test_marshalls.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495
  1. /**************************************************************************/
  2. /* test_marshalls.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifndef TEST_MARSHALLS_H
  31. #define TEST_MARSHALLS_H
  32. #include "core/io/marshalls.h"
  33. #include "tests/test_macros.h"
  34. namespace TestMarshalls {
  35. TEST_CASE("[Marshalls] Unsigned 16 bit integer encoding") {
  36. uint8_t arr[2];
  37. unsigned int actual_size = encode_uint16(0x1234, arr);
  38. CHECK(actual_size == sizeof(uint16_t));
  39. CHECK_MESSAGE(arr[0] == 0x34, "First encoded byte value should be equal to low order byte value.");
  40. CHECK_MESSAGE(arr[1] == 0x12, "Last encoded byte value should be equal to high order byte value.");
  41. }
  42. TEST_CASE("[Marshalls] Unsigned 32 bit integer encoding") {
  43. uint8_t arr[4];
  44. unsigned int actual_size = encode_uint32(0x12345678, arr);
  45. CHECK(actual_size == sizeof(uint32_t));
  46. CHECK_MESSAGE(arr[0] == 0x78, "First encoded byte value should be equal to low order byte value.");
  47. CHECK(arr[1] == 0x56);
  48. CHECK(arr[2] == 0x34);
  49. CHECK_MESSAGE(arr[3] == 0x12, "Last encoded byte value should be equal to high order byte value.");
  50. }
  51. TEST_CASE("[Marshalls] Unsigned 64 bit integer encoding") {
  52. uint8_t arr[8];
  53. unsigned int actual_size = encode_uint64(0x0f123456789abcdef, arr);
  54. CHECK(actual_size == sizeof(uint64_t));
  55. CHECK_MESSAGE(arr[0] == 0xef, "First encoded byte value should be equal to low order byte value.");
  56. CHECK(arr[1] == 0xcd);
  57. CHECK(arr[2] == 0xab);
  58. CHECK(arr[3] == 0x89);
  59. CHECK(arr[4] == 0x67);
  60. CHECK(arr[5] == 0x45);
  61. CHECK(arr[6] == 0x23);
  62. CHECK_MESSAGE(arr[7] == 0xf1, "Last encoded byte value should be equal to high order byte value.");
  63. }
  64. TEST_CASE("[Marshalls] Unsigned 16 bit integer decoding") {
  65. uint8_t arr[] = { 0x34, 0x12 };
  66. CHECK(decode_uint16(arr) == 0x1234);
  67. }
  68. TEST_CASE("[Marshalls] Unsigned 32 bit integer decoding") {
  69. uint8_t arr[] = { 0x78, 0x56, 0x34, 0x12 };
  70. CHECK(decode_uint32(arr) == 0x12345678);
  71. }
  72. TEST_CASE("[Marshalls] Unsigned 64 bit integer decoding") {
  73. uint8_t arr[] = { 0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0xf1 };
  74. CHECK(decode_uint64(arr) == 0x0f123456789abcdef);
  75. }
  76. TEST_CASE("[Marshalls] Floating point half precision encoding") {
  77. uint8_t arr[2];
  78. // Decimal: 0.33325195
  79. // IEEE 754 half-precision binary floating-point format:
  80. // sign exponent (5 bits) fraction (10 bits)
  81. // 0 01101 0101010101
  82. // Hexadecimal: 0x3555
  83. unsigned int actual_size = encode_half(0.33325195f, arr);
  84. CHECK(actual_size == sizeof(uint16_t));
  85. CHECK(arr[0] == 0x55);
  86. CHECK(arr[1] == 0x35);
  87. }
  88. TEST_CASE("[Marshalls] Floating point single precision encoding") {
  89. uint8_t arr[4];
  90. // Decimal: 0.15625
  91. // IEEE 754 single-precision binary floating-point format:
  92. // sign exponent (8 bits) fraction (23 bits)
  93. // 0 01111100 01000000000000000000000
  94. // Hexadecimal: 0x3E200000
  95. unsigned int actual_size = encode_float(0.15625f, arr);
  96. CHECK(actual_size == sizeof(uint32_t));
  97. CHECK(arr[0] == 0x00);
  98. CHECK(arr[1] == 0x00);
  99. CHECK(arr[2] == 0x20);
  100. CHECK(arr[3] == 0x3e);
  101. }
  102. TEST_CASE("[Marshalls] Floating point double precision encoding") {
  103. uint8_t arr[8];
  104. // Decimal: 0.333333333333333314829616256247390992939472198486328125
  105. // IEEE 754 double-precision binary floating-point format:
  106. // sign exponent (11 bits) fraction (52 bits)
  107. // 0 01111111101 0101010101010101010101010101010101010101010101010101
  108. // Hexadecimal: 0x3FD5555555555555
  109. unsigned int actual_size = encode_double(0.33333333333333333, arr);
  110. CHECK(actual_size == sizeof(uint64_t));
  111. CHECK(arr[0] == 0x55);
  112. CHECK(arr[1] == 0x55);
  113. CHECK(arr[2] == 0x55);
  114. CHECK(arr[3] == 0x55);
  115. CHECK(arr[4] == 0x55);
  116. CHECK(arr[5] == 0x55);
  117. CHECK(arr[6] == 0xd5);
  118. CHECK(arr[7] == 0x3f);
  119. }
  120. TEST_CASE("[Marshalls] Floating point half precision decoding") {
  121. uint8_t arr[] = { 0x55, 0x35 };
  122. // See floating point half precision encoding test case for details behind expected values.
  123. CHECK(decode_half(arr) == 0.33325195f);
  124. }
  125. TEST_CASE("[Marshalls] Floating point single precision decoding") {
  126. uint8_t arr[] = { 0x00, 0x00, 0x20, 0x3e };
  127. // See floating point encoding test case for details behind expected values
  128. CHECK(decode_float(arr) == 0.15625f);
  129. }
  130. TEST_CASE("[Marshalls] Floating point double precision decoding") {
  131. uint8_t arr[] = { 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0xd5, 0x3f };
  132. // See floating point encoding test case for details behind expected values
  133. CHECK(decode_double(arr) == 0.33333333333333333);
  134. }
  135. TEST_CASE("[Marshalls] C string encoding") {
  136. char cstring[] = "Godot"; // 5 characters
  137. uint8_t data[6];
  138. int actual_size = encode_cstring(cstring, data);
  139. CHECK(actual_size == 6);
  140. CHECK(data[0] == 'G');
  141. CHECK(data[1] == 'o');
  142. CHECK(data[2] == 'd');
  143. CHECK(data[3] == 'o');
  144. CHECK(data[4] == 't');
  145. CHECK(data[5] == '\0');
  146. }
  147. TEST_CASE("[Marshalls] NIL Variant encoding") {
  148. int r_len;
  149. Variant variant;
  150. uint8_t buffer[4];
  151. CHECK(encode_variant(variant, buffer, r_len) == OK);
  152. CHECK_MESSAGE(r_len == 4, "Length == 4 bytes for header.");
  153. CHECK_MESSAGE(buffer[0] == 0x00, "Variant::NIL");
  154. CHECK(buffer[1] == 0x00);
  155. CHECK(buffer[2] == 0x00);
  156. CHECK(buffer[3] == 0x00);
  157. // No value
  158. }
  159. TEST_CASE("[Marshalls] INT 32 bit Variant encoding") {
  160. int r_len;
  161. Variant variant(0x12345678);
  162. uint8_t buffer[8];
  163. CHECK(encode_variant(variant, buffer, r_len) == OK);
  164. CHECK_MESSAGE(r_len == 8, "Length == 4 bytes for header + 4 bytes for `int32_t`.");
  165. CHECK_MESSAGE(buffer[0] == 0x02, "Variant::INT");
  166. CHECK(buffer[1] == 0x00);
  167. CHECK(buffer[2] == 0x00);
  168. CHECK(buffer[3] == 0x00);
  169. // Check value
  170. CHECK(buffer[4] == 0x78);
  171. CHECK(buffer[5] == 0x56);
  172. CHECK(buffer[6] == 0x34);
  173. CHECK(buffer[7] == 0x12);
  174. }
  175. TEST_CASE("[Marshalls] INT 64 bit Variant encoding") {
  176. int r_len;
  177. Variant variant(uint64_t(0x0f123456789abcdef));
  178. uint8_t buffer[12];
  179. CHECK(encode_variant(variant, buffer, r_len) == OK);
  180. CHECK_MESSAGE(r_len == 12, "Length == 4 bytes for header + 8 bytes for `int64_t`.");
  181. CHECK_MESSAGE(buffer[0] == 0x02, "Variant::INT");
  182. CHECK(buffer[1] == 0x00);
  183. CHECK_MESSAGE(buffer[2] == 0x01, "HEADER_DATA_FLAG_64");
  184. CHECK(buffer[3] == 0x00);
  185. // Check value
  186. CHECK(buffer[4] == 0xef);
  187. CHECK(buffer[5] == 0xcd);
  188. CHECK(buffer[6] == 0xab);
  189. CHECK(buffer[7] == 0x89);
  190. CHECK(buffer[8] == 0x67);
  191. CHECK(buffer[9] == 0x45);
  192. CHECK(buffer[10] == 0x23);
  193. CHECK(buffer[11] == 0xf1);
  194. }
  195. TEST_CASE("[Marshalls] FLOAT single precision Variant encoding") {
  196. int r_len;
  197. Variant variant(0.15625f);
  198. uint8_t buffer[8];
  199. CHECK(encode_variant(variant, buffer, r_len) == OK);
  200. CHECK_MESSAGE(r_len == 8, "Length == 4 bytes for header + 4 bytes for `float`.");
  201. CHECK_MESSAGE(buffer[0] == 0x03, "Variant::FLOAT");
  202. CHECK(buffer[1] == 0x00);
  203. CHECK(buffer[2] == 0x00);
  204. CHECK(buffer[3] == 0x00);
  205. // Check value
  206. CHECK(buffer[4] == 0x00);
  207. CHECK(buffer[5] == 0x00);
  208. CHECK(buffer[6] == 0x20);
  209. CHECK(buffer[7] == 0x3e);
  210. }
  211. TEST_CASE("[Marshalls] FLOAT double precision Variant encoding") {
  212. int r_len;
  213. Variant variant(0.33333333333333333);
  214. uint8_t buffer[12];
  215. CHECK(encode_variant(variant, buffer, r_len) == OK);
  216. CHECK_MESSAGE(r_len == 12, "Length == 4 bytes for header + 8 bytes for `double`.");
  217. CHECK_MESSAGE(buffer[0] == 0x03, "Variant::FLOAT");
  218. CHECK(buffer[1] == 0x00);
  219. CHECK_MESSAGE(buffer[2] == 0x01, "HEADER_DATA_FLAG_64");
  220. CHECK(buffer[3] == 0x00);
  221. // Check value
  222. CHECK(buffer[4] == 0x55);
  223. CHECK(buffer[5] == 0x55);
  224. CHECK(buffer[6] == 0x55);
  225. CHECK(buffer[7] == 0x55);
  226. CHECK(buffer[8] == 0x55);
  227. CHECK(buffer[9] == 0x55);
  228. CHECK(buffer[10] == 0xd5);
  229. CHECK(buffer[11] == 0x3f);
  230. }
  231. TEST_CASE("[Marshalls] Invalid data Variant decoding") {
  232. Variant variant;
  233. int r_len = 0;
  234. uint8_t some_buffer[1] = { 0x00 };
  235. uint8_t out_of_range_type_buffer[4] = { 0xff }; // Greater than Variant::VARIANT_MAX
  236. ERR_PRINT_OFF;
  237. CHECK(decode_variant(variant, some_buffer, /* less than 4 */ 1, &r_len) == ERR_INVALID_DATA);
  238. CHECK(r_len == 0);
  239. CHECK(decode_variant(variant, out_of_range_type_buffer, 4, &r_len) == ERR_INVALID_DATA);
  240. CHECK(r_len == 0);
  241. ERR_PRINT_ON;
  242. }
  243. TEST_CASE("[Marshalls] NIL Variant decoding") {
  244. Variant variant;
  245. int r_len;
  246. uint8_t buffer[] = {
  247. 0x00, 0x00, 0x00, 0x00 // Variant::NIL
  248. };
  249. CHECK(decode_variant(variant, buffer, 4, &r_len) == OK);
  250. CHECK(r_len == 4);
  251. CHECK(variant == Variant());
  252. }
  253. TEST_CASE("[Marshalls] INT 32 bit Variant decoding") {
  254. Variant variant;
  255. int r_len;
  256. uint8_t buffer[] = {
  257. 0x02, 0x00, 0x00, 0x00, // Variant::INT
  258. 0x78, 0x56, 0x34, 0x12 // value
  259. };
  260. CHECK(decode_variant(variant, buffer, 8, &r_len) == OK);
  261. CHECK(r_len == 8);
  262. CHECK(variant == Variant(0x12345678));
  263. }
  264. TEST_CASE("[Marshalls] INT 64 bit Variant decoding") {
  265. Variant variant;
  266. int r_len;
  267. uint8_t buffer[] = {
  268. 0x02, 0x00, 0x01, 0x00, // Variant::INT, HEADER_DATA_FLAG_64
  269. 0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0xf1 // value
  270. };
  271. CHECK(decode_variant(variant, buffer, 12, &r_len) == OK);
  272. CHECK(r_len == 12);
  273. CHECK(variant == Variant(uint64_t(0x0f123456789abcdef)));
  274. }
  275. TEST_CASE("[Marshalls] FLOAT single precision Variant decoding") {
  276. Variant variant;
  277. int r_len;
  278. uint8_t buffer[] = {
  279. 0x03, 0x00, 0x00, 0x00, // Variant::FLOAT
  280. 0x00, 0x00, 0x20, 0x3e // value
  281. };
  282. CHECK(decode_variant(variant, buffer, 8, &r_len) == OK);
  283. CHECK(r_len == 8);
  284. CHECK(variant == Variant(0.15625f));
  285. }
  286. TEST_CASE("[Marshalls] FLOAT double precision Variant decoding") {
  287. Variant variant;
  288. int r_len;
  289. uint8_t buffer[] = {
  290. 0x03, 0x00, 0x01, 0x00, // Variant::FLOAT, HEADER_DATA_FLAG_64
  291. 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0xd5, 0x3f // value
  292. };
  293. CHECK(decode_variant(variant, buffer, 12, &r_len) == OK);
  294. CHECK(r_len == 12);
  295. CHECK(variant == Variant(0.33333333333333333));
  296. }
  297. TEST_CASE("[Marshalls] Typed array encoding") {
  298. int r_len;
  299. Array array;
  300. array.set_typed(Variant::INT, StringName(), Ref<Script>());
  301. array.push_back(Variant(uint64_t(0x0f123456789abcdef)));
  302. uint8_t buffer[24];
  303. CHECK(encode_variant(array, buffer, r_len) == OK);
  304. CHECK_MESSAGE(r_len == 24, "Length == 4 bytes for header + 4 bytes for array type + 4 bytes for array size + 12 bytes for element.");
  305. CHECK_MESSAGE(buffer[0] == 0x1c, "Variant::ARRAY");
  306. CHECK(buffer[1] == 0x00);
  307. CHECK_MESSAGE(buffer[2] == 0x01, "CONTAINER_TYPE_KIND_BUILTIN");
  308. CHECK(buffer[3] == 0x00);
  309. // Check array type.
  310. CHECK_MESSAGE(buffer[4] == 0x02, "Variant::INT");
  311. CHECK(buffer[5] == 0x00);
  312. CHECK(buffer[6] == 0x00);
  313. CHECK(buffer[7] == 0x00);
  314. // Check array size.
  315. CHECK(buffer[8] == 0x01);
  316. CHECK(buffer[9] == 0x00);
  317. CHECK(buffer[10] == 0x00);
  318. CHECK(buffer[11] == 0x00);
  319. // Check element type.
  320. CHECK_MESSAGE(buffer[12] == 0x02, "Variant::INT");
  321. CHECK(buffer[13] == 0x00);
  322. CHECK_MESSAGE(buffer[14] == 0x01, "HEADER_DATA_FLAG_64");
  323. CHECK(buffer[15] == 0x00);
  324. // Check element value.
  325. CHECK(buffer[16] == 0xef);
  326. CHECK(buffer[17] == 0xcd);
  327. CHECK(buffer[18] == 0xab);
  328. CHECK(buffer[19] == 0x89);
  329. CHECK(buffer[20] == 0x67);
  330. CHECK(buffer[21] == 0x45);
  331. CHECK(buffer[22] == 0x23);
  332. CHECK(buffer[23] == 0xf1);
  333. }
  334. TEST_CASE("[Marshalls] Typed array decoding") {
  335. Variant variant;
  336. int r_len;
  337. uint8_t buffer[] = {
  338. 0x1c, 0x00, 0x01, 0x00, // Variant::ARRAY, CONTAINER_TYPE_KIND_BUILTIN
  339. 0x02, 0x00, 0x00, 0x00, // Array type (Variant::INT).
  340. 0x01, 0x00, 0x00, 0x00, // Array size.
  341. 0x02, 0x00, 0x01, 0x00, // Element type (Variant::INT, HEADER_DATA_FLAG_64).
  342. 0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0xf1, // Element value.
  343. };
  344. CHECK(decode_variant(variant, buffer, 24, &r_len) == OK);
  345. CHECK(r_len == 24);
  346. CHECK(variant.get_type() == Variant::ARRAY);
  347. Array array = variant;
  348. CHECK(array.get_typed_builtin() == Variant::INT);
  349. CHECK(array.size() == 1);
  350. CHECK(array[0] == Variant(uint64_t(0x0f123456789abcdef)));
  351. }
  352. TEST_CASE("[Marshalls] Typed dicttionary encoding") {
  353. int r_len;
  354. Dictionary dictionary;
  355. dictionary.set_typed(Variant::INT, StringName(), Ref<Script>(), Variant::INT, StringName(), Ref<Script>());
  356. dictionary[Variant(uint64_t(0x0f123456789abcdef))] = Variant(uint64_t(0x0f123456789abcdef));
  357. uint8_t buffer[40];
  358. CHECK(encode_variant(dictionary, buffer, r_len) == OK);
  359. CHECK_MESSAGE(r_len == 40, "Length == 4 bytes for header + 8 bytes for dictionary type + 4 bytes for dictionary size + 24 bytes for key-value pair.");
  360. CHECK_MESSAGE(buffer[0] == 0x1b, "Variant::DICTIONARY");
  361. CHECK(buffer[1] == 0x00);
  362. CHECK_MESSAGE(buffer[2] == 0x05, "key: CONTAINER_TYPE_KIND_BUILTIN | value: CONTAINER_TYPE_KIND_BUILTIN");
  363. CHECK(buffer[3] == 0x00);
  364. // Check dictionary key type.
  365. CHECK_MESSAGE(buffer[4] == 0x02, "Variant::INT");
  366. CHECK(buffer[5] == 0x00);
  367. CHECK(buffer[6] == 0x00);
  368. CHECK(buffer[7] == 0x00);
  369. // Check dictionary value type.
  370. CHECK_MESSAGE(buffer[8] == 0x02, "Variant::INT");
  371. CHECK(buffer[9] == 0x00);
  372. CHECK(buffer[10] == 0x00);
  373. CHECK(buffer[11] == 0x00);
  374. // Check dictionary size.
  375. CHECK(buffer[12] == 0x01);
  376. CHECK(buffer[13] == 0x00);
  377. CHECK(buffer[14] == 0x00);
  378. CHECK(buffer[15] == 0x00);
  379. // Check key type.
  380. CHECK_MESSAGE(buffer[16] == 0x02, "Variant::INT");
  381. CHECK(buffer[17] == 0x00);
  382. CHECK_MESSAGE(buffer[18] == 0x01, "HEADER_DATA_FLAG_64");
  383. CHECK(buffer[19] == 0x00);
  384. // Check key value.
  385. CHECK(buffer[20] == 0xef);
  386. CHECK(buffer[21] == 0xcd);
  387. CHECK(buffer[22] == 0xab);
  388. CHECK(buffer[23] == 0x89);
  389. CHECK(buffer[24] == 0x67);
  390. CHECK(buffer[25] == 0x45);
  391. CHECK(buffer[26] == 0x23);
  392. CHECK(buffer[27] == 0xf1);
  393. // Check value type.
  394. CHECK_MESSAGE(buffer[28] == 0x02, "Variant::INT");
  395. CHECK(buffer[29] == 0x00);
  396. CHECK_MESSAGE(buffer[30] == 0x01, "HEADER_DATA_FLAG_64");
  397. CHECK(buffer[31] == 0x00);
  398. // Check value value.
  399. CHECK(buffer[32] == 0xef);
  400. CHECK(buffer[33] == 0xcd);
  401. CHECK(buffer[34] == 0xab);
  402. CHECK(buffer[35] == 0x89);
  403. CHECK(buffer[36] == 0x67);
  404. CHECK(buffer[37] == 0x45);
  405. CHECK(buffer[38] == 0x23);
  406. CHECK(buffer[39] == 0xf1);
  407. }
  408. TEST_CASE("[Marshalls] Typed dictionary decoding") {
  409. Variant variant;
  410. int r_len;
  411. uint8_t buffer[] = {
  412. 0x1b, 0x00, 0x05, 0x00, // Variant::DICTIONARY, key: CONTAINER_TYPE_KIND_BUILTIN | value: CONTAINER_TYPE_KIND_BUILTIN
  413. 0x02, 0x00, 0x00, 0x00, // Dictionary key type (Variant::INT).
  414. 0x02, 0x00, 0x00, 0x00, // Dictionary value type (Variant::INT).
  415. 0x01, 0x00, 0x00, 0x00, // Dictionary size.
  416. 0x02, 0x00, 0x01, 0x00, // Key type (Variant::INT, HEADER_DATA_FLAG_64).
  417. 0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0xf1, // Key value.
  418. 0x02, 0x00, 0x01, 0x00, // Value type (Variant::INT, HEADER_DATA_FLAG_64).
  419. 0xef, 0xcd, 0xab, 0x89, 0x67, 0x45, 0x23, 0xf1, // Value value.
  420. };
  421. CHECK(decode_variant(variant, buffer, 40, &r_len) == OK);
  422. CHECK(r_len == 40);
  423. CHECK(variant.get_type() == Variant::DICTIONARY);
  424. Dictionary dictionary = variant;
  425. CHECK(dictionary.get_typed_key_builtin() == Variant::INT);
  426. CHECK(dictionary.get_typed_value_builtin() == Variant::INT);
  427. CHECK(dictionary.size() == 1);
  428. CHECK(dictionary.has(Variant(uint64_t(0x0f123456789abcdef))));
  429. CHECK(dictionary[Variant(uint64_t(0x0f123456789abcdef))] == Variant(uint64_t(0x0f123456789abcdef)));
  430. }
  431. } // namespace TestMarshalls
  432. #endif // TEST_MARSHALLS_H