalized();
  707. } else {
  708. axis = delta / length;
  709. }
  710. Vector3 point_a = p_transform_a.origin + (radius + p_margin_a) * axis;
  711. Vector3 point_b = (withMargin ? nearest - p_margin_b * axis : nearest);
  712. p_collector->call(point_a, point_b, axis);
  713. }
  714. template <bool withMargin>
  715. static void _collision_sphere_capsule(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  716. const GodotSphereShape3D *sphere_A = static_cast<const GodotSphereShape3D *>(p_a);
  717. const GodotCapsuleShape3D *capsule_B = static_cast<const GodotCapsuleShape3D *>(p_b);
  718. real_t scale_A = p_transform_a.basis[0].length();
  719. real_t scale_B = p_transform_b.basis[0].length();
  720. // Construct the capsule segment (ball-center to ball-center)
  721. Vector3 capsule_segment[2];
  722. Vector3 capsule_axis = p_transform_b.basis.get_column(1) * (capsule_B->get_height() * 0.5 - capsule_B->get_radius());
  723. capsule_segment[0] = p_transform_b.origin + capsule_axis;
  724. capsule_segment[1] = p_transform_b.origin - capsule_axis;
  725. // Get the capsules closest segment-point to the sphere
  726. Vector3 capsule_closest = Geometry3D::get_closest_point_to_segment(p_transform_a.origin, capsule_segment);
  727. // Perform an analytic sphere collision between the sphere and the sphere-collider in the capsule
  728. analytic_sphere_collision<withMargin>(
  729. p_transform_a.origin,
  730. sphere_A->get_radius() * scale_A,
  731. capsule_closest,
  732. capsule_B->get_radius() * scale_B,
  733. p_collector,
  734. p_margin_a,
  735. p_margin_b);
  736. }
  737. template <bool withMargin>
  738. static void analytic_sphere_cylinder_collision(real_t p_radius_a, real_t p_radius_b, real_t p_height_b, const Transform3D &p_transform_a, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  739. // Find the point on the cylinder nearest to the center of the sphere.
  740. Vector3 center = p_transform_b.affine_inverse().xform(p_transform_a.origin);
  741. Vector3 nearest = center;
  742. real_t scale_A = p_transform_a.basis[0].length();
  743. real_t r = Math::sqrt(center.x * center.x + center.z * center.z);
  744. if (r > p_radius_b) {
  745. real_t scale = p_radius_b / r;
  746. nearest.x *= scale;
  747. nearest.z *= scale;
  748. }
  749. real_t half_height = p_height_b / 2;
  750. nearest.y = MIN(MAX(center.y, -half_height), half_height);
  751. nearest = p_transform_b.xform(nearest);
  752. // See if it is inside the sphere.
  753. Vector3 delta = nearest - p_transform_a.origin;
  754. real_t length = delta.length();
  755. if (length > p_radius_a * scale_A + p_margin_a + p_margin_b) {
  756. return;
  757. }
  758. p_collector->collided = true;
  759. if (!p_collector->callback) {
  760. return;
  761. }
  762. Vector3 axis;
  763. if (length == 0) {
  764. // The cylinder passes through the sphere center. Select an axis based on the cylinder's center.
  765. axis = (p_transform_b.origin - nearest).normalized();
  766. } else {
  767. axis = delta / length;
  768. }
  769. Vector3 point_a = p_transform_a.origin + (p_radius_a * scale_A + p_margin_a) * axis;
  770. Vector3 point_b = (withMargin ? nearest - p_margin_b * axis : nearest);
  771. p_collector->call(point_a, point_b, axis);
  772. }
  773. template <bool withMargin>
  774. static void _collision_sphere_cylinder(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  775. const GodotSphereShape3D *sphere_A = static_cast<const GodotSphereShape3D *>(p_a);
  776. const GodotCylinderShape3D *cylinder_B = static_cast<const GodotCylinderShape3D *>(p_b);
  777. analytic_sphere_cylinder_collision<withMargin>(sphere_A->get_radius(), cylinder_B->get_radius(), cylinder_B->get_height(), p_transform_a, p_transform_b, p_collector, p_margin_a, p_margin_b);
  778. }
  779. template <bool withMargin>
  780. static void _collision_sphere_convex_polygon(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  781. const GodotSphereShape3D *sphere_A = static_cast<const GodotSphereShape3D *>(p_a);
  782. const GodotConvexPolygonShape3D *convex_polygon_B = static_cast<const GodotConvexPolygonShape3D *>(p_b);
  783. SeparatorAxisTest<GodotSphereShape3D, GodotConvexPolygonShape3D, withMargin> separator(sphere_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  784. if (!separator.test_previous_axis()) {
  785. return;
  786. }
  787. const Geometry3D::MeshData &mesh = convex_polygon_B->get_mesh();
  788. const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
  789. int face_count = mesh.faces.size();
  790. const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
  791. int edge_count = mesh.edges.size();
  792. const Vector3 *vertices = mesh.vertices.ptr();
  793. int vertex_count = mesh.vertices.size();
  794. // Precalculating this makes the transforms faster.
  795. Basis b_xform_normal = p_transform_b.basis.inverse().transposed();
  796. // faces of B
  797. for (int i = 0; i < face_count; i++) {
  798. Vector3 axis = b_xform_normal.xform(faces[i].plane.normal).normalized();
  799. if (!separator.test_axis(axis)) {
  800. return;
  801. }
  802. }
  803. // edges of B
  804. for (int i = 0; i < edge_count; i++) {
  805. Vector3 v1 = p_transform_b.xform(vertices[edges[i].vertex_a]);
  806. Vector3 v2 = p_transform_b.xform(vertices[edges[i].vertex_b]);
  807. Vector3 v3 = p_transform_a.origin;
  808. Vector3 n1 = v2 - v1;
  809. Vector3 n2 = v2 - v3;
  810. Vector3 axis = n1.cross(n2).cross(n1).normalized();
  811. if (!separator.test_axis(axis)) {
  812. return;
  813. }
  814. }
  815. // vertices of B
  816. for (int i = 0; i < vertex_count; i++) {
  817. Vector3 v1 = p_transform_b.xform(vertices[i]);
  818. Vector3 v2 = p_transform_a.origin;
  819. Vector3 axis = (v2 - v1).normalized();
  820. if (!separator.test_axis(axis)) {
  821. return;
  822. }
  823. }
  824. separator.generate_contacts();
  825. }
  826. template <bool withMargin>
  827. static void _collision_sphere_face(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  828. const GodotSphereShape3D *sphere_A = static_cast<const GodotSphereShape3D *>(p_a);
  829. const GodotFaceShape3D *face_B = static_cast<const GodotFaceShape3D *>(p_b);
  830. SeparatorAxisTest<GodotSphereShape3D, GodotFaceShape3D, withMargin> separator(sphere_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  831. Vector3 vertex[3] = {
  832. p_transform_b.xform(face_B->vertex[0]),
  833. p_transform_b.xform(face_B->vertex[1]),
  834. p_transform_b.xform(face_B->vertex[2]),
  835. };
  836. Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
  837. if (!separator.test_axis(normal)) {
  838. return;
  839. }
  840. // edges and points of B
  841. for (int i = 0; i < 3; i++) {
  842. Vector3 n1 = vertex[i] - p_transform_a.origin;
  843. if (n1.dot(normal) < 0.0) {
  844. n1 *= -1.0;
  845. }
  846. if (!separator.test_axis(n1.normalized())) {
  847. return;
  848. }
  849. Vector3 n2 = vertex[(i + 1) % 3] - vertex[i];
  850. Vector3 axis = n1.cross(n2).cross(n2).normalized();
  851. if (axis.dot(normal) < 0.0) {
  852. axis *= -1.0;
  853. }
  854. if (!separator.test_axis(axis)) {
  855. return;
  856. }
  857. }
  858. if (!face_B->backface_collision) {
  859. if (separator.best_axis.dot(normal) < _BACKFACE_NORMAL_THRESHOLD) {
  860. if (face_B->invert_backface_collision) {
  861. separator.best_axis = separator.best_axis.bounce(normal);
  862. } else {
  863. // Just ignore backface collision.
  864. return;
  865. }
  866. }
  867. }
  868. separator.generate_contacts();
  869. }
  870. template <bool withMargin>
  871. static void _collision_box_box(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  872. const GodotBoxShape3D *box_A = static_cast<const GodotBoxShape3D *>(p_a);
  873. const GodotBoxShape3D *box_B = static_cast<const GodotBoxShape3D *>(p_b);
  874. SeparatorAxisTest<GodotBoxShape3D, GodotBoxShape3D, withMargin> separator(box_A, p_transform_a, box_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  875. if (!separator.test_previous_axis()) {
  876. return;
  877. }
  878. // test faces of A
  879. for (int i = 0; i < 3; i++) {
  880. Vector3 axis = p_transform_a.basis.get_column(i).normalized();
  881. if (!separator.test_axis(axis)) {
  882. return;
  883. }
  884. }
  885. // test faces of B
  886. for (int i = 0; i < 3; i++) {
  887. Vector3 axis = p_transform_b.basis.get_column(i).normalized();
  888. if (!separator.test_axis(axis)) {
  889. return;
  890. }
  891. }
  892. // test combined edges
  893. for (int i = 0; i < 3; i++) {
  894. for (int j = 0; j < 3; j++) {
  895. Vector3 axis = p_transform_a.basis.get_column(i).cross(p_transform_b.basis.get_column(j));
  896. if (Math::is_zero_approx(axis.length_squared())) {
  897. continue;
  898. }
  899. axis.normalize();
  900. if (!separator.test_axis(axis)) {
  901. return;
  902. }
  903. }
  904. }
  905. if (withMargin) {
  906. //add endpoint test between closest vertices and edges
  907. // calculate closest point to sphere
  908. Vector3 ab_vec = p_transform_b.origin - p_transform_a.origin;
  909. Vector3 cnormal_a = p_transform_a.basis.xform_inv(ab_vec);
  910. Vector3 support_a = p_transform_a.xform(Vector3(
  911. (cnormal_a.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
  912. (cnormal_a.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
  913. (cnormal_a.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
  914. Vector3 cnormal_b = p_transform_b.basis.xform_inv(-ab_vec);
  915. Vector3 support_b = p_transform_b.xform(Vector3(
  916. (cnormal_b.x < 0) ? -box_B->get_half_extents().x : box_B->get_half_extents().x,
  917. (cnormal_b.y < 0) ? -box_B->get_half_extents().y : box_B->get_half_extents().y,
  918. (cnormal_b.z < 0) ? -box_B->get_half_extents().z : box_B->get_half_extents().z));
  919. Vector3 axis_ab = (support_a - support_b);
  920. if (!separator.test_axis(axis_ab.normalized())) {
  921. return;
  922. }
  923. //now try edges, which become cylinders!
  924. for (int i = 0; i < 3; i++) {
  925. //a ->b
  926. Vector3 axis_a = p_transform_a.basis.get_column(i);
  927. if (!separator.test_axis(axis_ab.cross(axis_a).cross(axis_a).normalized())) {
  928. return;
  929. }
  930. //b ->a
  931. Vector3 axis_b = p_transform_b.basis.get_column(i);
  932. if (!separator.test_axis(axis_ab.cross(axis_b).cross(axis_b).normalized())) {
  933. return;
  934. }
  935. }
  936. }
  937. separator.generate_contacts();
  938. }
  939. template <bool withMargin>
  940. static void _collision_box_capsule(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  941. const GodotBoxShape3D *box_A = static_cast<const GodotBoxShape3D *>(p_a);
  942. const GodotCapsuleShape3D *capsule_B = static_cast<const GodotCapsuleShape3D *>(p_b);
  943. SeparatorAxisTest<GodotBoxShape3D, GodotCapsuleShape3D, withMargin> separator(box_A, p_transform_a, capsule_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  944. if (!separator.test_previous_axis()) {
  945. return;
  946. }
  947. // faces of A
  948. for (int i = 0; i < 3; i++) {
  949. Vector3 axis = p_transform_a.basis.get_column(i).normalized();
  950. if (!separator.test_axis(axis)) {
  951. return;
  952. }
  953. }
  954. Vector3 cyl_axis = p_transform_b.basis.get_column(1).normalized();
  955. // edges of A, capsule cylinder
  956. for (int i = 0; i < 3; i++) {
  957. // cylinder
  958. Vector3 box_axis = p_transform_a.basis.get_column(i);
  959. Vector3 axis = box_axis.cross(cyl_axis);
  960. if (Math::is_zero_approx(axis.length_squared())) {
  961. continue;
  962. }
  963. if (!separator.test_axis(axis.normalized())) {
  964. return;
  965. }
  966. }
  967. // points of A, capsule cylinder
  968. // this sure could be made faster somehow..
  969. for (int i = 0; i < 2; i++) {
  970. for (int j = 0; j < 2; j++) {
  971. for (int k = 0; k < 2; k++) {
  972. Vector3 he = box_A->get_half_extents();
  973. he.x *= (i * 2 - 1);
  974. he.y *= (j * 2 - 1);
  975. he.z *= (k * 2 - 1);
  976. Vector3 point = p_transform_a.origin;
  977. for (int l = 0; l < 3; l++) {
  978. point += p_transform_a.basis.get_column(l) * he[l];
  979. }
  980. //Vector3 axis = (point - cyl_axis * cyl_axis.dot(point)).normalized();
  981. Vector3 axis = Plane(cyl_axis).project(point).normalized();
  982. if (!separator.test_axis(axis)) {
  983. return;
  984. }
  985. }
  986. }
  987. }
  988. // capsule balls, edges of A
  989. for (int i = 0; i < 2; i++) {
  990. Vector3 capsule_axis = p_transform_b.basis.get_column(1) * (capsule_B->get_height() * 0.5 - capsule_B->get_radius());
  991. Vector3 sphere_pos = p_transform_b.origin + ((i == 0) ? capsule_axis : -capsule_axis);
  992. Vector3 cnormal = p_transform_a.xform_inv(sphere_pos);
  993. Vector3 cpoint = p_transform_a.xform(Vector3(
  994. (cnormal.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
  995. (cnormal.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
  996. (cnormal.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
  997. // use point to test axis
  998. Vector3 point_axis = (sphere_pos - cpoint).normalized();
  999. if (!separator.test_axis(point_axis)) {
  1000. return;
  1001. }
  1002. // test edges of A
  1003. for (int j = 0; j < 3; j++) {
  1004. Vector3 axis = point_axis.cross(p_transform_a.basis.get_column(j)).cross(p_transform_a.basis.get_column(j)).normalized();
  1005. if (!separator.test_axis(axis)) {
  1006. return;
  1007. }
  1008. }
  1009. }
  1010. separator.generate_contacts();
  1011. }
  1012. template <bool withMargin>
  1013. static void _collision_box_cylinder(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1014. const GodotBoxShape3D *box_A = static_cast<const GodotBoxShape3D *>(p_a);
  1015. const GodotCylinderShape3D *cylinder_B = static_cast<const GodotCylinderShape3D *>(p_b);
  1016. SeparatorAxisTest<GodotBoxShape3D, GodotCylinderShape3D, withMargin> separator(box_A, p_transform_a, cylinder_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1017. if (!separator.test_previous_axis()) {
  1018. return;
  1019. }
  1020. // Faces of A.
  1021. for (int i = 0; i < 3; i++) {
  1022. Vector3 axis = p_transform_a.basis.get_column(i).normalized();
  1023. if (!separator.test_axis(axis)) {
  1024. return;
  1025. }
  1026. }
  1027. Vector3 cyl_axis = p_transform_b.basis.get_column(1).normalized();
  1028. // Cylinder end caps.
  1029. {
  1030. if (!separator.test_axis(cyl_axis)) {
  1031. return;
  1032. }
  1033. }
  1034. // Edges of A, cylinder lateral surface.
  1035. for (int i = 0; i < 3; i++) {
  1036. Vector3 box_axis = p_transform_a.basis.get_column(i);
  1037. Vector3 axis = box_axis.cross(cyl_axis);
  1038. if (Math::is_zero_approx(axis.length_squared())) {
  1039. continue;
  1040. }
  1041. if (!separator.test_axis(axis.normalized())) {
  1042. return;
  1043. }
  1044. }
  1045. // Gather points of A.
  1046. Vector3 vertices_A[8];
  1047. Vector3 box_extent = box_A->get_half_extents();
  1048. for (int i = 0; i < 2; i++) {
  1049. for (int j = 0; j < 2; j++) {
  1050. for (int k = 0; k < 2; k++) {
  1051. Vector3 extent = box_extent;
  1052. extent.x *= (i * 2 - 1);
  1053. extent.y *= (j * 2 - 1);
  1054. extent.z *= (k * 2 - 1);
  1055. Vector3 &point = vertices_A[i * 2 * 2 + j * 2 + k];
  1056. point = p_transform_a.origin;
  1057. for (int l = 0; l < 3; l++) {
  1058. point += p_transform_a.basis.get_column(l) * extent[l];
  1059. }
  1060. }
  1061. }
  1062. }
  1063. // Points of A, cylinder lateral surface.
  1064. for (int i = 0; i < 8; i++) {
  1065. const Vector3 &point = vertices_A[i];
  1066. Vector3 axis = Plane(cyl_axis).project(point).normalized();
  1067. if (!separator.test_axis(axis)) {
  1068. return;
  1069. }
  1070. }
  1071. // Edges of A, cylinder end caps rim.
  1072. int edges_start_A[12] = { 0, 2, 4, 6, 0, 1, 4, 5, 0, 1, 2, 3 };
  1073. int edges_end_A[12] = { 1, 3, 5, 7, 2, 3, 6, 7, 4, 5, 6, 7 };
  1074. Vector3 cap_axis = cyl_axis * (cylinder_B->get_height() * 0.5);
  1075. for (int i = 0; i < 2; i++) {
  1076. Vector3 cap_pos = p_transform_b.origin + ((i == 0) ? cap_axis : -cap_axis);
  1077. for (int e = 0; e < 12; e++) {
  1078. const Vector3 &edge_start = vertices_A[edges_start_A[e]];
  1079. const Vector3 &edge_end = vertices_A[edges_end_A[e]];
  1080. Vector3 edge_dir = (edge_end - edge_start);
  1081. edge_dir.normalize();
  1082. real_t edge_dot = edge_dir.dot(cyl_axis);
  1083. if (Math::is_zero_approx(edge_dot)) {
  1084. // Edge is perpendicular to cylinder axis.
  1085. continue;
  1086. }
  1087. // Calculate intersection between edge and circle plane.
  1088. Vector3 edge_diff = cap_pos - edge_start;
  1089. real_t diff_dot = edge_diff.dot(cyl_axis);
  1090. Vector3 intersection = edge_start + edge_dir * diff_dot / edge_dot;
  1091. // Calculate tangent that touches intersection.
  1092. Vector3 tangent = (cap_pos - intersection).cross(cyl_axis);
  1093. // Axis is orthogonal both to tangent and edge direction.
  1094. Vector3 axis = tangent.cross(edge_dir);
  1095. if (!separator.test_axis(axis.normalized())) {
  1096. return;
  1097. }
  1098. }
  1099. }
  1100. separator.generate_contacts();
  1101. }
  1102. template <bool withMargin>
  1103. static void _collision_box_convex_polygon(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1104. const GodotBoxShape3D *box_A = static_cast<const GodotBoxShape3D *>(p_a);
  1105. const GodotConvexPolygonShape3D *convex_polygon_B = static_cast<const GodotConvexPolygonShape3D *>(p_b);
  1106. SeparatorAxisTest<GodotBoxShape3D, GodotConvexPolygonShape3D, withMargin> separator(box_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1107. if (!separator.test_previous_axis()) {
  1108. return;
  1109. }
  1110. const Geometry3D::MeshData &mesh = convex_polygon_B->get_mesh();
  1111. const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
  1112. int face_count = mesh.faces.size();
  1113. const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
  1114. int edge_count = mesh.edges.size();
  1115. const Vector3 *vertices = mesh.vertices.ptr();
  1116. int vertex_count = mesh.vertices.size();
  1117. // faces of A
  1118. for (int i = 0; i < 3; i++) {
  1119. Vector3 axis = p_transform_a.basis.get_column(i).normalized();
  1120. if (!separator.test_axis(axis)) {
  1121. return;
  1122. }
  1123. }
  1124. // Precalculating this makes the transforms faster.
  1125. Basis b_xform_normal = p_transform_b.basis.inverse().transposed();
  1126. // faces of B
  1127. for (int i = 0; i < face_count; i++) {
  1128. Vector3 axis = b_xform_normal.xform(faces[i].plane.normal).normalized();
  1129. if (!separator.test_axis(axis)) {
  1130. return;
  1131. }
  1132. }
  1133. // A<->B edges
  1134. for (int i = 0; i < 3; i++) {
  1135. Vector3 e1 = p_transform_a.basis.get_column(i);
  1136. for (int j = 0; j < edge_count; j++) {
  1137. Vector3 e2 = p_transform_b.basis.xform(vertices[edges[j].vertex_a]) - p_transform_b.basis.xform(vertices[edges[j].vertex_b]);
  1138. Vector3 axis = e1.cross(e2).normalized();
  1139. if (!separator.test_axis(axis)) {
  1140. return;
  1141. }
  1142. }
  1143. }
  1144. if (withMargin) {
  1145. // calculate closest points between vertices and box edges
  1146. for (int v = 0; v < vertex_count; v++) {
  1147. Vector3 vtxb = p_transform_b.xform(vertices[v]);
  1148. Vector3 ab_vec = vtxb - p_transform_a.origin;
  1149. Vector3 cnormal_a = p_transform_a.basis.xform_inv(ab_vec);
  1150. Vector3 support_a = p_transform_a.xform(Vector3(
  1151. (cnormal_a.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
  1152. (cnormal_a.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
  1153. (cnormal_a.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
  1154. Vector3 axis_ab = support_a - vtxb;
  1155. if (!separator.test_axis(axis_ab.normalized())) {
  1156. return;
  1157. }
  1158. //now try edges, which become cylinders!
  1159. for (int i = 0; i < 3; i++) {
  1160. //a ->b
  1161. Vector3 axis_a = p_transform_a.basis.get_column(i);
  1162. if (!separator.test_axis(axis_ab.cross(axis_a).cross(axis_a).normalized())) {
  1163. return;
  1164. }
  1165. }
  1166. }
  1167. //convex edges and box points
  1168. for (int i = 0; i < 2; i++) {
  1169. for (int j = 0; j < 2; j++) {
  1170. for (int k = 0; k < 2; k++) {
  1171. Vector3 he = box_A->get_half_extents();
  1172. he.x *= (i * 2 - 1);
  1173. he.y *= (j * 2 - 1);
  1174. he.z *= (k * 2 - 1);
  1175. Vector3 point = p_transform_a.origin;
  1176. for (int l = 0; l < 3; l++) {
  1177. point += p_transform_a.basis.get_column(l) * he[l];
  1178. }
  1179. for (int e = 0; e < edge_count; e++) {
  1180. Vector3 p1 = p_transform_b.xform(vertices[edges[e].vertex_a]);
  1181. Vector3 p2 = p_transform_b.xform(vertices[edges[e].vertex_b]);
  1182. Vector3 n = (p2 - p1);
  1183. if (!separator.test_axis((point - p2).cross(n).cross(n).normalized())) {
  1184. return;
  1185. }
  1186. }
  1187. }
  1188. }
  1189. }
  1190. }
  1191. separator.generate_contacts();
  1192. }
  1193. template <bool withMargin>
  1194. static void _collision_box_face(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1195. const GodotBoxShape3D *box_A = static_cast<const GodotBoxShape3D *>(p_a);
  1196. const GodotFaceShape3D *face_B = static_cast<const GodotFaceShape3D *>(p_b);
  1197. SeparatorAxisTest<GodotBoxShape3D, GodotFaceShape3D, withMargin> separator(box_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1198. Vector3 vertex[3] = {
  1199. p_transform_b.xform(face_B->vertex[0]),
  1200. p_transform_b.xform(face_B->vertex[1]),
  1201. p_transform_b.xform(face_B->vertex[2]),
  1202. };
  1203. Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
  1204. if (!separator.test_axis(normal)) {
  1205. return;
  1206. }
  1207. // faces of A
  1208. for (int i = 0; i < 3; i++) {
  1209. Vector3 axis = p_transform_a.basis.get_column(i).normalized();
  1210. if (axis.dot(normal) < 0.0) {
  1211. axis *= -1.0;
  1212. }
  1213. if (!separator.test_axis(axis)) {
  1214. return;
  1215. }
  1216. }
  1217. // combined edges
  1218. for (int i = 0; i < 3; i++) {
  1219. Vector3 e = vertex[i] - vertex[(i + 1) % 3];
  1220. for (int j = 0; j < 3; j++) {
  1221. Vector3 axis = e.cross(p_transform_a.basis.get_column(j)).normalized();
  1222. if (axis.dot(normal) < 0.0) {
  1223. axis *= -1.0;
  1224. }
  1225. if (!separator.test_axis(axis)) {
  1226. return;
  1227. }
  1228. }
  1229. }
  1230. if (withMargin) {
  1231. // calculate closest points between vertices and box edges
  1232. for (int v = 0; v < 3; v++) {
  1233. Vector3 ab_vec = vertex[v] - p_transform_a.origin;
  1234. Vector3 cnormal_a = p_transform_a.basis.xform_inv(ab_vec);
  1235. Vector3 support_a = p_transform_a.xform(Vector3(
  1236. (cnormal_a.x < 0) ? -box_A->get_half_extents().x : box_A->get_half_extents().x,
  1237. (cnormal_a.y < 0) ? -box_A->get_half_extents().y : box_A->get_half_extents().y,
  1238. (cnormal_a.z < 0) ? -box_A->get_half_extents().z : box_A->get_half_extents().z));
  1239. Vector3 axis_ab = support_a - vertex[v];
  1240. if (axis_ab.dot(normal) < 0.0) {
  1241. axis_ab *= -1.0;
  1242. }
  1243. if (!separator.test_axis(axis_ab.normalized())) {
  1244. return;
  1245. }
  1246. //now try edges, which become cylinders!
  1247. for (int i = 0; i < 3; i++) {
  1248. //a ->b
  1249. Vector3 axis_a = p_transform_a.basis.get_column(i);
  1250. Vector3 axis = axis_ab.cross(axis_a).cross(axis_a).normalized();
  1251. if (axis.dot(normal) < 0.0) {
  1252. axis *= -1.0;
  1253. }
  1254. if (!separator.test_axis(axis)) {
  1255. return;
  1256. }
  1257. }
  1258. }
  1259. //convex edges and box points, there has to be a way to speed up this (get closest point?)
  1260. for (int i = 0; i < 2; i++) {
  1261. for (int j = 0; j < 2; j++) {
  1262. for (int k = 0; k < 2; k++) {
  1263. Vector3 he = box_A->get_half_extents();
  1264. he.x *= (i * 2 - 1);
  1265. he.y *= (j * 2 - 1);
  1266. he.z *= (k * 2 - 1);
  1267. Vector3 point = p_transform_a.origin;
  1268. for (int l = 0; l < 3; l++) {
  1269. point += p_transform_a.basis.get_column(l) * he[l];
  1270. }
  1271. for (int e = 0; e < 3; e++) {
  1272. Vector3 p1 = vertex[e];
  1273. Vector3 p2 = vertex[(e + 1) % 3];
  1274. Vector3 n = (p2 - p1);
  1275. Vector3 axis = (point - p2).cross(n).cross(n).normalized();
  1276. if (axis.dot(normal) < 0.0) {
  1277. axis *= -1.0;
  1278. }
  1279. if (!separator.test_axis(axis)) {
  1280. return;
  1281. }
  1282. }
  1283. }
  1284. }
  1285. }
  1286. }
  1287. if (!face_B->backface_collision) {
  1288. if (separator.best_axis.dot(normal) < _BACKFACE_NORMAL_THRESHOLD) {
  1289. if (face_B->invert_backface_collision) {
  1290. separator.best_axis = separator.best_axis.bounce(normal);
  1291. } else {
  1292. // Just ignore backface collision.
  1293. return;
  1294. }
  1295. }
  1296. }
  1297. separator.generate_contacts();
  1298. }
  1299. template <bool withMargin>
  1300. static void _collision_capsule_capsule(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1301. const GodotCapsuleShape3D *capsule_A = static_cast<const GodotCapsuleShape3D *>(p_a);
  1302. const GodotCapsuleShape3D *capsule_B = static_cast<const GodotCapsuleShape3D *>(p_b);
  1303. real_t scale_A = p_transform_a.basis[0].length();
  1304. real_t scale_B = p_transform_b.basis[0].length();
  1305. // Get the closest points between the capsule segments
  1306. Vector3 capsule_A_closest;
  1307. Vector3 capsule_B_closest;
  1308. Vector3 capsule_A_axis = p_transform_a.basis.get_column(1) * (capsule_A->get_height() * 0.5 - capsule_A->get_radius());
  1309. Vector3 capsule_B_axis = p_transform_b.basis.get_column(1) * (capsule_B->get_height() * 0.5 - capsule_B->get_radius());
  1310. Geometry3D::get_closest_points_between_segments(
  1311. p_transform_a.origin + capsule_A_axis,
  1312. p_transform_a.origin - capsule_A_axis,
  1313. p_transform_b.origin + capsule_B_axis,
  1314. p_transform_b.origin - capsule_B_axis,
  1315. capsule_A_closest,
  1316. capsule_B_closest);
  1317. // Perform the analytic collision between the two closest capsule spheres
  1318. analytic_sphere_collision<withMargin>(
  1319. capsule_A_closest,
  1320. capsule_A->get_radius() * scale_A,
  1321. capsule_B_closest,
  1322. capsule_B->get_radius() * scale_B,
  1323. p_collector,
  1324. p_margin_a,
  1325. p_margin_b);
  1326. }
  1327. template <bool withMargin>
  1328. static void _collision_capsule_cylinder(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1329. const GodotCapsuleShape3D *capsule_A = static_cast<const GodotCapsuleShape3D *>(p_a);
  1330. const GodotCylinderShape3D *cylinder_B = static_cast<const GodotCylinderShape3D *>(p_b);
  1331. // Find the closest points between the axes of the two objects.
  1332. Vector3 capsule_A_closest;
  1333. Vector3 cylinder_B_closest;
  1334. Vector3 capsule_A_axis = p_transform_a.basis.get_column(1) * (capsule_A->get_height() * 0.5 - capsule_A->get_radius());
  1335. Vector3 cylinder_B_axis = p_transform_b.basis.get_column(1) * (cylinder_B->get_height() * 0.5);
  1336. Geometry3D::get_closest_points_between_segments(
  1337. p_transform_a.origin + capsule_A_axis,
  1338. p_transform_a.origin - capsule_A_axis,
  1339. p_transform_b.origin + cylinder_B_axis,
  1340. p_transform_b.origin - cylinder_B_axis,
  1341. capsule_A_closest,
  1342. cylinder_B_closest);
  1343. // Perform the collision test between the cylinder and the nearest sphere on the capsule axis.
  1344. Transform3D sphere_transform(p_transform_a.basis, capsule_A_closest);
  1345. analytic_sphere_cylinder_collision<withMargin>(capsule_A->get_radius(), cylinder_B->get_radius(), cylinder_B->get_height(), sphere_transform, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1346. }
  1347. template <bool withMargin>
  1348. static void _collision_capsule_convex_polygon(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1349. const GodotCapsuleShape3D *capsule_A = static_cast<const GodotCapsuleShape3D *>(p_a);
  1350. const GodotConvexPolygonShape3D *convex_polygon_B = static_cast<const GodotConvexPolygonShape3D *>(p_b);
  1351. SeparatorAxisTest<GodotCapsuleShape3D, GodotConvexPolygonShape3D, withMargin> separator(capsule_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1352. if (!separator.test_previous_axis()) {
  1353. return;
  1354. }
  1355. const Geometry3D::MeshData &mesh = convex_polygon_B->get_mesh();
  1356. const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
  1357. int face_count = mesh.faces.size();
  1358. const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
  1359. int edge_count = mesh.edges.size();
  1360. const Vector3 *vertices = mesh.vertices.ptr();
  1361. // Precalculating this makes the transforms faster.
  1362. Basis b_xform_normal = p_transform_b.basis.inverse().transposed();
  1363. // faces of B
  1364. for (int i = 0; i < face_count; i++) {
  1365. Vector3 axis = b_xform_normal.xform(faces[i].plane.normal).normalized();
  1366. if (!separator.test_axis(axis)) {
  1367. return;
  1368. }
  1369. }
  1370. // edges of B, capsule cylinder
  1371. for (int i = 0; i < edge_count; i++) {
  1372. // cylinder
  1373. Vector3 edge_axis = p_transform_b.basis.xform(vertices[edges[i].vertex_a]) - p_transform_b.basis.xform(vertices[edges[i].vertex_b]);
  1374. Vector3 axis = edge_axis.cross(p_transform_a.basis.get_column(1)).normalized();
  1375. if (!separator.test_axis(axis)) {
  1376. return;
  1377. }
  1378. }
  1379. // capsule balls, edges of B
  1380. for (int i = 0; i < 2; i++) {
  1381. // edges of B, capsule cylinder
  1382. Vector3 capsule_axis = p_transform_a.basis.get_column(1) * (capsule_A->get_height() * 0.5 - capsule_A->get_radius());
  1383. Vector3 sphere_pos = p_transform_a.origin + ((i == 0) ? capsule_axis : -capsule_axis);
  1384. for (int j = 0; j < edge_count; j++) {
  1385. Vector3 n1 = sphere_pos - p_transform_b.xform(vertices[edges[j].vertex_a]);
  1386. Vector3 n2 = p_transform_b.basis.xform(vertices[edges[j].vertex_a]) - p_transform_b.basis.xform(vertices[edges[j].vertex_b]);
  1387. Vector3 axis = n1.cross(n2).cross(n2).normalized();
  1388. if (!separator.test_axis(axis)) {
  1389. return;
  1390. }
  1391. }
  1392. }
  1393. separator.generate_contacts();
  1394. }
  1395. template <bool withMargin>
  1396. static void _collision_capsule_face(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1397. const GodotCapsuleShape3D *capsule_A = static_cast<const GodotCapsuleShape3D *>(p_a);
  1398. const GodotFaceShape3D *face_B = static_cast<const GodotFaceShape3D *>(p_b);
  1399. SeparatorAxisTest<GodotCapsuleShape3D, GodotFaceShape3D, withMargin> separator(capsule_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1400. Vector3 vertex[3] = {
  1401. p_transform_b.xform(face_B->vertex[0]),
  1402. p_transform_b.xform(face_B->vertex[1]),
  1403. p_transform_b.xform(face_B->vertex[2]),
  1404. };
  1405. Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
  1406. if (!separator.test_axis(normal)) {
  1407. return;
  1408. }
  1409. // edges of B, capsule cylinder
  1410. Vector3 capsule_axis = p_transform_a.basis.get_column(1) * (capsule_A->get_height() * 0.5 - capsule_A->get_radius());
  1411. for (int i = 0; i < 3; i++) {
  1412. // edge-cylinder
  1413. Vector3 edge_axis = vertex[i] - vertex[(i + 1) % 3];
  1414. Vector3 axis = edge_axis.cross(capsule_axis).normalized();
  1415. if (axis.dot(normal) < 0.0) {
  1416. axis *= -1.0;
  1417. }
  1418. if (!separator.test_axis(axis)) {
  1419. return;
  1420. }
  1421. Vector3 dir_axis = (p_transform_a.origin - vertex[i]).cross(capsule_axis).cross(capsule_axis).normalized();
  1422. if (dir_axis.dot(normal) < 0.0) {
  1423. dir_axis *= -1.0;
  1424. }
  1425. if (!separator.test_axis(dir_axis)) {
  1426. return;
  1427. }
  1428. for (int j = 0; j < 2; j++) {
  1429. // point-spheres
  1430. Vector3 sphere_pos = p_transform_a.origin + ((j == 0) ? capsule_axis : -capsule_axis);
  1431. Vector3 n1 = sphere_pos - vertex[i];
  1432. if (n1.dot(normal) < 0.0) {
  1433. n1 *= -1.0;
  1434. }
  1435. if (!separator.test_axis(n1.normalized())) {
  1436. return;
  1437. }
  1438. Vector3 n2 = edge_axis;
  1439. axis = n1.cross(n2).cross(n2);
  1440. if (axis.dot(normal) < 0.0) {
  1441. axis *= -1.0;
  1442. }
  1443. if (!separator.test_axis(axis.normalized())) {
  1444. return;
  1445. }
  1446. }
  1447. }
  1448. if (!face_B->backface_collision) {
  1449. if (separator.best_axis.dot(normal) < _BACKFACE_NORMAL_THRESHOLD) {
  1450. if (face_B->invert_backface_collision) {
  1451. separator.best_axis = separator.best_axis.bounce(normal);
  1452. } else {
  1453. // Just ignore backface collision.
  1454. return;
  1455. }
  1456. }
  1457. }
  1458. separator.generate_contacts();
  1459. }
  1460. template <bool withMargin>
  1461. static void _collision_cylinder_cylinder(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1462. const GodotCylinderShape3D *cylinder_A = static_cast<const GodotCylinderShape3D *>(p_a);
  1463. const GodotCylinderShape3D *cylinder_B = static_cast<const GodotCylinderShape3D *>(p_b);
  1464. SeparatorAxisTest<GodotCylinderShape3D, GodotCylinderShape3D, withMargin> separator(cylinder_A, p_transform_a, cylinder_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1465. Vector3 cylinder_A_axis = p_transform_a.basis.get_column(1);
  1466. Vector3 cylinder_B_axis = p_transform_b.basis.get_column(1);
  1467. if (!separator.test_previous_axis()) {
  1468. return;
  1469. }
  1470. // Cylinder A end caps.
  1471. if (!separator.test_axis(cylinder_A_axis.normalized())) {
  1472. return;
  1473. }
  1474. // Cylinder B end caps.
  1475. if (!separator.test_axis(cylinder_B_axis.normalized())) {
  1476. return;
  1477. }
  1478. Vector3 cylinder_diff = p_transform_b.origin - p_transform_a.origin;
  1479. // Cylinder A lateral surface.
  1480. if (!separator.test_axis(cylinder_A_axis.cross(cylinder_diff).cross(cylinder_A_axis).normalized())) {
  1481. return;
  1482. }
  1483. // Cylinder B lateral surface.
  1484. if (!separator.test_axis(cylinder_B_axis.cross(cylinder_diff).cross(cylinder_B_axis).normalized())) {
  1485. return;
  1486. }
  1487. real_t proj = cylinder_A_axis.cross(cylinder_B_axis).cross(cylinder_B_axis).dot(cylinder_A_axis);
  1488. if (Math::is_zero_approx(proj)) {
  1489. // Parallel cylinders, handle with specific axes only.
  1490. // Note: GJKEPA with no margin can lead to degenerate cases in this situation.
  1491. separator.generate_contacts();
  1492. return;
  1493. }
  1494. GodotCollisionSolver3D::CallbackResult callback = SeparatorAxisTest<GodotCylinderShape3D, GodotCylinderShape3D, withMargin>::test_contact_points;
  1495. // Fallback to generic algorithm to find the best separating axis.
  1496. if (!fallback_collision_solver(p_a, p_transform_a, p_b, p_transform_b, callback, &separator, false, p_margin_a, p_margin_b)) {
  1497. return;
  1498. }
  1499. separator.generate_contacts();
  1500. }
  1501. template <bool withMargin>
  1502. static void _collision_cylinder_convex_polygon(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1503. const GodotCylinderShape3D *cylinder_A = static_cast<const GodotCylinderShape3D *>(p_a);
  1504. const GodotConvexPolygonShape3D *convex_polygon_B = static_cast<const GodotConvexPolygonShape3D *>(p_b);
  1505. SeparatorAxisTest<GodotCylinderShape3D, GodotConvexPolygonShape3D, withMargin> separator(cylinder_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1506. GodotCollisionSolver3D::CallbackResult callback = SeparatorAxisTest<GodotCylinderShape3D, GodotConvexPolygonShape3D, withMargin>::test_contact_points;
  1507. // Fallback to generic algorithm to find the best separating axis.
  1508. if (!fallback_collision_solver(p_a, p_transform_a, p_b, p_transform_b, callback, &separator, false, p_margin_a, p_margin_b)) {
  1509. return;
  1510. }
  1511. separator.generate_contacts();
  1512. }
  1513. template <bool withMargin>
  1514. static void _collision_cylinder_face(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1515. const GodotCylinderShape3D *cylinder_A = static_cast<const GodotCylinderShape3D *>(p_a);
  1516. const GodotFaceShape3D *face_B = static_cast<const GodotFaceShape3D *>(p_b);
  1517. SeparatorAxisTest<GodotCylinderShape3D, GodotFaceShape3D, withMargin> separator(cylinder_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1518. if (!separator.test_previous_axis()) {
  1519. return;
  1520. }
  1521. Vector3 vertex[3] = {
  1522. p_transform_b.xform(face_B->vertex[0]),
  1523. p_transform_b.xform(face_B->vertex[1]),
  1524. p_transform_b.xform(face_B->vertex[2]),
  1525. };
  1526. Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
  1527. // Face B normal.
  1528. if (!separator.test_axis(normal)) {
  1529. return;
  1530. }
  1531. Vector3 cyl_axis = p_transform_a.basis.get_column(1).normalized();
  1532. if (cyl_axis.dot(normal) < 0.0) {
  1533. cyl_axis *= -1.0;
  1534. }
  1535. // Cylinder end caps.
  1536. if (!separator.test_axis(cyl_axis)) {
  1537. return;
  1538. }
  1539. // Edges of B, cylinder lateral surface.
  1540. for (int i = 0; i < 3; i++) {
  1541. Vector3 edge_axis = vertex[i] - vertex[(i + 1) % 3];
  1542. Vector3 axis = edge_axis.cross(cyl_axis);
  1543. if (Math::is_zero_approx(axis.length_squared())) {
  1544. continue;
  1545. }
  1546. if (axis.dot(normal) < 0.0) {
  1547. axis *= -1.0;
  1548. }
  1549. if (!separator.test_axis(axis.normalized())) {
  1550. return;
  1551. }
  1552. }
  1553. // Points of B, cylinder lateral surface.
  1554. for (int i = 0; i < 3; i++) {
  1555. const Vector3 point = vertex[i] - p_transform_a.origin;
  1556. Vector3 axis = Plane(cyl_axis).project(point).normalized();
  1557. if (axis.dot(normal) < 0.0) {
  1558. axis *= -1.0;
  1559. }
  1560. if (!separator.test_axis(axis)) {
  1561. return;
  1562. }
  1563. }
  1564. // Edges of B, cylinder end caps rim.
  1565. Vector3 cap_axis = cyl_axis * (cylinder_A->get_height() * 0.5);
  1566. for (int i = 0; i < 2; i++) {
  1567. Vector3 cap_pos = p_transform_a.origin + ((i == 0) ? cap_axis : -cap_axis);
  1568. for (int j = 0; j < 3; j++) {
  1569. const Vector3 &edge_start = vertex[j];
  1570. const Vector3 &edge_end = vertex[(j + 1) % 3];
  1571. Vector3 edge_dir = edge_end - edge_start;
  1572. edge_dir.normalize();
  1573. real_t edge_dot = edge_dir.dot(cyl_axis);
  1574. if (Math::is_zero_approx(edge_dot)) {
  1575. // Edge is perpendicular to cylinder axis.
  1576. continue;
  1577. }
  1578. // Calculate intersection between edge and circle plane.
  1579. Vector3 edge_diff = cap_pos - edge_start;
  1580. real_t diff_dot = edge_diff.dot(cyl_axis);
  1581. Vector3 intersection = edge_start + edge_dir * diff_dot / edge_dot;
  1582. // Calculate tangent that touches intersection.
  1583. Vector3 tangent = (cap_pos - intersection).cross(cyl_axis);
  1584. // Axis is orthogonal both to tangent and edge direction.
  1585. Vector3 axis = tangent.cross(edge_dir);
  1586. if (axis.dot(normal) < 0.0) {
  1587. axis *= -1.0;
  1588. }
  1589. if (!separator.test_axis(axis.normalized())) {
  1590. return;
  1591. }
  1592. }
  1593. }
  1594. if (!face_B->backface_collision) {
  1595. if (separator.best_axis.dot(normal) < _BACKFACE_NORMAL_THRESHOLD) {
  1596. if (face_B->invert_backface_collision) {
  1597. separator.best_axis = separator.best_axis.bounce(normal);
  1598. } else {
  1599. // Just ignore backface collision.
  1600. return;
  1601. }
  1602. }
  1603. }
  1604. separator.generate_contacts();
  1605. }
  1606. static _FORCE_INLINE_ bool is_minkowski_face(const Vector3 &A, const Vector3 &B, const Vector3 &B_x_A, const Vector3 &C, const Vector3 &D, const Vector3 &D_x_C) {
  1607. // Test if arcs AB and CD intersect on the unit sphere
  1608. real_t CBA = C.dot(B_x_A);
  1609. real_t DBA = D.dot(B_x_A);
  1610. real_t ADC = A.dot(D_x_C);
  1611. real_t BDC = B.dot(D_x_C);
  1612. return (CBA * DBA < 0.0f) && (ADC * BDC < 0.0f) && (CBA * BDC > 0.0f);
  1613. }
  1614. template <bool withMargin>
  1615. static void _collision_convex_polygon_convex_polygon(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1616. const GodotConvexPolygonShape3D *convex_polygon_A = static_cast<const GodotConvexPolygonShape3D *>(p_a);
  1617. const GodotConvexPolygonShape3D *convex_polygon_B = static_cast<const GodotConvexPolygonShape3D *>(p_b);
  1618. SeparatorAxisTest<GodotConvexPolygonShape3D, GodotConvexPolygonShape3D, withMargin> separator(convex_polygon_A, p_transform_a, convex_polygon_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1619. if (!separator.test_previous_axis()) {
  1620. return;
  1621. }
  1622. const Geometry3D::MeshData &mesh_A = convex_polygon_A->get_mesh();
  1623. const Geometry3D::MeshData::Face *faces_A = mesh_A.faces.ptr();
  1624. int face_count_A = mesh_A.faces.size();
  1625. const Geometry3D::MeshData::Edge *edges_A = mesh_A.edges.ptr();
  1626. int edge_count_A = mesh_A.edges.size();
  1627. const Vector3 *vertices_A = mesh_A.vertices.ptr();
  1628. int vertex_count_A = mesh_A.vertices.size();
  1629. const Geometry3D::MeshData &mesh_B = convex_polygon_B->get_mesh();
  1630. const Geometry3D::MeshData::Face *faces_B = mesh_B.faces.ptr();
  1631. int face_count_B = mesh_B.faces.size();
  1632. const Geometry3D::MeshData::Edge *edges_B = mesh_B.edges.ptr();
  1633. int edge_count_B = mesh_B.edges.size();
  1634. const Vector3 *vertices_B = mesh_B.vertices.ptr();
  1635. int vertex_count_B = mesh_B.vertices.size();
  1636. // Precalculating this makes the transforms faster.
  1637. Basis a_xform_normal = p_transform_a.basis.inverse().transposed();
  1638. // faces of A
  1639. for (int i = 0; i < face_count_A; i++) {
  1640. Vector3 axis = a_xform_normal.xform(faces_A[i].plane.normal).normalized();
  1641. if (!separator.test_axis(axis)) {
  1642. return;
  1643. }
  1644. }
  1645. // Precalculating this makes the transforms faster.
  1646. Basis b_xform_normal = p_transform_b.basis.inverse().transposed();
  1647. // faces of B
  1648. for (int i = 0; i < face_count_B; i++) {
  1649. Vector3 axis = b_xform_normal.xform(faces_B[i].plane.normal).normalized();
  1650. if (!separator.test_axis(axis)) {
  1651. return;
  1652. }
  1653. }
  1654. // A<->B edges
  1655. for (int i = 0; i < edge_count_A; i++) {
  1656. Vector3 p1 = p_transform_a.xform(vertices_A[edges_A[i].vertex_a]);
  1657. Vector3 q1 = p_transform_a.xform(vertices_A[edges_A[i].vertex_b]);
  1658. Vector3 e1 = q1 - p1;
  1659. Vector3 u1 = p_transform_a.basis.xform(faces_A[edges_A[i].face_a].plane.normal).normalized();
  1660. Vector3 v1 = p_transform_a.basis.xform(faces_A[edges_A[i].face_b].plane.normal).normalized();
  1661. for (int j = 0; j < edge_count_B; j++) {
  1662. Vector3 p2 = p_transform_b.xform(vertices_B[edges_B[j].vertex_a]);
  1663. Vector3 q2 = p_transform_b.xform(vertices_B[edges_B[j].vertex_b]);
  1664. Vector3 e2 = q2 - p2;
  1665. Vector3 u2 = p_transform_b.basis.xform(faces_B[edges_B[j].face_a].plane.normal).normalized();
  1666. Vector3 v2 = p_transform_b.basis.xform(faces_B[edges_B[j].face_b].plane.normal).normalized();
  1667. if (is_minkowski_face(u1, v1, -e1, -u2, -v2, -e2)) {
  1668. Vector3 axis = e1.cross(e2).normalized();
  1669. if (!separator.test_axis(axis)) {
  1670. return;
  1671. }
  1672. }
  1673. }
  1674. }
  1675. if (withMargin) {
  1676. //vertex-vertex
  1677. for (int i = 0; i < vertex_count_A; i++) {
  1678. Vector3 va = p_transform_a.xform(vertices_A[i]);
  1679. for (int j = 0; j < vertex_count_B; j++) {
  1680. if (!separator.test_axis((va - p_transform_b.xform(vertices_B[j])).normalized())) {
  1681. return;
  1682. }
  1683. }
  1684. }
  1685. //edge-vertex (shell)
  1686. for (int i = 0; i < edge_count_A; i++) {
  1687. Vector3 e1 = p_transform_a.basis.xform(vertices_A[edges_A[i].vertex_a]);
  1688. Vector3 e2 = p_transform_a.basis.xform(vertices_A[edges_A[i].vertex_b]);
  1689. Vector3 n = (e2 - e1);
  1690. for (int j = 0; j < vertex_count_B; j++) {
  1691. Vector3 e3 = p_transform_b.xform(vertices_B[j]);
  1692. if (!separator.test_axis((e1 - e3).cross(n).cross(n).normalized())) {
  1693. return;
  1694. }
  1695. }
  1696. }
  1697. for (int i = 0; i < edge_count_B; i++) {
  1698. Vector3 e1 = p_transform_b.basis.xform(vertices_B[edges_B[i].vertex_a]);
  1699. Vector3 e2 = p_transform_b.basis.xform(vertices_B[edges_B[i].vertex_b]);
  1700. Vector3 n = (e2 - e1);
  1701. for (int j = 0; j < vertex_count_A; j++) {
  1702. Vector3 e3 = p_transform_a.xform(vertices_A[j]);
  1703. if (!separator.test_axis((e1 - e3).cross(n).cross(n).normalized())) {
  1704. return;
  1705. }
  1706. }
  1707. }
  1708. }
  1709. separator.generate_contacts();
  1710. }
  1711. template <bool withMargin>
  1712. static void _collision_convex_polygon_face(const GodotShape3D *p_a, const Transform3D &p_transform_a, const GodotShape3D *p_b, const Transform3D &p_transform_b, _CollectorCallback *p_collector, real_t p_margin_a, real_t p_margin_b) {
  1713. const GodotConvexPolygonShape3D *convex_polygon_A = static_cast<const GodotConvexPolygonShape3D *>(p_a);
  1714. const GodotFaceShape3D *face_B = static_cast<const GodotFaceShape3D *>(p_b);
  1715. SeparatorAxisTest<GodotConvexPolygonShape3D, GodotFaceShape3D, withMargin> separator(convex_polygon_A, p_transform_a, face_B, p_transform_b, p_collector, p_margin_a, p_margin_b);
  1716. const Geometry3D::MeshData &mesh = convex_polygon_A->get_mesh();
  1717. const Geometry3D::MeshData::Face *faces = mesh.faces.ptr();
  1718. int face_count = mesh.faces.size();
  1719. const Geometry3D::MeshData::Edge *edges = mesh.edges.ptr();
  1720. int edge_count = mesh.edges.size();
  1721. const Vector3 *vertices = mesh.vertices.ptr();
  1722. int vertex_count = mesh.vertices.size();
  1723. Vector3 vertex[3] = {
  1724. p_transform_b.xform(face_B->vertex[0]),
  1725. p_transform_b.xform(face_B->vertex[1]),
  1726. p_transform_b.xform(face_B->vertex[2]),
  1727. };
  1728. Vector3 normal = (vertex[0] - vertex[2]).cross(vertex[0] - vertex[1]).normalized();
  1729. if (!separator.test_axis(normal)) {
  1730. return;
  1731. }
  1732. // faces of A
  1733. for (int i = 0; i < face_count; i++) {
  1734. //Vector3 axis = p_transform_a.xform( faces[i].plane ).normal;
  1735. Vector3 axis = p_transform_a.basis.xform(faces[i].plane.normal).normalized();
  1736. if (axis.dot(normal) < 0.0) {
  1737. axis *= -1.0;
  1738. }
  1739. if (!separator.test_axis(axis)) {
  1740. return;
  1741. }
  1742. }
  1743. // A<->B edges
  1744. for (int i = 0; i < edge_count; i++) {
  1745. Vector3 e1 = p_transform_a.xform(vertices[edges[i].vertex_a]) - p_transform_a.xform(vertices[edges[i].vertex_b]);
  1746. for (int j = 0; j < 3; j++) {
  1747. Vector3 e2 = vertex[j] - vertex[(j + 1) % 3];
  1748. Vector3 axis = e1.cross(e2).normalized();
  1749. if (axis.dot(normal) < 0.0) {
  1750. axis *= -1.0;
  1751. }
  1752. if (!separator.test_axis(axis)) {
  1753. return;
  1754. }
  1755. }
  1756. }
  1757. if (withMargin) {
  1758. //vertex-vertex
  1759. for (int i = 0; i < vertex_count; i++) {
  1760. Vector3 va = p_transform_a.xform(vertices[i]);
  1761. for (int j = 0; j < 3; j++) {
  1762. Vector3 axis = (va - vertex[j]).normalized();
  1763. if (axis.dot(normal) < 0.0) {
  1764. axis *= -1.0;
  1765. }
  1766. if (!separator.test_axis(axis)) {
  1767. return;
  1768. }
  1769. }
  1770. }
  1771. //edge-vertex (shell)
  1772. for (int i = 0; i < edge_count; i++) {
  1773. Vector3 e1 = p_transform_a.basis.xform(vertices[edges[i].vertex_a]);
  1774. Vector3 e2 = p_transform_a.basis.xform(vertices[edges[i].vertex_b]);
  1775. Vector3 n = (e2 - e1);
  1776. for (int j = 0; j < 3; j++) {
  1777. Vector3 e3 = vertex[j];
  1778. Vector3 axis = (e1 - e3).cross(n).cross(n).normalized();
  1779. if (axis.dot(normal) < 0.0) {
  1780. axis *= -1.0;
  1781. }
  1782. if (!separator.test_axis(axis)) {
  1783. return;
  1784. }
  1785. }
  1786. }
  1787. for (int i = 0; i < 3; i++) {
  1788. Vector3 e1 = vertex[i];
  1789. Vector3 e2 = vertex[(i + 1) % 3];
  1790. Vector3 n = (e2 - e1);
  1791. for (int j = 0; j < vertex_count; j++) {
  1792. Vector3 e3 = p_transform_a.xform(vertices[j]);
  1793. Vector3 axis = (e1 - e3).cross(n).cross(n).normalized();
  1794. if (axis.dot(normal) < 0.0) {
  1795. axis *= -1.0;
  1796. }
  1797. if (!separator.test_axis(axis)) {
  1798. return;
  1799. }
  1800. }
  1801. }
  1802. }
  1803. if (!face_B->backface_collision) {
  1804. if (separator.best_axis.dot(normal) < _BACKFACE_NORMAL_THRESHOLD) {
  1805. if (face_B->invert_backface_collision) {
  1806. separator.best_axis = separator.best_axis.bounce(normal);
  1807. } else {
  1808. // Just ignore backface collision.
  1809. return;
  1810. }
  1811. }
  1812. }
  1813. separator.generate_contacts();
  1814. }
  1815. bool sat_calculate_penetration(const GodotShape3D *p_shape_A, const Transform3D &p_transform_A, const GodotShape3D *p_shape_B, const Transform3D &p_transform_B, GodotCollisionSolver3D::CallbackResult p_result_callback, void *p_userdata, bool p_swap, Vector3 *r_prev_axis, real_t p_margin_a, real_t p_margin_b) {
  1816. PhysicsServer3D::ShapeType type_A = p_shape_A->get_type();
  1817. ERR_FAIL_COND_V(type_A == PhysicsServer3D::SHAPE_WORLD_BOUNDARY, false);
  1818. ERR_FAIL_COND_V(type_A == PhysicsServer3D::SHAPE_SEPARATION_RAY, false);
  1819. ERR_FAIL_COND_V(p_shape_A->is_concave(), false);
  1820. PhysicsServer3D::ShapeType type_B = p_shape_B->get_type();
  1821. ERR_FAIL_COND_V(type_B == PhysicsServer3D::SHAPE_WORLD_BOUNDARY, false);
  1822. ERR_FAIL_COND_V(type_B == PhysicsServer3D::SHAPE_SEPARATION_RAY, false);
  1823. ERR_FAIL_COND_V(p_shape_B->is_concave(), false);
  1824. static const CollisionFunc collision_table[6][6] = {
  1825. { _collision_sphere_sphere<false>,
  1826. _collision_sphere_box<false>,
  1827. _collision_sphere_capsule<false>,
  1828. _collision_sphere_cylinder<false>,
  1829. _collision_sphere_convex_polygon<false>,
  1830. _collision_sphere_face<false> },
  1831. { nullptr,
  1832. _collision_box_box<false>,
  1833. _collision_box_capsule<false>,
  1834. _collision_box_cylinder<false>,
  1835. _collision_box_convex_polygon<false>,
  1836. _collision_box_face<false> },
  1837. { nullptr,
  1838. nullptr,
  1839. _collision_capsule_capsule<false>,
  1840. _collision_capsule_cylinder<false>,
  1841. _collision_capsule_convex_polygon<false>,
  1842. _collision_capsule_face<false> },
  1843. { nullptr,
  1844. nullptr,
  1845. nullptr,
  1846. _collision_cylinder_cylinder<false>,
  1847. _collision_cylinder_convex_polygon<false>,
  1848. _collision_cylinder_face<false> },
  1849. { nullptr,
  1850. nullptr,
  1851. nullptr,
  1852. nullptr,
  1853. _collision_convex_polygon_convex_polygon<false>,
  1854. _collision_convex_polygon_face<false> },
  1855. { nullptr,
  1856. nullptr,
  1857. nullptr,
  1858. nullptr,
  1859. nullptr,
  1860. nullptr },
  1861. };
  1862. static const CollisionFunc collision_table_margin[6][6] = {
  1863. { _collision_sphere_sphere<true>,
  1864. _collision_sphere_box<true>,
  1865. _collision_sphere_capsule<true>,
  1866. _collision_sphere_cylinder<true>,
  1867. _collision_sphere_convex_polygon<true>,
  1868. _collision_sphere_face<true> },
  1869. { nullptr,
  1870. _collision_box_box<true>,
  1871. _collision_box_capsule<true>,
  1872. _collision_box_cylinder<true>,
  1873. _collision_box_convex_polygon<true>,
  1874. _collision_box_face<true> },
  1875. { nullptr,
  1876. nullptr,
  1877. _collision_capsule_capsule<true>,
  1878. _collision_capsule_cylinder<true>,
  1879. _collision_capsule_convex_polygon<true>,
  1880. _collision_capsule_face<true> },
  1881. { nullptr,
  1882. nullptr,
  1883. nullptr,
  1884. _collision_cylinder_cylinder<true>,
  1885. _collision_cylinder_convex_polygon<true>,
  1886. _collision_cylinder_face<true> },
  1887. { nullptr,
  1888. nullptr,
  1889. nullptr,
  1890. nullptr,
  1891. _collision_convex_polygon_convex_polygon<true>,
  1892. _collision_convex_polygon_face<true> },
  1893. { nullptr,
  1894. nullptr,
  1895. nullptr,
  1896. nullptr,
  1897. nullptr,
  1898. nullptr },
  1899. };
  1900. _CollectorCallback callback;
  1901. callback.callback = p_result_callback;
  1902. callback.swap = p_swap;
  1903. callback.userdata = p_userdata;
  1904. callback.collided = false;
  1905. callback.prev_axis = r_prev_axis;
  1906. const GodotShape3D *A = p_shape_A;
  1907. const GodotShape3D *B = p_shape_B;
  1908. const Transform3D *transform_A = &p_transform_A;
  1909. const Transform3D *transform_B = &p_transform_B;
  1910. real_t margin_A = p_margin_a;
  1911. real_t margin_B = p_margin_b;
  1912. if (type_A > type_B) {
  1913. SWAP(A, B);
  1914. SWAP(transform_A, transform_B);
  1915. SWAP(type_A, type_B);
  1916. SWAP(margin_A, margin_B);
  1917. callback.swap = !callback.swap;
  1918. }
  1919. CollisionFunc collision_func;
  1920. if (margin_A != 0.0 || margin_B != 0.0) {
  1921. collision_func = collision_table_margin[type_A - 2][type_B - 2];
  1922. } else {
  1923. collision_func = collision_table[type_A - 2][type_B - 2];
  1924. }
  1925. ERR_FAIL_NULL_V(collision_func, false);
  1926. collision_func(A, *transform_A, B, *transform_B, &callback, margin_A, margin_B);
  1927. return callback.collided;
  1928. }