123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715 |
- // Copyright 2009-2021 Intel Corporation
- // SPDX-License-Identifier: Apache-2.0
- #pragma once
- #include "../common/ray.h"
- #include "curve_intersector_precalculations.h"
- /*
-
- This file implements the intersection of a ray with a round linear
- curve segment. We define the geometry of such a round linear curve
- segment from point p0 with radius r0 to point p1 with radius r1
- using the cone that touches spheres p0/r0 and p1/r1 tangentially
- plus the sphere p1/r1. We denote the tangentially touching cone from
- p0/r0 to p1/r1 with cone(p0,r0,p1,r1) and the cone plus the ending
- sphere with cone_sphere(p0,r0,p1,r1).
- For multiple connected round linear curve segments this construction
- yield a proper shape when viewed from the outside. Using the
- following CSG we can also handle the interior in most common cases:
- round_linear_curve(pl,rl,p0,r0,p1,r1,pr,rr) =
- cone_sphere(p0,r0,p1,r1) - cone(pl,rl,p0,r0) - cone(p1,r1,pr,rr)
- Thus by subtracting the neighboring cone geometries, we cut away
- parts of the center cone_sphere surface which lie inside the
- combined curve. This approach works as long as geometry of the
- current cone_sphere penetrates into direct neighbor segments only,
- and not into segments further away.
-
- To construct a cone that touches two spheres at p0 and p1 with r0
- and r1, one has to increase the cone radius at r0 and r1 to obtain
- larger radii w0 and w1, such that the infinite cone properly touches
- the spheres. From the paper "Ray Tracing Generalized Tube
- Primitives: Method and Applications"
- (https://www.researchgate.net/publication/334378683_Ray_Tracing_Generalized_Tube_Primitives_Method_and_Applications)
- one can derive the following equations for these increased
- radii:
- sr = 1.0f / sqrt(1-sqr(dr)/sqr(p1-p0))
- w0 = sr*r0
- w1 = sr*r1
- Further, we want the cone to start where it touches the sphere at p0
- and to end where it touches sphere at p1. Therefore, we need to
- construct clipping locations y0 and y1 for the start and end of the
- cone. These start and end clipping location of the cone can get
- calculated as:
- Y0 = - r0 * (r1-r0) / length(p1-p0)
- Y1 = length(p1-p0) - r1 * (r1-r0) / length(p1-p0)
- Where the cone starts a distance Y0 and ends a distance Y1 away of
- point p0 along the cone center. The distance between Y1-Y0 can get
- calculated as:
- dY = length(p1-p0) - (r1-r0)^2 / length(p1-p0)
- In the code below, Y will always be scaled by length(p1-p0) to
- obtain y and you will find the terms r0*(r1-r0) and
- (p1-p0)^2-(r1-r0)^2.
- */
- namespace embree
- {
- namespace isa
- {
- template<int M>
- struct RoundLineIntersectorHitM
- {
- __forceinline RoundLineIntersectorHitM() {}
-
- __forceinline RoundLineIntersectorHitM(const vfloat<M>& u, const vfloat<M>& v, const vfloat<M>& t, const Vec3vf<M>& Ng)
- : vu(u), vv(v), vt(t), vNg(Ng) {}
-
- __forceinline void finalize() {}
-
- __forceinline Vec2f uv (const size_t i) const { return Vec2f(vu[i],vv[i]); }
- __forceinline float t (const size_t i) const { return vt[i]; }
- __forceinline Vec3fa Ng(const size_t i) const { return Vec3fa(vNg.x[i],vNg.y[i],vNg.z[i]); }
- __forceinline Vec2vf<M> uv() const { return Vec2vf<M>(vu,vv); }
- __forceinline vfloat<M> t () const { return vt; }
- __forceinline Vec3vf<M> Ng() const { return vNg; }
-
- public:
- vfloat<M> vu;
- vfloat<M> vv;
- vfloat<M> vt;
- Vec3vf<M> vNg;
- };
-
- namespace __roundline_internal
- {
- template<int M>
- struct ConeGeometry
- {
- ConeGeometry (const Vec4vf<M>& a, const Vec4vf<M>& b)
- : p0(a.xyz()), p1(b.xyz()), dP(p1-p0), dPdP(dot(dP,dP)), r0(a.w), sqr_r0(sqr(r0)), r1(b.w), dr(r1-r0), drdr(dr*dr), r0dr (r0*dr), g(dPdP - drdr) {}
-
- /*
-
- This function tests if a point is accepted by first cone
- clipping plane.
- First, we need to project the point onto the line p0->p1:
-
- Y = (p-p0)*(p1-p0)/length(p1-p0)
-
- This value y is the distance to the projection point from
- p0. The clip distances are calculated as:
-
- Y0 = - r0 * (r1-r0) / length(p1-p0)
- Y1 = length(p1-p0) - r1 * (r1-r0) / length(p1-p0)
-
- Thus to test if the point p is accepted by the first
- clipping plane we need to test Y > Y0 and to test if it
- is accepted by the second clipping plane we need to test
- Y < Y1.
-
- By multiplying the calculations with length(p1-p0) these
- calculation can get simplied to:
-
- y = (p-p0)*(p1-p0)
- y0 = - r0 * (r1-r0)
- y1 = (p1-p0)^2 - r1 * (r1-r0)
- and the test y > y0 and y < y1.
-
- */
-
- __forceinline vbool<M> isClippedByPlane (const vbool<M>& valid_i, const Vec3vf<M>& p) const
- {
- const Vec3vf<M> p0p = p - p0;
- const vfloat<M> y = dot(p0p,dP);
- const vfloat<M> cap0 = -r0dr;
- const vbool<M> inside_cone = y > cap0;
- return valid_i & (p0.x != vfloat<M>(inf)) & (p1.x != vfloat<M>(inf)) & inside_cone;
- }
-
- /*
-
- This function tests whether a point lies inside the capped cone
- tangential to its ending spheres.
- Therefore one has to check if the point is inside the
- region defined by the cone clipping planes, which is
- performed similar as in the previous function.
-
- To perform the inside cone test we need to project the
- point onto the line p0->p1:
-
- dP = p1-p0
- Y = (p-p0)*dP/length(dP)
-
- This value Y is the distance to the projection point from
- p0. To obtain a parameter value u going from 0 to 1 along
- the line p0->p1 we calculate:
-
- U = Y/length(dP)
-
- The radii to use at points p0 and p1 are:
-
- w0 = sr * r0
- w1 = sr * r1
- dw = w1-w0
-
- Using these radii and u one can directly test if the point
- lies inside the cone using the formula dP*dP < wy*wy with:
-
- wy = w0 + u*dw
- py = p0 + u*dP - p
-
- By multiplying the calculations with length(p1-p0) and
- inserting the definition of w can obtain simpler equations:
-
- y = (p-p0)*dP
- ry = r0 + y/dP^2 * dr
- wy = sr*ry
- py = p0 + y/dP^2*dP - p
- y0 = - r0 * dr
- y1 = dP^2 - r1 * dr
-
- Thus for the in-cone test we get:
-
- py^2 < wy^2
- <=> py^2 < sr^2 * ry^2
- <=> py^2 * ( dP^2 - dr^2 ) < dP^2 * ry^2
-
- This can further get simplified to:
-
- (p0-p)^2 * (dP^2 - dr^2) - y^2 < dP^2 * r0^2 + 2.0f*r0*dr*y;
-
- */
-
- __forceinline vbool<M> isInsideCappedCone (const vbool<M>& valid_i, const Vec3vf<M>& p) const
- {
- const Vec3vf<M> p0p = p - p0;
- const vfloat<M> y = dot(p0p,dP);
- const vfloat<M> cap0 = -r0dr+vfloat<M>(ulp);
- const vfloat<M> cap1 = -r1*dr + dPdP;
-
- vbool<M> inside_cone = valid_i & (p0.x != vfloat<M>(inf)) & (p1.x != vfloat<M>(inf));
- inside_cone &= y > cap0; // start clipping plane
- inside_cone &= y < cap1; // end clipping plane
- inside_cone &= sqr(p0p)*g - sqr(y) < dPdP * sqr_r0 + 2.0f*r0dr*y; // in cone test
- return inside_cone;
- }
-
- protected:
- Vec3vf<M> p0;
- Vec3vf<M> p1;
- Vec3vf<M> dP;
- vfloat<M> dPdP;
- vfloat<M> r0;
- vfloat<M> sqr_r0;
- vfloat<M> r1;
- vfloat<M> dr;
- vfloat<M> drdr;
- vfloat<M> r0dr;
- vfloat<M> g;
- };
-
- template<int M>
- struct ConeGeometryIntersector : public ConeGeometry<M>
- {
- using ConeGeometry<M>::p0;
- using ConeGeometry<M>::p1;
- using ConeGeometry<M>::dP;
- using ConeGeometry<M>::dPdP;
- using ConeGeometry<M>::r0;
- using ConeGeometry<M>::sqr_r0;
- using ConeGeometry<M>::r1;
- using ConeGeometry<M>::dr;
- using ConeGeometry<M>::r0dr;
- using ConeGeometry<M>::g;
-
- ConeGeometryIntersector (const Vec3vf<M>& ray_org, const Vec3vf<M>& ray_dir, const vfloat<M>& dOdO, const vfloat<M>& rcp_dOdO, const Vec4vf<M>& a, const Vec4vf<M>& b)
- : ConeGeometry<M>(a,b), org(ray_org), O(ray_org-p0), dO(ray_dir), dOdO(dOdO), rcp_dOdO(rcp_dOdO), OdP(dot(dP,O)), dOdP(dot(dP,dO)), yp(OdP + r0dr) {}
-
- /*
-
- This function intersects a ray with a cone that touches a
- start sphere p0/r0 and end sphere p1/r1.
-
- To find this ray/cone intersections one could just
- calculate radii w0 and w1 as described above and use a
- standard ray/cone intersection routine with these
- radii. However, it turns out that calculations can get
- simplified when deriving a specialized ray/cone
- intersection for this special case. We perform
- calculations relative to the cone origin p0 and define:
-
- O = ray_org - p0
- dO = ray_dir
- dP = p1-p0
- dr = r1-r0
- dw = w1-w0
-
- For some t we can compute the potential hit point h = O + t*dO and
- project it onto the cone vector dP to obtain u = (h*dP)/(dP*dP). In
- case of an intersection, the squared distance from the hit point
- projected onto the cone center line to the hit point should be equal
- to the squared cone radius at u:
-
- (u*dP - h)^2 = (w0 + u*dw)^2
-
- Inserting the definition of h, u, w0, and dw into this formula, then
- factoring out all terms, and sorting by t^2, t^1, and t^0 terms
- yields a quadratic equation to solve.
-
- Inserting u:
- ( (h*dP)*dP/dP^2 - h )^2 = ( w0 + (h*dP)*dw/dP^2 )^2
-
- Multiplying by dP^4:
- ( (h*dP)*dP - h*dP^2 )^2 = ( w0*dP^2 + (h*dP)*dw )^2
-
- Inserting w0 and dw:
- ( (h*dP)*dP - h*dP^2 )^2 = ( r0*dP^2 + (h*dP)*dr )^2 / (1-dr^2/dP^2)
- ( (h*dP)*dP - h*dP^2 )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + (h*dP)*dr )^2
-
- Now one can insert the definition of h, factor out, and presort by t:
- ( ((O + t*dO)*dP)*dP - (O + t*dO)*dP^2 )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + ((O + t*dO)*dP)*dr )^2
- ( (O*dP)*dP-O*dP^2 + t*( (dO*dP)*dP - dO*dP^2 ) )^2 *(dP^2 - dr^2) = dP^2 * ( r0*dP^2 + (O*dP)*dr + t*(dO*dP)*dr )^2
-
- Factoring out further and sorting by t^2, t^1 and t^0 yields:
-
- 0 = t^2 * [ ((dO*dP)*dP - dO-dP^2)^2 * (dP^2 - dr^2) - dP^2*(dO*dP)^2*dr^2 ]
- + 2*t^1 * [ ((O*dP)*dP - O*dP^2) * ((dO*dP)*dP - dO*dP^2) * (dP^2 - dr^2) - dP^2*(r0*dP^2 + (O*dP)*dr)*(dO*dP)*dr ]
- + t^0 * [ ( (O*dP)*dP - O*dP^2)^2 * (dP^2-dr^2) - dP^2*(r0*dP^2 + (O*dP)*dr)^2 ]
-
- This can be simplified to:
-
- 0 = t^2 * [ (dP^2 - dr^2)*dO^2 - (dO*dP)^2 ]
- + 2*t^1 * [ (dP^2 - dr^2)*(O*dO) - (dO*dP)*(O*dP + r0*dr) ]
- + t^0 * [ (dP^2 - dr^2)*O^2 - (O*dP)^2 - r0^2*dP^2 - 2.0f*r0*dr*(O*dP) ]
-
- Solving this quadratic equation yields the values for t at which the
- ray intersects the cone.
-
- */
-
- __forceinline bool intersectCone(vbool<M>& valid, vfloat<M>& lower, vfloat<M>& upper)
- {
- /* return no hit by default */
- lower = pos_inf;
- upper = neg_inf;
-
- /* compute quadratic equation A*t^2 + B*t + C = 0 */
- const vfloat<M> OO = dot(O,O);
- const vfloat<M> OdO = dot(dO,O);
- const vfloat<M> A = g * dOdO - sqr(dOdP);
- const vfloat<M> B = 2.0f * (g*OdO - dOdP*yp);
- const vfloat<M> C = g*OO - sqr(OdP) - sqr_r0*dPdP - 2.0f*r0dr*OdP;
-
- /* we miss the cone if determinant is smaller than zero */
- const vfloat<M> D = B*B - 4.0f*A*C;
- valid &= (D >= 0.0f & g > 0.0f); // if g <= 0 then the cone is inside a sphere end
-
- /* When rays are parallel to the cone surface, then the
- * ray may be inside or outside the cone. We just assume a
- * miss in that case, which is fine as rays inside the
- * cone would anyway hit the ending spheres in that
- * case. */
- valid &= abs(A) > min_rcp_input;
- if (unlikely(none(valid))) {
- return false;
- }
-
- /* compute distance to front and back hit */
- const vfloat<M> Q = sqrt(D);
- const vfloat<M> rcp_2A = rcp(2.0f*A);
- t_cone_front = (-B-Q)*rcp_2A;
- y_cone_front = yp + t_cone_front*dOdP;
- lower = select( (y_cone_front > -(float)ulp) & (y_cone_front <= g) & (g > 0.0f), t_cone_front, vfloat<M>(pos_inf));
- #if !defined (EMBREE_BACKFACE_CULLING_CURVES)
- t_cone_back = (-B+Q)*rcp_2A;
- y_cone_back = yp + t_cone_back *dOdP;
- upper = select( (y_cone_back > -(float)ulp) & (y_cone_back <= g) & (g > 0.0f), t_cone_back , vfloat<M>(neg_inf));
- #endif
- return true;
- }
-
- /*
- This function intersects the ray with the end sphere at
- p1. We already clip away hits that are inside the
- neighboring cone segment.
-
- */
-
- __forceinline void intersectEndSphere(vbool<M>& valid,
- const ConeGeometry<M>& coneR,
- vfloat<M>& lower, vfloat<M>& upper)
- {
- /* calculate front and back hit with end sphere */
- const Vec3vf<M> O1 = org - p1;
- const vfloat<M> O1dO = dot(O1,dO);
- const vfloat<M> h2 = sqr(O1dO) - dOdO*(sqr(O1) - sqr(r1));
- const vfloat<M> rhs1 = select( h2 >= 0.0f, sqrt(h2), vfloat<M>(neg_inf) );
-
- /* clip away front hit if it is inside next cone segment */
- t_sph1_front = (-O1dO - rhs1)*rcp_dOdO;
- const Vec3vf<M> hit_front = org + t_sph1_front*dO;
- vbool<M> valid_sph1_front = h2 >= 0.0f & yp + t_sph1_front*dOdP > g & !coneR.isClippedByPlane (valid, hit_front);
- lower = select(valid_sph1_front, t_sph1_front, vfloat<M>(pos_inf));
-
- #if !defined(EMBREE_BACKFACE_CULLING_CURVES)
- /* clip away back hit if it is inside next cone segment */
- t_sph1_back = (-O1dO + rhs1)*rcp_dOdO;
- const Vec3vf<M> hit_back = org + t_sph1_back*dO;
- vbool<M> valid_sph1_back = h2 >= 0.0f & yp + t_sph1_back*dOdP > g & !coneR.isClippedByPlane (valid, hit_back);
- upper = select(valid_sph1_back, t_sph1_back, vfloat<M>(neg_inf));
- #else
- upper = vfloat<M>(neg_inf);
- #endif
- }
- __forceinline void intersectBeginSphere(const vbool<M>& valid,
- vfloat<M>& lower, vfloat<M>& upper)
- {
- /* calculate front and back hit with end sphere */
- const Vec3vf<M> O1 = org - p0;
- const vfloat<M> O1dO = dot(O1,dO);
- const vfloat<M> h2 = sqr(O1dO) - dOdO*(sqr(O1) - sqr(r0));
- const vfloat<M> rhs1 = select( h2 >= 0.0f, sqrt(h2), vfloat<M>(neg_inf) );
-
- /* clip away front hit if it is inside next cone segment */
- t_sph0_front = (-O1dO - rhs1)*rcp_dOdO;
- vbool<M> valid_sph1_front = valid & h2 >= 0.0f & yp + t_sph0_front*dOdP < 0;
- lower = select(valid_sph1_front, t_sph0_front, vfloat<M>(pos_inf));
- #if !defined(EMBREE_BACKFACE_CULLING_CURVES)
- /* clip away back hit if it is inside next cone segment */
- t_sph0_back = (-O1dO + rhs1)*rcp_dOdO;
- vbool<M> valid_sph1_back = valid & h2 >= 0.0f & yp + t_sph0_back*dOdP < 0;
- upper = select(valid_sph1_back, t_sph0_back, vfloat<M>(neg_inf));
- #else
- upper = vfloat<M>(neg_inf);
- #endif
- }
-
- /*
-
- This function calculates the geometry normal of some cone hit.
-
- For a given hit point h (relative to p0) with a cone
- starting at p0 with radius w0 and ending at p1 with
- radius w1 one normally calculates the geometry normal by
- first calculating the parmetric u hit location along the
- cone:
-
- u = dot(h,dP)/dP^2
-
- Using this value one can now directly calculate the
- geometry normal by bending the connection vector (h-u*dP)
- from hit to projected hit with some cone dependent value
- dw/sqrt(dP^2) * normalize(dP):
-
- Ng = normalize(h-u*dP) - dw/length(dP) * normalize(dP)
-
- The length of the vector (h-u*dP) can also get calculated
- by interpolating the radii as w0+u*dw which yields:
-
- Ng = (h-u*dP)/(w0+u*dw) - dw/dP^2 * dP
-
- Multiplying with (w0+u*dw) yield a scaled Ng':
-
- Ng' = (h-u*dP) - (w0+u*dw)*dw/dP^2*dP
-
- Inserting the definition of w0 and dw and refactoring
- yield a further scaled Ng'':
-
- Ng'' = (dP^2 - dr^2) (h-q) - (r0+u*dr)*dr*dP
-
- Now inserting the definition of u gives and multiplying
- with the denominator yields:
-
- Ng''' = (dP^2-dr^2)*(dP^2*h-dot(h,dP)*dP) - (dP^2*r0+dot(h,dP)*dr)*dr*dP
-
- Factoring out, cancelling terms, dividing by dP^2, and
- factoring again yields finally:
-
- Ng'''' = (dP^2-dr^2)*h - dP*(dot(h,dP) + r0*dr)
-
- */
-
- __forceinline Vec3vf<M> Ng_cone(const vbool<M>& front_hit) const
- {
- #if !defined(EMBREE_BACKFACE_CULLING_CURVES)
- const vfloat<M> y = select(front_hit, y_cone_front, y_cone_back);
- const vfloat<M> t = select(front_hit, t_cone_front, t_cone_back);
- const Vec3vf<M> h = O + t*dO;
- return g*h-dP*y;
- #else
- const Vec3vf<M> h = O + t_cone_front*dO;
- return g*h-dP*y_cone_front;
- #endif
- }
-
- /* compute geometry normal of sphere hit as the difference
- * vector from hit point to sphere center */
-
- __forceinline Vec3vf<M> Ng_sphere1(const vbool<M>& front_hit) const
- {
- #if !defined(EMBREE_BACKFACE_CULLING_CURVES)
- const vfloat<M> t_sph1 = select(front_hit, t_sph1_front, t_sph1_back);
- return org+t_sph1*dO-p1;
- #else
- return org+t_sph1_front*dO-p1;
- #endif
- }
- __forceinline Vec3vf<M> Ng_sphere0(const vbool<M>& front_hit) const
- {
- #if !defined(EMBREE_BACKFACE_CULLING_CURVES)
- const vfloat<M> t_sph0 = select(front_hit, t_sph0_front, t_sph0_back);
- return org+t_sph0*dO-p0;
- #else
- return org+t_sph0_front*dO-p0;
- #endif
- }
-
- /*
- This function calculates the u coordinate of a
- hit. Therefore we use the hit distance y (which is zero
- at the first cone clipping plane) and divide by distance
- g between the clipping planes.
-
- */
-
- __forceinline vfloat<M> u_cone(const vbool<M>& front_hit) const
- {
- #if !defined(EMBREE_BACKFACE_CULLING_CURVES)
- const vfloat<M> y = select(front_hit, y_cone_front, y_cone_back);
- return clamp(y*rcp(g));
- #else
- return clamp(y_cone_front*rcp(g));
- #endif
- }
-
- private:
- Vec3vf<M> org;
- Vec3vf<M> O;
- Vec3vf<M> dO;
- vfloat<M> dOdO;
- vfloat<M> rcp_dOdO;
- vfloat<M> OdP;
- vfloat<M> dOdP;
-
- /* for ray/cone intersection */
- private:
- vfloat<M> yp;
- vfloat<M> y_cone_front;
- vfloat<M> t_cone_front;
- #if !defined (EMBREE_BACKFACE_CULLING_CURVES)
- vfloat<M> y_cone_back;
- vfloat<M> t_cone_back;
- #endif
-
- /* for ray/sphere intersection */
- private:
- vfloat<M> t_sph1_front;
- vfloat<M> t_sph0_front;
- #if !defined (EMBREE_BACKFACE_CULLING_CURVES)
- vfloat<M> t_sph1_back;
- vfloat<M> t_sph0_back;
- #endif
- };
-
-
- template<int M, typename Epilog, typename ray_tfar_func>
- static __forceinline bool intersectConeSphere(const vbool<M>& valid_i,
- const Vec3vf<M>& ray_org_in, const Vec3vf<M>& ray_dir,
- const vfloat<M>& ray_tnear, const ray_tfar_func& ray_tfar,
- const Vec4vf<M>& v0, const Vec4vf<M>& v1,
- const Vec4vf<M>& vL, const Vec4vf<M>& vR,
- const Epilog& epilog)
- {
- vbool<M> valid = valid_i;
-
- /* move ray origin closer to make calculations numerically stable */
- const vfloat<M> dOdO = sqr(ray_dir);
- const vfloat<M> rcp_dOdO = rcp(dOdO);
- const Vec3vf<M> center = vfloat<M>(0.5f)*(v0.xyz()+v1.xyz());
- const vfloat<M> dt = dot(center-ray_org_in,ray_dir)*rcp_dOdO;
- const Vec3vf<M> ray_org = ray_org_in + dt*ray_dir;
-
- /* intersect with cone from v0 to v1 */
- vfloat<M> t_cone_lower, t_cone_upper;
- ConeGeometryIntersector<M> cone (ray_org, ray_dir, dOdO, rcp_dOdO, v0, v1);
- vbool<M> validCone = valid;
- cone.intersectCone(validCone, t_cone_lower, t_cone_upper);
- valid &= (validCone | (cone.g <= 0.0f)); // if cone is entirely in sphere end - check sphere
- if (unlikely(none(valid)))
- return false;
-
- /* cone hits inside the neighboring capped cones are inside the geometry and thus ignored */
- const ConeGeometry<M> coneL (v0, vL);
- const ConeGeometry<M> coneR (v1, vR);
- #if !defined(EMBREE_BACKFACE_CULLING_CURVES)
- const Vec3vf<M> hit_lower = ray_org + t_cone_lower*ray_dir;
- const Vec3vf<M> hit_upper = ray_org + t_cone_upper*ray_dir;
- t_cone_lower = select (!coneL.isInsideCappedCone (validCone, hit_lower) & !coneR.isInsideCappedCone (validCone, hit_lower), t_cone_lower, vfloat<M>(pos_inf));
- t_cone_upper = select (!coneL.isInsideCappedCone (validCone, hit_upper) & !coneR.isInsideCappedCone (validCone, hit_upper), t_cone_upper, vfloat<M>(neg_inf));
- #endif
- /* intersect ending sphere */
- vfloat<M> t_sph1_lower, t_sph1_upper;
- vfloat<M> t_sph0_lower = vfloat<M>(pos_inf);
- vfloat<M> t_sph0_upper = vfloat<M>(neg_inf);
- cone.intersectEndSphere(valid, coneR, t_sph1_lower, t_sph1_upper);
- const vbool<M> isBeginPoint = valid & (vL[0] == vfloat<M>(pos_inf));
- if (unlikely(any(isBeginPoint))) {
- cone.intersectBeginSphere (isBeginPoint, t_sph0_lower, t_sph0_upper);
- }
-
- /* CSG union of cone and end sphere */
- vfloat<M> t_sph_lower = min(t_sph0_lower, t_sph1_lower);
- vfloat<M> t_cone_sphere_lower = min(t_cone_lower, t_sph_lower);
- #if !defined (EMBREE_BACKFACE_CULLING_CURVES)
- vfloat<M> t_sph_upper = max(t_sph0_upper, t_sph1_upper);
- vfloat<M> t_cone_sphere_upper = max(t_cone_upper, t_sph_upper);
-
- /* filter out hits that are not in tnear/tfar range */
- const vbool<M> valid_lower = valid & ray_tnear <= dt+t_cone_sphere_lower & dt+t_cone_sphere_lower <= ray_tfar() & t_cone_sphere_lower != vfloat<M>(pos_inf);
- const vbool<M> valid_upper = valid & ray_tnear <= dt+t_cone_sphere_upper & dt+t_cone_sphere_upper <= ray_tfar() & t_cone_sphere_upper != vfloat<M>(neg_inf);
-
- /* check if there is a first hit */
- const vbool<M> valid_first = valid_lower | valid_upper;
- if (unlikely(none(valid_first)))
- return false;
-
- /* construct first hit */
- const vfloat<M> t_first = select(valid_lower, t_cone_sphere_lower, t_cone_sphere_upper);
- const vbool<M> cone_hit_first = t_first == t_cone_lower | t_first == t_cone_upper;
- const vbool<M> sph0_hit_first = t_first == t_sph0_lower | t_first == t_sph0_upper;
- const Vec3vf<M> Ng_first = select(cone_hit_first, cone.Ng_cone(valid_lower), select (sph0_hit_first, cone.Ng_sphere0(valid_lower), cone.Ng_sphere1(valid_lower)));
- const vfloat<M> u_first = select(cone_hit_first, cone.u_cone(valid_lower), select (sph0_hit_first, vfloat<M>(zero), vfloat<M>(one)));
- /* invoke intersection filter for first hit */
- RoundLineIntersectorHitM<M> hit(u_first,zero,dt+t_first,Ng_first);
- const bool is_hit_first = epilog(valid_first, hit);
-
- /* check for possible second hits before potentially accepted hit */
- const vfloat<M> t_second = t_cone_sphere_upper;
- const vbool<M> valid_second = valid_lower & valid_upper & (dt+t_cone_sphere_upper <= ray_tfar());
- if (unlikely(none(valid_second)))
- return is_hit_first;
-
- /* invoke intersection filter for second hit */
- const vbool<M> cone_hit_second = t_second == t_cone_lower | t_second == t_cone_upper;
- const vbool<M> sph0_hit_second = t_second == t_sph0_lower | t_second == t_sph0_upper;
- const Vec3vf<M> Ng_second = select(cone_hit_second, cone.Ng_cone(false), select (sph0_hit_second, cone.Ng_sphere0(false), cone.Ng_sphere1(false)));
- const vfloat<M> u_second = select(cone_hit_second, cone.u_cone(false), select (sph0_hit_second, vfloat<M>(zero), vfloat<M>(one)));
- hit = RoundLineIntersectorHitM<M>(u_second,zero,dt+t_second,Ng_second);
- const bool is_hit_second = epilog(valid_second, hit);
-
- return is_hit_first | is_hit_second;
- #else
- /* filter out hits that are not in tnear/tfar range */
- const vbool<M> valid_lower = valid & ray_tnear <= dt+t_cone_sphere_lower & dt+t_cone_sphere_lower <= ray_tfar() & t_cone_sphere_lower != vfloat<M>(pos_inf);
-
- /* check if there is a valid hit */
- if (unlikely(none(valid_lower)))
- return false;
-
- /* construct first hit */
- const vbool<M> cone_hit_first = t_cone_sphere_lower == t_cone_lower | t_cone_sphere_lower == t_cone_upper;
- const vbool<M> sph0_hit_first = t_cone_sphere_lower == t_sph0_lower | t_cone_sphere_lower == t_sph0_upper;
- const Vec3vf<M> Ng_first = select(cone_hit_first, cone.Ng_cone(valid_lower), select (sph0_hit_first, cone.Ng_sphere0(valid_lower), cone.Ng_sphere1(valid_lower)));
- const vfloat<M> u_first = select(cone_hit_first, cone.u_cone(valid_lower), select (sph0_hit_first, vfloat<M>(zero), vfloat<M>(one)));
- /* invoke intersection filter for first hit */
- RoundLineIntersectorHitM<M> hit(u_first,zero,dt+t_cone_sphere_lower,Ng_first);
- const bool is_hit_first = epilog(valid_lower, hit);
-
- return is_hit_first;
- #endif
- }
-
- } // end namespace __roundline_internal
-
- template<int M>
- struct RoundLinearCurveIntersector1
- {
- typedef CurvePrecalculations1 Precalculations;
- template<typename Ray>
- struct ray_tfar {
- Ray& ray;
- __forceinline ray_tfar(Ray& ray) : ray(ray) {}
- __forceinline vfloat<M> operator() () const { return ray.tfar; };
- };
-
- template<typename Ray, typename Epilog>
- static __forceinline bool intersect(const vbool<M>& valid_i,
- Ray& ray,
- RayQueryContext* context,
- const LineSegments* geom,
- const Precalculations& pre,
- const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
- const Vec4vf<M>& vLi, const Vec4vf<M>& vRi,
- const Epilog& epilog)
- {
- const Vec3vf<M> ray_org(ray.org.x, ray.org.y, ray.org.z);
- const Vec3vf<M> ray_dir(ray.dir.x, ray.dir.y, ray.dir.z);
- const vfloat<M> ray_tnear(ray.tnear());
- const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
- const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
- const Vec4vf<M> vL = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vLi);
- const Vec4vf<M> vR = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vRi);
- return __roundline_internal::intersectConeSphere<M>(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar<Ray>(ray),v0,v1,vL,vR,epilog);
- }
- };
-
- template<int M, int K>
- struct RoundLinearCurveIntersectorK
- {
- typedef CurvePrecalculationsK<K> Precalculations;
-
- struct ray_tfar {
- RayK<K>& ray;
- size_t k;
- __forceinline ray_tfar(RayK<K>& ray, size_t k) : ray(ray), k(k) {}
- __forceinline vfloat<M> operator() () const { return ray.tfar[k]; };
- };
-
- template<typename Epilog>
- static __forceinline bool intersect(const vbool<M>& valid_i,
- RayK<K>& ray, size_t k,
- RayQueryContext* context,
- const LineSegments* geom,
- const Precalculations& pre,
- const Vec4vf<M>& v0i, const Vec4vf<M>& v1i,
- const Vec4vf<M>& vLi, const Vec4vf<M>& vRi,
- const Epilog& epilog)
- {
- const Vec3vf<M> ray_org(ray.org.x[k], ray.org.y[k], ray.org.z[k]);
- const Vec3vf<M> ray_dir(ray.dir.x[k], ray.dir.y[k], ray.dir.z[k]);
- const vfloat<M> ray_tnear = ray.tnear()[k];
- const Vec4vf<M> v0 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v0i);
- const Vec4vf<M> v1 = enlargeRadiusToMinWidth<M>(context,geom,ray_org,v1i);
- const Vec4vf<M> vL = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vLi);
- const Vec4vf<M> vR = enlargeRadiusToMinWidth<M>(context,geom,ray_org,vRi);
- return __roundline_internal::intersectConeSphere<M>(valid_i,ray_org,ray_dir,ray_tnear,ray_tfar(ray,k),v0,v1,vL,vR,epilog);
- }
- };
- }
- }
|