renderer_scene_render_rd.cpp 159 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913
  1. /*************************************************************************/
  2. /* renderer_scene_render_rd.cpp */
  3. /*************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /*************************************************************************/
  8. /* Copyright (c) 2007-2022 Juan Linietsky, Ariel Manzur. */
  9. /* Copyright (c) 2014-2022 Godot Engine contributors (cf. AUTHORS.md). */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /*************************************************************************/
  30. #include "renderer_scene_render_rd.h"
  31. #include "core/config/project_settings.h"
  32. #include "core/os/os.h"
  33. #include "renderer_compositor_rd.h"
  34. #include "servers/rendering/renderer_rd/environment/fog.h"
  35. #include "servers/rendering/renderer_rd/storage_rd/material_storage.h"
  36. #include "servers/rendering/renderer_rd/storage_rd/texture_storage.h"
  37. #include "servers/rendering/rendering_server_default.h"
  38. #include "servers/rendering/storage/camera_attributes_storage.h"
  39. void get_vogel_disk(float *r_kernel, int p_sample_count) {
  40. const float golden_angle = 2.4;
  41. for (int i = 0; i < p_sample_count; i++) {
  42. float r = Math::sqrt(float(i) + 0.5) / Math::sqrt(float(p_sample_count));
  43. float theta = float(i) * golden_angle;
  44. r_kernel[i * 4] = Math::cos(theta) * r;
  45. r_kernel[i * 4 + 1] = Math::sin(theta) * r;
  46. }
  47. }
  48. void RendererSceneRenderRD::sdfgi_update(const Ref<RenderSceneBuffers> &p_render_buffers, RID p_environment, const Vector3 &p_world_position) {
  49. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  50. ERR_FAIL_COND(rb.is_null());
  51. Ref<RendererRD::GI::SDFGI> sdfgi;
  52. if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
  53. sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  54. }
  55. bool needs_sdfgi = p_environment.is_valid() && environment_get_sdfgi_enabled(p_environment);
  56. if (!needs_sdfgi) {
  57. if (sdfgi.is_valid()) {
  58. // delete it
  59. sdfgi.unref();
  60. rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
  61. }
  62. return;
  63. }
  64. static const uint32_t history_frames_to_converge[RS::ENV_SDFGI_CONVERGE_MAX] = { 5, 10, 15, 20, 25, 30 };
  65. uint32_t requested_history_size = history_frames_to_converge[gi.sdfgi_frames_to_converge];
  66. if (sdfgi.is_valid() && (sdfgi->num_cascades != environment_get_sdfgi_cascades(p_environment) || sdfgi->min_cell_size != environment_get_sdfgi_min_cell_size(p_environment) || requested_history_size != sdfgi->history_size || sdfgi->uses_occlusion != environment_get_sdfgi_use_occlusion(p_environment) || sdfgi->y_scale_mode != environment_get_sdfgi_y_scale(p_environment))) {
  67. //configuration changed, erase
  68. sdfgi.unref();
  69. rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
  70. }
  71. if (sdfgi.is_null()) {
  72. // re-create
  73. sdfgi = gi.create_sdfgi(p_environment, p_world_position, requested_history_size);
  74. rb->set_custom_data(RB_SCOPE_SDFGI, sdfgi);
  75. } else {
  76. //check for updates
  77. sdfgi->update(p_environment, p_world_position);
  78. }
  79. }
  80. int RendererSceneRenderRD::sdfgi_get_pending_region_count(const Ref<RenderSceneBuffers> &p_render_buffers) const {
  81. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  82. ERR_FAIL_COND_V(rb.is_null(), 0);
  83. if (!rb->has_custom_data(RB_SCOPE_SDFGI)) {
  84. return 0;
  85. }
  86. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  87. int dirty_count = 0;
  88. for (uint32_t i = 0; i < sdfgi->cascades.size(); i++) {
  89. const RendererRD::GI::SDFGI::Cascade &c = sdfgi->cascades[i];
  90. if (c.dirty_regions == RendererRD::GI::SDFGI::Cascade::DIRTY_ALL) {
  91. dirty_count++;
  92. } else {
  93. for (int j = 0; j < 3; j++) {
  94. if (c.dirty_regions[j] != 0) {
  95. dirty_count++;
  96. }
  97. }
  98. }
  99. }
  100. return dirty_count;
  101. }
  102. AABB RendererSceneRenderRD::sdfgi_get_pending_region_bounds(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
  103. AABB bounds;
  104. Vector3i from;
  105. Vector3i size;
  106. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  107. ERR_FAIL_COND_V(rb.is_null(), AABB());
  108. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  109. ERR_FAIL_COND_V(sdfgi.is_null(), AABB());
  110. int c = sdfgi->get_pending_region_data(p_region, from, size, bounds);
  111. ERR_FAIL_COND_V(c == -1, AABB());
  112. return bounds;
  113. }
  114. uint32_t RendererSceneRenderRD::sdfgi_get_pending_region_cascade(const Ref<RenderSceneBuffers> &p_render_buffers, int p_region) const {
  115. AABB bounds;
  116. Vector3i from;
  117. Vector3i size;
  118. Ref<RenderSceneBuffersRD> rb = p_render_buffers;
  119. ERR_FAIL_COND_V(rb.is_null(), -1);
  120. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  121. ERR_FAIL_COND_V(sdfgi.is_null(), -1);
  122. return sdfgi->get_pending_region_data(p_region, from, size, bounds);
  123. }
  124. RID RendererSceneRenderRD::sky_allocate() {
  125. return sky.allocate_sky_rid();
  126. }
  127. void RendererSceneRenderRD::sky_initialize(RID p_rid) {
  128. sky.initialize_sky_rid(p_rid);
  129. }
  130. void RendererSceneRenderRD::sky_set_radiance_size(RID p_sky, int p_radiance_size) {
  131. sky.sky_set_radiance_size(p_sky, p_radiance_size);
  132. }
  133. void RendererSceneRenderRD::sky_set_mode(RID p_sky, RS::SkyMode p_mode) {
  134. sky.sky_set_mode(p_sky, p_mode);
  135. }
  136. void RendererSceneRenderRD::sky_set_material(RID p_sky, RID p_material) {
  137. sky.sky_set_material(p_sky, p_material);
  138. }
  139. Ref<Image> RendererSceneRenderRD::sky_bake_panorama(RID p_sky, float p_energy, bool p_bake_irradiance, const Size2i &p_size) {
  140. return sky.sky_bake_panorama(p_sky, p_energy, p_bake_irradiance, p_size);
  141. }
  142. void RendererSceneRenderRD::environment_glow_set_use_bicubic_upscale(bool p_enable) {
  143. glow_bicubic_upscale = p_enable;
  144. }
  145. void RendererSceneRenderRD::environment_glow_set_use_high_quality(bool p_enable) {
  146. glow_high_quality = p_enable;
  147. }
  148. void RendererSceneRenderRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
  149. volumetric_fog_size = p_size;
  150. volumetric_fog_depth = p_depth;
  151. }
  152. void RendererSceneRenderRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
  153. volumetric_fog_filter_active = p_enable;
  154. }
  155. void RendererSceneRenderRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
  156. gi.sdfgi_ray_count = p_ray_count;
  157. }
  158. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_converge(RS::EnvironmentSDFGIFramesToConverge p_frames) {
  159. gi.sdfgi_frames_to_converge = p_frames;
  160. }
  161. void RendererSceneRenderRD::environment_set_sdfgi_frames_to_update_light(RS::EnvironmentSDFGIFramesToUpdateLight p_update) {
  162. gi.sdfgi_frames_to_update_light = p_update;
  163. }
  164. void RendererSceneRenderRD::environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) {
  165. ssr_roughness_quality = p_quality;
  166. }
  167. RS::EnvironmentSSRRoughnessQuality RendererSceneRenderRD::environment_get_ssr_roughness_quality() const {
  168. return ssr_roughness_quality;
  169. }
  170. void RendererSceneRenderRD::environment_set_ssao_quality(RS::EnvironmentSSAOQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  171. ssao_quality = p_quality;
  172. ssao_half_size = p_half_size;
  173. ssao_adaptive_target = p_adaptive_target;
  174. ssao_blur_passes = p_blur_passes;
  175. ssao_fadeout_from = p_fadeout_from;
  176. ssao_fadeout_to = p_fadeout_to;
  177. }
  178. void RendererSceneRenderRD::environment_set_ssil_quality(RS::EnvironmentSSILQuality p_quality, bool p_half_size, float p_adaptive_target, int p_blur_passes, float p_fadeout_from, float p_fadeout_to) {
  179. ssil_quality = p_quality;
  180. ssil_half_size = p_half_size;
  181. ssil_adaptive_target = p_adaptive_target;
  182. ssil_blur_passes = p_blur_passes;
  183. ssil_fadeout_from = p_fadeout_from;
  184. ssil_fadeout_to = p_fadeout_to;
  185. }
  186. Ref<Image> RendererSceneRenderRD::environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) {
  187. ERR_FAIL_COND_V(p_env.is_null(), Ref<Image>());
  188. RS::EnvironmentBG environment_background = environment_get_background(p_env);
  189. if (environment_background == RS::ENV_BG_CAMERA_FEED || environment_background == RS::ENV_BG_CANVAS || environment_background == RS::ENV_BG_KEEP) {
  190. return Ref<Image>(); //nothing to bake
  191. }
  192. RS::EnvironmentAmbientSource ambient_source = environment_get_ambient_source(p_env);
  193. bool use_ambient_light = false;
  194. bool use_cube_map = false;
  195. if (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && (environment_background == RS::ENV_BG_CLEAR_COLOR || environment_background == RS::ENV_BG_COLOR)) {
  196. use_ambient_light = true;
  197. } else {
  198. use_cube_map = (ambient_source == RS::ENV_AMBIENT_SOURCE_BG && environment_background == RS::ENV_BG_SKY) || ambient_source == RS::ENV_AMBIENT_SOURCE_SKY;
  199. use_ambient_light = use_cube_map || ambient_source == RS::ENV_AMBIENT_SOURCE_COLOR;
  200. }
  201. use_cube_map = use_cube_map || (environment_background == RS::ENV_BG_SKY && environment_get_sky(p_env).is_valid());
  202. Color ambient_color;
  203. float ambient_color_sky_mix = 0.0;
  204. if (use_ambient_light) {
  205. ambient_color_sky_mix = environment_get_ambient_sky_contribution(p_env);
  206. const float ambient_energy = environment_get_ambient_light_energy(p_env);
  207. ambient_color = environment_get_ambient_light(p_env);
  208. ambient_color = ambient_color.srgb_to_linear();
  209. ambient_color.r *= ambient_energy;
  210. ambient_color.g *= ambient_energy;
  211. ambient_color.b *= ambient_energy;
  212. }
  213. if (use_cube_map) {
  214. Ref<Image> panorama = sky_bake_panorama(environment_get_sky(p_env), environment_get_bg_energy_multiplier(p_env), p_bake_irradiance, p_size);
  215. if (use_ambient_light) {
  216. for (int x = 0; x < p_size.width; x++) {
  217. for (int y = 0; y < p_size.height; y++) {
  218. panorama->set_pixel(x, y, ambient_color.lerp(panorama->get_pixel(x, y), ambient_color_sky_mix));
  219. }
  220. }
  221. }
  222. return panorama;
  223. } else {
  224. const float bg_energy_multiplier = environment_get_bg_energy_multiplier(p_env);
  225. Color panorama_color = ((environment_background == RS::ENV_BG_CLEAR_COLOR) ? RSG::texture_storage->get_default_clear_color() : environment_get_bg_color(p_env));
  226. panorama_color = panorama_color.srgb_to_linear();
  227. panorama_color.r *= bg_energy_multiplier;
  228. panorama_color.g *= bg_energy_multiplier;
  229. panorama_color.b *= bg_energy_multiplier;
  230. if (use_ambient_light) {
  231. panorama_color = ambient_color.lerp(panorama_color, ambient_color_sky_mix);
  232. }
  233. Ref<Image> panorama;
  234. panorama.instantiate();
  235. panorama->create(p_size.width, p_size.height, false, Image::FORMAT_RGBAF);
  236. panorama->fill(panorama_color);
  237. return panorama;
  238. }
  239. }
  240. ////////////////////////////////////////////////////////////
  241. RID RendererSceneRenderRD::fog_volume_instance_create(RID p_fog_volume) {
  242. return RendererRD::Fog::get_singleton()->fog_volume_instance_create(p_fog_volume);
  243. }
  244. void RendererSceneRenderRD::fog_volume_instance_set_transform(RID p_fog_volume_instance, const Transform3D &p_transform) {
  245. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  246. ERR_FAIL_COND(!fvi);
  247. fvi->transform = p_transform;
  248. }
  249. void RendererSceneRenderRD::fog_volume_instance_set_active(RID p_fog_volume_instance, bool p_active) {
  250. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  251. ERR_FAIL_COND(!fvi);
  252. fvi->active = p_active;
  253. }
  254. RID RendererSceneRenderRD::fog_volume_instance_get_volume(RID p_fog_volume_instance) const {
  255. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  256. ERR_FAIL_COND_V(!fvi, RID());
  257. return fvi->volume;
  258. }
  259. Vector3 RendererSceneRenderRD::fog_volume_instance_get_position(RID p_fog_volume_instance) const {
  260. RendererRD::Fog::FogVolumeInstance *fvi = RendererRD::Fog::get_singleton()->get_fog_volume_instance(p_fog_volume_instance);
  261. ERR_FAIL_COND_V(!fvi, Vector3());
  262. return fvi->transform.get_origin();
  263. }
  264. ////////////////////////////////////////////////////////////
  265. RID RendererSceneRenderRD::reflection_atlas_create() {
  266. ReflectionAtlas ra;
  267. ra.count = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_count");
  268. ra.size = GLOBAL_GET("rendering/reflections/reflection_atlas/reflection_size");
  269. if (is_clustered_enabled()) {
  270. ra.cluster_builder = memnew(ClusterBuilderRD);
  271. ra.cluster_builder->set_shared(&cluster_builder_shared);
  272. ra.cluster_builder->setup(Size2i(ra.size, ra.size), max_cluster_elements, RID(), RID(), RID());
  273. } else {
  274. ra.cluster_builder = nullptr;
  275. }
  276. return reflection_atlas_owner.make_rid(ra);
  277. }
  278. void RendererSceneRenderRD::reflection_atlas_set_size(RID p_ref_atlas, int p_reflection_size, int p_reflection_count) {
  279. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
  280. ERR_FAIL_COND(!ra);
  281. if (ra->size == p_reflection_size && ra->count == p_reflection_count) {
  282. return; //no changes
  283. }
  284. if (ra->cluster_builder) {
  285. // only if we're using our cluster
  286. ra->cluster_builder->setup(Size2i(ra->size, ra->size), max_cluster_elements, RID(), RID(), RID());
  287. }
  288. ra->size = p_reflection_size;
  289. ra->count = p_reflection_count;
  290. if (ra->reflection.is_valid()) {
  291. //clear and invalidate everything
  292. RD::get_singleton()->free(ra->reflection);
  293. ra->reflection = RID();
  294. RD::get_singleton()->free(ra->depth_buffer);
  295. ra->depth_buffer = RID();
  296. for (int i = 0; i < ra->reflections.size(); i++) {
  297. ra->reflections.write[i].data.clear_reflection_data();
  298. if (ra->reflections[i].owner.is_null()) {
  299. continue;
  300. }
  301. reflection_probe_release_atlas_index(ra->reflections[i].owner);
  302. //rp->atlasindex clear
  303. }
  304. ra->reflections.clear();
  305. }
  306. }
  307. int RendererSceneRenderRD::reflection_atlas_get_size(RID p_ref_atlas) const {
  308. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_ref_atlas);
  309. ERR_FAIL_COND_V(!ra, 0);
  310. return ra->size;
  311. }
  312. ////////////////////////
  313. RID RendererSceneRenderRD::reflection_probe_instance_create(RID p_probe) {
  314. ReflectionProbeInstance rpi;
  315. rpi.probe = p_probe;
  316. rpi.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE);
  317. return reflection_probe_instance_owner.make_rid(rpi);
  318. }
  319. void RendererSceneRenderRD::reflection_probe_instance_set_transform(RID p_instance, const Transform3D &p_transform) {
  320. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  321. ERR_FAIL_COND(!rpi);
  322. rpi->transform = p_transform;
  323. rpi->dirty = true;
  324. }
  325. void RendererSceneRenderRD::reflection_probe_release_atlas_index(RID p_instance) {
  326. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  327. ERR_FAIL_COND(!rpi);
  328. if (rpi->atlas.is_null()) {
  329. return; //nothing to release
  330. }
  331. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  332. ERR_FAIL_COND(!atlas);
  333. ERR_FAIL_INDEX(rpi->atlas_index, atlas->reflections.size());
  334. atlas->reflections.write[rpi->atlas_index].owner = RID();
  335. rpi->atlas_index = -1;
  336. rpi->atlas = RID();
  337. }
  338. bool RendererSceneRenderRD::reflection_probe_instance_needs_redraw(RID p_instance) {
  339. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  340. ERR_FAIL_COND_V(!rpi, false);
  341. if (rpi->rendering) {
  342. return false;
  343. }
  344. if (rpi->dirty) {
  345. return true;
  346. }
  347. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  348. return true;
  349. }
  350. return rpi->atlas_index == -1;
  351. }
  352. bool RendererSceneRenderRD::reflection_probe_instance_has_reflection(RID p_instance) {
  353. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  354. ERR_FAIL_COND_V(!rpi, false);
  355. return rpi->atlas.is_valid();
  356. }
  357. bool RendererSceneRenderRD::reflection_probe_instance_begin_render(RID p_instance, RID p_reflection_atlas) {
  358. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(p_reflection_atlas);
  359. ERR_FAIL_COND_V(!atlas, false);
  360. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  361. ERR_FAIL_COND_V(!rpi, false);
  362. RD::get_singleton()->draw_command_begin_label("Reflection probe render");
  363. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->size != 256) {
  364. WARN_PRINT("ReflectionProbes set to UPDATE_ALWAYS must have an atlas size of 256. Please update the atlas size in the ProjectSettings.");
  365. reflection_atlas_set_size(p_reflection_atlas, 256, atlas->count);
  366. }
  367. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS && atlas->reflection.is_valid() && atlas->reflections[0].data.layers[0].mipmaps.size() != 8) {
  368. // Invalidate reflection atlas, need to regenerate
  369. RD::get_singleton()->free(atlas->reflection);
  370. atlas->reflection = RID();
  371. for (int i = 0; i < atlas->reflections.size(); i++) {
  372. if (atlas->reflections[i].owner.is_null()) {
  373. continue;
  374. }
  375. reflection_probe_release_atlas_index(atlas->reflections[i].owner);
  376. }
  377. atlas->reflections.clear();
  378. }
  379. if (atlas->reflection.is_null()) {
  380. int mipmaps = MIN(sky.roughness_layers, Image::get_image_required_mipmaps(atlas->size, atlas->size, Image::FORMAT_RGBAH) + 1);
  381. mipmaps = RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS ? 8 : mipmaps; // always use 8 mipmaps with real time filtering
  382. {
  383. //reflection atlas was unused, create:
  384. RD::TextureFormat tf;
  385. tf.array_layers = 6 * atlas->count;
  386. tf.format = _render_buffers_get_color_format();
  387. tf.texture_type = RD::TEXTURE_TYPE_CUBE_ARRAY;
  388. tf.mipmaps = mipmaps;
  389. tf.width = atlas->size;
  390. tf.height = atlas->size;
  391. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT | (_render_buffers_can_be_storage() ? RD::TEXTURE_USAGE_STORAGE_BIT : 0);
  392. atlas->reflection = RD::get_singleton()->texture_create(tf, RD::TextureView());
  393. }
  394. {
  395. RD::TextureFormat tf;
  396. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  397. tf.width = atlas->size;
  398. tf.height = atlas->size;
  399. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  400. atlas->depth_buffer = RD::get_singleton()->texture_create(tf, RD::TextureView());
  401. }
  402. atlas->reflections.resize(atlas->count);
  403. for (int i = 0; i < atlas->count; i++) {
  404. atlas->reflections.write[i].data.update_reflection_data(atlas->size, mipmaps, false, atlas->reflection, i * 6, RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS, sky.roughness_layers, _render_buffers_get_color_format());
  405. for (int j = 0; j < 6; j++) {
  406. atlas->reflections.write[i].fbs[j] = reflection_probe_create_framebuffer(atlas->reflections.write[i].data.layers[0].mipmaps[0].views[j], atlas->depth_buffer);
  407. }
  408. }
  409. Vector<RID> fb;
  410. fb.push_back(atlas->depth_buffer);
  411. atlas->depth_fb = RD::get_singleton()->framebuffer_create(fb);
  412. }
  413. if (rpi->atlas_index == -1) {
  414. for (int i = 0; i < atlas->reflections.size(); i++) {
  415. if (atlas->reflections[i].owner.is_null()) {
  416. rpi->atlas_index = i;
  417. break;
  418. }
  419. }
  420. //find the one used last
  421. if (rpi->atlas_index == -1) {
  422. //everything is in use, find the one least used via LRU
  423. uint64_t pass_min = 0;
  424. for (int i = 0; i < atlas->reflections.size(); i++) {
  425. ReflectionProbeInstance *rpi2 = reflection_probe_instance_owner.get_or_null(atlas->reflections[i].owner);
  426. if (rpi2->last_pass < pass_min) {
  427. pass_min = rpi2->last_pass;
  428. rpi->atlas_index = i;
  429. }
  430. }
  431. }
  432. }
  433. if (rpi->atlas_index != -1) { // should we fail if this is still -1 ?
  434. atlas->reflections.write[rpi->atlas_index].owner = p_instance;
  435. }
  436. rpi->atlas = p_reflection_atlas;
  437. rpi->rendering = true;
  438. rpi->dirty = false;
  439. rpi->processing_layer = 1;
  440. rpi->processing_side = 0;
  441. RD::get_singleton()->draw_command_end_label();
  442. return true;
  443. }
  444. RID RendererSceneRenderRD::reflection_probe_create_framebuffer(RID p_color, RID p_depth) {
  445. Vector<RID> fb;
  446. fb.push_back(p_color);
  447. fb.push_back(p_depth);
  448. return RD::get_singleton()->framebuffer_create(fb);
  449. }
  450. bool RendererSceneRenderRD::reflection_probe_instance_postprocess_step(RID p_instance) {
  451. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  452. ERR_FAIL_COND_V(!rpi, false);
  453. ERR_FAIL_COND_V(!rpi->rendering, false);
  454. ERR_FAIL_COND_V(rpi->atlas.is_null(), false);
  455. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  456. if (!atlas || rpi->atlas_index == -1) {
  457. //does not belong to an atlas anymore, cancel (was removed from atlas or atlas changed while rendering)
  458. rpi->rendering = false;
  459. return false;
  460. }
  461. if (RSG::light_storage->reflection_probe_get_update_mode(rpi->probe) == RS::REFLECTION_PROBE_UPDATE_ALWAYS) {
  462. // Using real time reflections, all roughness is done in one step
  463. atlas->reflections.write[rpi->atlas_index].data.create_reflection_fast_filter(false);
  464. rpi->rendering = false;
  465. rpi->processing_side = 0;
  466. rpi->processing_layer = 1;
  467. return true;
  468. }
  469. if (rpi->processing_layer > 1) {
  470. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, 10, rpi->processing_layer, sky.sky_ggx_samples_quality);
  471. rpi->processing_layer++;
  472. if (rpi->processing_layer == atlas->reflections[rpi->atlas_index].data.layers[0].mipmaps.size()) {
  473. rpi->rendering = false;
  474. rpi->processing_side = 0;
  475. rpi->processing_layer = 1;
  476. return true;
  477. }
  478. return false;
  479. } else {
  480. atlas->reflections.write[rpi->atlas_index].data.create_reflection_importance_sample(false, rpi->processing_side, rpi->processing_layer, sky.sky_ggx_samples_quality);
  481. }
  482. rpi->processing_side++;
  483. if (rpi->processing_side == 6) {
  484. rpi->processing_side = 0;
  485. rpi->processing_layer++;
  486. }
  487. return false;
  488. }
  489. uint32_t RendererSceneRenderRD::reflection_probe_instance_get_resolution(RID p_instance) {
  490. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  491. ERR_FAIL_COND_V(!rpi, 0);
  492. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  493. ERR_FAIL_COND_V(!atlas, 0);
  494. return atlas->size;
  495. }
  496. RID RendererSceneRenderRD::reflection_probe_instance_get_framebuffer(RID p_instance, int p_index) {
  497. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  498. ERR_FAIL_COND_V(!rpi, RID());
  499. ERR_FAIL_INDEX_V(p_index, 6, RID());
  500. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  501. ERR_FAIL_COND_V(!atlas, RID());
  502. return atlas->reflections[rpi->atlas_index].fbs[p_index];
  503. }
  504. RID RendererSceneRenderRD::reflection_probe_instance_get_depth_framebuffer(RID p_instance, int p_index) {
  505. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_instance);
  506. ERR_FAIL_COND_V(!rpi, RID());
  507. ERR_FAIL_INDEX_V(p_index, 6, RID());
  508. ReflectionAtlas *atlas = reflection_atlas_owner.get_or_null(rpi->atlas);
  509. ERR_FAIL_COND_V(!atlas, RID());
  510. return atlas->depth_fb;
  511. }
  512. ///////////////////////////////////////////////////////////
  513. RID RendererSceneRenderRD::shadow_atlas_create() {
  514. return shadow_atlas_owner.make_rid(ShadowAtlas());
  515. }
  516. void RendererSceneRenderRD::_update_shadow_atlas(ShadowAtlas *shadow_atlas) {
  517. if (shadow_atlas->size > 0 && shadow_atlas->depth.is_null()) {
  518. RD::TextureFormat tf;
  519. tf.format = shadow_atlas->use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  520. tf.width = shadow_atlas->size;
  521. tf.height = shadow_atlas->size;
  522. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  523. shadow_atlas->depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  524. Vector<RID> fb_tex;
  525. fb_tex.push_back(shadow_atlas->depth);
  526. shadow_atlas->fb = RD::get_singleton()->framebuffer_create(fb_tex);
  527. }
  528. }
  529. void RendererSceneRenderRD::shadow_atlas_set_size(RID p_atlas, int p_size, bool p_16_bits) {
  530. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
  531. ERR_FAIL_COND(!shadow_atlas);
  532. ERR_FAIL_COND(p_size < 0);
  533. p_size = next_power_of_2(p_size);
  534. if (p_size == shadow_atlas->size && p_16_bits == shadow_atlas->use_16_bits) {
  535. return;
  536. }
  537. // erasing atlas
  538. if (shadow_atlas->depth.is_valid()) {
  539. RD::get_singleton()->free(shadow_atlas->depth);
  540. shadow_atlas->depth = RID();
  541. }
  542. for (int i = 0; i < 4; i++) {
  543. //clear subdivisions
  544. shadow_atlas->quadrants[i].shadows.clear();
  545. shadow_atlas->quadrants[i].shadows.resize(1 << shadow_atlas->quadrants[i].subdivision);
  546. }
  547. //erase shadow atlas reference from lights
  548. for (const KeyValue<RID, uint32_t> &E : shadow_atlas->shadow_owners) {
  549. LightInstance *li = light_instance_owner.get_or_null(E.key);
  550. ERR_CONTINUE(!li);
  551. li->shadow_atlases.erase(p_atlas);
  552. }
  553. //clear owners
  554. shadow_atlas->shadow_owners.clear();
  555. shadow_atlas->size = p_size;
  556. shadow_atlas->use_16_bits = p_16_bits;
  557. }
  558. void RendererSceneRenderRD::shadow_atlas_set_quadrant_subdivision(RID p_atlas, int p_quadrant, int p_subdivision) {
  559. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
  560. ERR_FAIL_COND(!shadow_atlas);
  561. ERR_FAIL_INDEX(p_quadrant, 4);
  562. ERR_FAIL_INDEX(p_subdivision, 16384);
  563. uint32_t subdiv = next_power_of_2(p_subdivision);
  564. if (subdiv & 0xaaaaaaaa) { //sqrt(subdiv) must be integer
  565. subdiv <<= 1;
  566. }
  567. subdiv = int(Math::sqrt((float)subdiv));
  568. //obtain the number that will be x*x
  569. if (shadow_atlas->quadrants[p_quadrant].subdivision == subdiv) {
  570. return;
  571. }
  572. //erase all data from quadrant
  573. for (int i = 0; i < shadow_atlas->quadrants[p_quadrant].shadows.size(); i++) {
  574. if (shadow_atlas->quadrants[p_quadrant].shadows[i].owner.is_valid()) {
  575. shadow_atlas->shadow_owners.erase(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  576. LightInstance *li = light_instance_owner.get_or_null(shadow_atlas->quadrants[p_quadrant].shadows[i].owner);
  577. ERR_CONTINUE(!li);
  578. li->shadow_atlases.erase(p_atlas);
  579. }
  580. }
  581. shadow_atlas->quadrants[p_quadrant].shadows.clear();
  582. shadow_atlas->quadrants[p_quadrant].shadows.resize(subdiv * subdiv);
  583. shadow_atlas->quadrants[p_quadrant].subdivision = subdiv;
  584. //cache the smallest subdiv (for faster allocation in light update)
  585. shadow_atlas->smallest_subdiv = 1 << 30;
  586. for (int i = 0; i < 4; i++) {
  587. if (shadow_atlas->quadrants[i].subdivision) {
  588. shadow_atlas->smallest_subdiv = MIN(shadow_atlas->smallest_subdiv, shadow_atlas->quadrants[i].subdivision);
  589. }
  590. }
  591. if (shadow_atlas->smallest_subdiv == 1 << 30) {
  592. shadow_atlas->smallest_subdiv = 0;
  593. }
  594. //resort the size orders, simple bublesort for 4 elements..
  595. int swaps = 0;
  596. do {
  597. swaps = 0;
  598. for (int i = 0; i < 3; i++) {
  599. if (shadow_atlas->quadrants[shadow_atlas->size_order[i]].subdivision < shadow_atlas->quadrants[shadow_atlas->size_order[i + 1]].subdivision) {
  600. SWAP(shadow_atlas->size_order[i], shadow_atlas->size_order[i + 1]);
  601. swaps++;
  602. }
  603. }
  604. } while (swaps > 0);
  605. }
  606. bool RendererSceneRenderRD::_shadow_atlas_find_shadow(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  607. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  608. int qidx = p_in_quadrants[i];
  609. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  610. return false;
  611. }
  612. //look for an empty space
  613. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  614. const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
  615. int found_free_idx = -1; //found a free one
  616. int found_used_idx = -1; //found existing one, must steal it
  617. uint64_t min_pass = 0; // pass of the existing one, try to use the least recently used one (LRU fashion)
  618. for (int j = 0; j < sc; j++) {
  619. if (!sarr[j].owner.is_valid()) {
  620. found_free_idx = j;
  621. break;
  622. }
  623. LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
  624. ERR_CONTINUE(!sli);
  625. if (sli->last_scene_pass != scene_pass) {
  626. //was just allocated, don't kill it so soon, wait a bit..
  627. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  628. continue;
  629. }
  630. if (found_used_idx == -1 || sli->last_scene_pass < min_pass) {
  631. found_used_idx = j;
  632. min_pass = sli->last_scene_pass;
  633. }
  634. }
  635. }
  636. if (found_free_idx == -1 && found_used_idx == -1) {
  637. continue; //nothing found
  638. }
  639. if (found_free_idx == -1 && found_used_idx != -1) {
  640. found_free_idx = found_used_idx;
  641. }
  642. r_quadrant = qidx;
  643. r_shadow = found_free_idx;
  644. return true;
  645. }
  646. return false;
  647. }
  648. bool RendererSceneRenderRD::_shadow_atlas_find_omni_shadows(ShadowAtlas *shadow_atlas, int *p_in_quadrants, int p_quadrant_count, int p_current_subdiv, uint64_t p_tick, int &r_quadrant, int &r_shadow) {
  649. for (int i = p_quadrant_count - 1; i >= 0; i--) {
  650. int qidx = p_in_quadrants[i];
  651. if (shadow_atlas->quadrants[qidx].subdivision == (uint32_t)p_current_subdiv) {
  652. return false;
  653. }
  654. //look for an empty space
  655. int sc = shadow_atlas->quadrants[qidx].shadows.size();
  656. const ShadowAtlas::Quadrant::Shadow *sarr = shadow_atlas->quadrants[qidx].shadows.ptr();
  657. int found_idx = -1;
  658. uint64_t min_pass = 0; // sum of currently selected spots, try to get the least recently used pair
  659. for (int j = 0; j < sc - 1; j++) {
  660. uint64_t pass = 0;
  661. if (sarr[j].owner.is_valid()) {
  662. LightInstance *sli = light_instance_owner.get_or_null(sarr[j].owner);
  663. ERR_CONTINUE(!sli);
  664. if (sli->last_scene_pass == scene_pass) {
  665. continue;
  666. }
  667. //was just allocated, don't kill it so soon, wait a bit..
  668. if (p_tick - sarr[j].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  669. continue;
  670. }
  671. pass += sli->last_scene_pass;
  672. }
  673. if (sarr[j + 1].owner.is_valid()) {
  674. LightInstance *sli = light_instance_owner.get_or_null(sarr[j + 1].owner);
  675. ERR_CONTINUE(!sli);
  676. if (sli->last_scene_pass == scene_pass) {
  677. continue;
  678. }
  679. //was just allocated, don't kill it so soon, wait a bit..
  680. if (p_tick - sarr[j + 1].alloc_tick < shadow_atlas_realloc_tolerance_msec) {
  681. continue;
  682. }
  683. pass += sli->last_scene_pass;
  684. }
  685. if (found_idx == -1 || pass < min_pass) {
  686. found_idx = j;
  687. min_pass = pass;
  688. // we found two empty spots, no need to check the rest
  689. if (pass == 0) {
  690. break;
  691. }
  692. }
  693. }
  694. if (found_idx == -1) {
  695. continue; //nothing found
  696. }
  697. r_quadrant = qidx;
  698. r_shadow = found_idx;
  699. return true;
  700. }
  701. return false;
  702. }
  703. bool RendererSceneRenderRD::shadow_atlas_update_light(RID p_atlas, RID p_light_instance, float p_coverage, uint64_t p_light_version) {
  704. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_atlas);
  705. ERR_FAIL_COND_V(!shadow_atlas, false);
  706. LightInstance *li = light_instance_owner.get_or_null(p_light_instance);
  707. ERR_FAIL_COND_V(!li, false);
  708. if (shadow_atlas->size == 0 || shadow_atlas->smallest_subdiv == 0) {
  709. return false;
  710. }
  711. uint32_t quad_size = shadow_atlas->size >> 1;
  712. int desired_fit = MIN(quad_size / shadow_atlas->smallest_subdiv, next_power_of_2(quad_size * p_coverage));
  713. int valid_quadrants[4];
  714. int valid_quadrant_count = 0;
  715. int best_size = -1; //best size found
  716. int best_subdiv = -1; //subdiv for the best size
  717. //find the quadrants this fits into, and the best possible size it can fit into
  718. for (int i = 0; i < 4; i++) {
  719. int q = shadow_atlas->size_order[i];
  720. int sd = shadow_atlas->quadrants[q].subdivision;
  721. if (sd == 0) {
  722. continue; //unused
  723. }
  724. int max_fit = quad_size / sd;
  725. if (best_size != -1 && max_fit > best_size) {
  726. break; //too large
  727. }
  728. valid_quadrants[valid_quadrant_count++] = q;
  729. best_subdiv = sd;
  730. if (max_fit >= desired_fit) {
  731. best_size = max_fit;
  732. }
  733. }
  734. ERR_FAIL_COND_V(valid_quadrant_count == 0, false);
  735. uint64_t tick = OS::get_singleton()->get_ticks_msec();
  736. uint32_t old_key = ShadowAtlas::SHADOW_INVALID;
  737. uint32_t old_quadrant = ShadowAtlas::SHADOW_INVALID;
  738. uint32_t old_shadow = ShadowAtlas::SHADOW_INVALID;
  739. int old_subdivision = -1;
  740. bool should_realloc = false;
  741. bool should_redraw = false;
  742. if (shadow_atlas->shadow_owners.has(p_light_instance)) {
  743. old_key = shadow_atlas->shadow_owners[p_light_instance];
  744. old_quadrant = (old_key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  745. old_shadow = old_key & ShadowAtlas::SHADOW_INDEX_MASK;
  746. should_realloc = shadow_atlas->quadrants[old_quadrant].subdivision != (uint32_t)best_subdiv && (shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].alloc_tick - tick > shadow_atlas_realloc_tolerance_msec);
  747. should_redraw = shadow_atlas->quadrants[old_quadrant].shadows[old_shadow].version != p_light_version;
  748. if (!should_realloc) {
  749. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = p_light_version;
  750. //already existing, see if it should redraw or it's just OK
  751. return should_redraw;
  752. }
  753. old_subdivision = shadow_atlas->quadrants[old_quadrant].subdivision;
  754. }
  755. bool is_omni = li->light_type == RS::LIGHT_OMNI;
  756. bool found_shadow = false;
  757. int new_quadrant = -1;
  758. int new_shadow = -1;
  759. if (is_omni) {
  760. found_shadow = _shadow_atlas_find_omni_shadows(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
  761. } else {
  762. found_shadow = _shadow_atlas_find_shadow(shadow_atlas, valid_quadrants, valid_quadrant_count, old_subdivision, tick, new_quadrant, new_shadow);
  763. }
  764. if (found_shadow) {
  765. if (old_quadrant != ShadowAtlas::SHADOW_INVALID) {
  766. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].version = 0;
  767. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow].owner = RID();
  768. if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
  769. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].version = 0;
  770. shadow_atlas->quadrants[old_quadrant].shadows.write[old_shadow + 1].owner = RID();
  771. }
  772. }
  773. uint32_t new_key = new_quadrant << ShadowAtlas::QUADRANT_SHIFT;
  774. new_key |= new_shadow;
  775. ShadowAtlas::Quadrant::Shadow *sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_shadow];
  776. _shadow_atlas_invalidate_shadow(sh, p_atlas, shadow_atlas, new_quadrant, new_shadow);
  777. sh->owner = p_light_instance;
  778. sh->alloc_tick = tick;
  779. sh->version = p_light_version;
  780. if (is_omni) {
  781. new_key |= ShadowAtlas::OMNI_LIGHT_FLAG;
  782. int new_omni_shadow = new_shadow + 1;
  783. ShadowAtlas::Quadrant::Shadow *extra_sh = &shadow_atlas->quadrants[new_quadrant].shadows.write[new_omni_shadow];
  784. _shadow_atlas_invalidate_shadow(extra_sh, p_atlas, shadow_atlas, new_quadrant, new_omni_shadow);
  785. extra_sh->owner = p_light_instance;
  786. extra_sh->alloc_tick = tick;
  787. extra_sh->version = p_light_version;
  788. }
  789. li->shadow_atlases.insert(p_atlas);
  790. //update it in map
  791. shadow_atlas->shadow_owners[p_light_instance] = new_key;
  792. //make it dirty, as it should redraw anyway
  793. return true;
  794. }
  795. return should_redraw;
  796. }
  797. void RendererSceneRenderRD::_shadow_atlas_invalidate_shadow(RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *p_shadow, RID p_atlas, RendererSceneRenderRD::ShadowAtlas *p_shadow_atlas, uint32_t p_quadrant, uint32_t p_shadow_idx) {
  798. if (p_shadow->owner.is_valid()) {
  799. LightInstance *sli = light_instance_owner.get_or_null(p_shadow->owner);
  800. uint32_t old_key = p_shadow_atlas->shadow_owners[p_shadow->owner];
  801. if (old_key & ShadowAtlas::OMNI_LIGHT_FLAG) {
  802. uint32_t s = old_key & ShadowAtlas::SHADOW_INDEX_MASK;
  803. uint32_t omni_shadow_idx = p_shadow_idx + (s == (uint32_t)p_shadow_idx ? 1 : -1);
  804. RendererSceneRenderRD::ShadowAtlas::Quadrant::Shadow *omni_shadow = &p_shadow_atlas->quadrants[p_quadrant].shadows.write[omni_shadow_idx];
  805. omni_shadow->version = 0;
  806. omni_shadow->owner = RID();
  807. }
  808. p_shadow_atlas->shadow_owners.erase(p_shadow->owner);
  809. p_shadow->version = 0;
  810. p_shadow->owner = RID();
  811. sli->shadow_atlases.erase(p_atlas);
  812. }
  813. }
  814. void RendererSceneRenderRD::_update_directional_shadow_atlas() {
  815. if (directional_shadow.depth.is_null() && directional_shadow.size > 0) {
  816. RD::TextureFormat tf;
  817. tf.format = directional_shadow.use_16_bits ? RD::DATA_FORMAT_D16_UNORM : RD::DATA_FORMAT_D32_SFLOAT;
  818. tf.width = directional_shadow.size;
  819. tf.height = directional_shadow.size;
  820. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
  821. directional_shadow.depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  822. Vector<RID> fb_tex;
  823. fb_tex.push_back(directional_shadow.depth);
  824. directional_shadow.fb = RD::get_singleton()->framebuffer_create(fb_tex);
  825. }
  826. }
  827. void RendererSceneRenderRD::directional_shadow_atlas_set_size(int p_size, bool p_16_bits) {
  828. p_size = nearest_power_of_2_templated(p_size);
  829. if (directional_shadow.size == p_size && directional_shadow.use_16_bits == p_16_bits) {
  830. return;
  831. }
  832. directional_shadow.size = p_size;
  833. directional_shadow.use_16_bits = p_16_bits;
  834. if (directional_shadow.depth.is_valid()) {
  835. RD::get_singleton()->free(directional_shadow.depth);
  836. directional_shadow.depth = RID();
  837. _base_uniforms_changed();
  838. }
  839. }
  840. void RendererSceneRenderRD::set_directional_shadow_count(int p_count) {
  841. directional_shadow.light_count = p_count;
  842. directional_shadow.current_light = 0;
  843. }
  844. static Rect2i _get_directional_shadow_rect(int p_size, int p_shadow_count, int p_shadow_index) {
  845. int split_h = 1;
  846. int split_v = 1;
  847. while (split_h * split_v < p_shadow_count) {
  848. if (split_h == split_v) {
  849. split_h <<= 1;
  850. } else {
  851. split_v <<= 1;
  852. }
  853. }
  854. Rect2i rect(0, 0, p_size, p_size);
  855. rect.size.width /= split_h;
  856. rect.size.height /= split_v;
  857. rect.position.x = rect.size.width * (p_shadow_index % split_h);
  858. rect.position.y = rect.size.height * (p_shadow_index / split_h);
  859. return rect;
  860. }
  861. int RendererSceneRenderRD::get_directional_light_shadow_size(RID p_light_intance) {
  862. ERR_FAIL_COND_V(directional_shadow.light_count == 0, 0);
  863. Rect2i r = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, 0);
  864. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_intance);
  865. ERR_FAIL_COND_V(!light_instance, 0);
  866. switch (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light)) {
  867. case RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL:
  868. break; //none
  869. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS:
  870. r.size.height /= 2;
  871. break;
  872. case RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS:
  873. r.size /= 2;
  874. break;
  875. }
  876. return MAX(r.size.width, r.size.height);
  877. }
  878. //////////////////////////////////////////////////
  879. RID RendererSceneRenderRD::light_instance_create(RID p_light) {
  880. RID li = light_instance_owner.make_rid(LightInstance());
  881. LightInstance *light_instance = light_instance_owner.get_or_null(li);
  882. light_instance->self = li;
  883. light_instance->light = p_light;
  884. light_instance->light_type = RSG::light_storage->light_get_type(p_light);
  885. if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
  886. light_instance->forward_id = _allocate_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT);
  887. }
  888. return li;
  889. }
  890. void RendererSceneRenderRD::light_instance_set_transform(RID p_light_instance, const Transform3D &p_transform) {
  891. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  892. ERR_FAIL_COND(!light_instance);
  893. light_instance->transform = p_transform;
  894. }
  895. void RendererSceneRenderRD::light_instance_set_aabb(RID p_light_instance, const AABB &p_aabb) {
  896. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  897. ERR_FAIL_COND(!light_instance);
  898. light_instance->aabb = p_aabb;
  899. }
  900. void RendererSceneRenderRD::light_instance_set_shadow_transform(RID p_light_instance, const Projection &p_projection, const Transform3D &p_transform, float p_far, float p_split, int p_pass, float p_shadow_texel_size, float p_bias_scale, float p_range_begin, const Vector2 &p_uv_scale) {
  901. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  902. ERR_FAIL_COND(!light_instance);
  903. ERR_FAIL_INDEX(p_pass, 6);
  904. light_instance->shadow_transform[p_pass].camera = p_projection;
  905. light_instance->shadow_transform[p_pass].transform = p_transform;
  906. light_instance->shadow_transform[p_pass].farplane = p_far;
  907. light_instance->shadow_transform[p_pass].split = p_split;
  908. light_instance->shadow_transform[p_pass].bias_scale = p_bias_scale;
  909. light_instance->shadow_transform[p_pass].range_begin = p_range_begin;
  910. light_instance->shadow_transform[p_pass].shadow_texel_size = p_shadow_texel_size;
  911. light_instance->shadow_transform[p_pass].uv_scale = p_uv_scale;
  912. }
  913. void RendererSceneRenderRD::light_instance_mark_visible(RID p_light_instance) {
  914. LightInstance *light_instance = light_instance_owner.get_or_null(p_light_instance);
  915. ERR_FAIL_COND(!light_instance);
  916. light_instance->last_scene_pass = scene_pass;
  917. }
  918. RendererSceneRenderRD::ShadowCubemap *RendererSceneRenderRD::_get_shadow_cubemap(int p_size) {
  919. if (!shadow_cubemaps.has(p_size)) {
  920. ShadowCubemap sc;
  921. {
  922. RD::TextureFormat tf;
  923. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  924. tf.width = p_size;
  925. tf.height = p_size;
  926. tf.texture_type = RD::TEXTURE_TYPE_CUBE;
  927. tf.array_layers = 6;
  928. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  929. sc.cubemap = RD::get_singleton()->texture_create(tf, RD::TextureView());
  930. }
  931. for (int i = 0; i < 6; i++) {
  932. RID side_texture = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), sc.cubemap, i, 0);
  933. Vector<RID> fbtex;
  934. fbtex.push_back(side_texture);
  935. sc.side_fb[i] = RD::get_singleton()->framebuffer_create(fbtex);
  936. }
  937. shadow_cubemaps[p_size] = sc;
  938. }
  939. return &shadow_cubemaps[p_size];
  940. }
  941. //////////////////////////
  942. RID RendererSceneRenderRD::decal_instance_create(RID p_decal) {
  943. DecalInstance di;
  944. di.decal = p_decal;
  945. di.forward_id = _allocate_forward_id(FORWARD_ID_TYPE_DECAL);
  946. return decal_instance_owner.make_rid(di);
  947. }
  948. void RendererSceneRenderRD::decal_instance_set_transform(RID p_decal, const Transform3D &p_transform) {
  949. DecalInstance *di = decal_instance_owner.get_or_null(p_decal);
  950. ERR_FAIL_COND(!di);
  951. di->transform = p_transform;
  952. }
  953. /////////////////////////////////
  954. RID RendererSceneRenderRD::lightmap_instance_create(RID p_lightmap) {
  955. LightmapInstance li;
  956. li.lightmap = p_lightmap;
  957. return lightmap_instance_owner.make_rid(li);
  958. }
  959. void RendererSceneRenderRD::lightmap_instance_set_transform(RID p_lightmap, const Transform3D &p_transform) {
  960. LightmapInstance *li = lightmap_instance_owner.get_or_null(p_lightmap);
  961. ERR_FAIL_COND(!li);
  962. li->transform = p_transform;
  963. }
  964. /////////////////////////////////
  965. RID RendererSceneRenderRD::voxel_gi_instance_create(RID p_base) {
  966. return gi.voxel_gi_instance_create(p_base);
  967. }
  968. void RendererSceneRenderRD::voxel_gi_instance_set_transform_to_data(RID p_probe, const Transform3D &p_xform) {
  969. gi.voxel_gi_instance_set_transform_to_data(p_probe, p_xform);
  970. }
  971. bool RendererSceneRenderRD::voxel_gi_needs_update(RID p_probe) const {
  972. if (!is_dynamic_gi_supported()) {
  973. return false;
  974. }
  975. return gi.voxel_gi_needs_update(p_probe);
  976. }
  977. void RendererSceneRenderRD::voxel_gi_update(RID p_probe, bool p_update_light_instances, const Vector<RID> &p_light_instances, const PagedArray<RenderGeometryInstance *> &p_dynamic_objects) {
  978. if (!is_dynamic_gi_supported()) {
  979. return;
  980. }
  981. gi.voxel_gi_update(p_probe, p_update_light_instances, p_light_instances, p_dynamic_objects, this);
  982. }
  983. void RendererSceneRenderRD::_debug_sdfgi_probes(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_framebuffer, const uint32_t p_view_count, const Projection *p_camera_with_transforms, bool p_will_continue_color, bool p_will_continue_depth) {
  984. ERR_FAIL_COND(p_render_buffers.is_null());
  985. if (!p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  986. return; //nothing to debug
  987. }
  988. Ref<RendererRD::GI::SDFGI> sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  989. sdfgi->debug_probes(p_framebuffer, p_view_count, p_camera_with_transforms, p_will_continue_color, p_will_continue_depth);
  990. }
  991. ////////////////////////////////
  992. Ref<RenderSceneBuffers> RendererSceneRenderRD::render_buffers_create() {
  993. Ref<RenderSceneBuffersRD> rb;
  994. rb.instantiate();
  995. rb->set_can_be_storage(_render_buffers_can_be_storage());
  996. rb->set_max_cluster_elements(max_cluster_elements);
  997. rb->set_base_data_format(_render_buffers_get_color_format());
  998. if (ss_effects) {
  999. rb->set_sseffects(ss_effects);
  1000. }
  1001. if (vrs) {
  1002. rb->set_vrs(vrs);
  1003. }
  1004. setup_render_buffer_data(rb);
  1005. return rb;
  1006. }
  1007. void RendererSceneRenderRD::_allocate_luminance_textures(Ref<RenderSceneBuffersRD> rb) {
  1008. ERR_FAIL_COND(!rb->luminance.current.is_null());
  1009. Size2i internal_size = rb->get_internal_size();
  1010. int w = internal_size.x;
  1011. int h = internal_size.y;
  1012. while (true) {
  1013. w = MAX(w / 8, 1);
  1014. h = MAX(h / 8, 1);
  1015. RD::TextureFormat tf;
  1016. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  1017. tf.width = w;
  1018. tf.height = h;
  1019. bool final = w == 1 && h == 1;
  1020. if (_render_buffers_can_be_storage()) {
  1021. tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
  1022. if (final) {
  1023. tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
  1024. }
  1025. } else {
  1026. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_SAMPLING_BIT;
  1027. }
  1028. RID texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1029. rb->luminance.reduce.push_back(texture);
  1030. if (!_render_buffers_can_be_storage()) {
  1031. Vector<RID> fb;
  1032. fb.push_back(texture);
  1033. rb->luminance.fb.push_back(RD::get_singleton()->framebuffer_create(fb));
  1034. }
  1035. if (final) {
  1036. rb->luminance.current = RD::get_singleton()->texture_create(tf, RD::TextureView());
  1037. if (!_render_buffers_can_be_storage()) {
  1038. Vector<RID> fb;
  1039. fb.push_back(rb->luminance.current);
  1040. rb->luminance.current_fb = RD::get_singleton()->framebuffer_create(fb);
  1041. }
  1042. break;
  1043. }
  1044. }
  1045. }
  1046. void RendererSceneRenderRD::_process_sss(Ref<RenderSceneBuffersRD> p_render_buffers, const Projection &p_camera) {
  1047. ERR_FAIL_COND(p_render_buffers.is_null());
  1048. Size2i internal_size = p_render_buffers->get_internal_size();
  1049. bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;
  1050. if (!can_use_effects) {
  1051. //just copy
  1052. return;
  1053. }
  1054. p_render_buffers->allocate_blur_textures();
  1055. for (uint32_t v = 0; v < p_render_buffers->get_view_count(); v++) {
  1056. RID internal_texture = p_render_buffers->get_internal_texture(v);
  1057. RID depth_texture = p_render_buffers->get_depth_texture(v);
  1058. ss_effects->sub_surface_scattering(p_render_buffers, internal_texture, depth_texture, p_camera, internal_size, sss_scale, sss_depth_scale, sss_quality);
  1059. }
  1060. }
  1061. void RendererSceneRenderRD::_process_ssr(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_dest_framebuffer, const RID *p_normal_slices, RID p_specular_buffer, const RID *p_metallic_slices, RID p_environment, const Projection *p_projections, const Vector3 *p_eye_offsets, bool p_use_additive) {
  1062. ERR_FAIL_NULL(ss_effects);
  1063. ERR_FAIL_COND(p_render_buffers.is_null());
  1064. Size2i internal_size = p_render_buffers->get_internal_size();
  1065. bool can_use_effects = internal_size.x >= 8 && internal_size.y >= 8;
  1066. uint32_t view_count = p_render_buffers->get_view_count();
  1067. if (!can_use_effects) {
  1068. //just copy
  1069. copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), RID(), view_count);
  1070. return;
  1071. }
  1072. ERR_FAIL_COND(p_environment.is_null());
  1073. ERR_FAIL_COND(!environment_get_ssr_enabled(p_environment));
  1074. Size2i half_size = Size2i(internal_size.x / 2, internal_size.y / 2);
  1075. if (p_render_buffers->ssr.output.is_null()) {
  1076. ss_effects->ssr_allocate_buffers(p_render_buffers->ssr, _render_buffers_get_color_format(), ssr_roughness_quality, half_size, view_count);
  1077. }
  1078. RID texture_slices[RendererSceneRender::MAX_RENDER_VIEWS];
  1079. RID depth_slices[RendererSceneRender::MAX_RENDER_VIEWS];
  1080. for (uint32_t v = 0; v < view_count; v++) {
  1081. texture_slices[v] = p_render_buffers->get_internal_texture(v);
  1082. depth_slices[v] = p_render_buffers->get_depth_texture(v);
  1083. }
  1084. ss_effects->screen_space_reflection(p_render_buffers->ssr, texture_slices, p_normal_slices, ssr_roughness_quality, p_metallic_slices, depth_slices, half_size, environment_get_ssr_max_steps(p_environment), environment_get_ssr_fade_in(p_environment), environment_get_ssr_fade_out(p_environment), environment_get_ssr_depth_tolerance(p_environment), view_count, p_projections, p_eye_offsets);
  1085. copy_effects->merge_specular(p_dest_framebuffer, p_specular_buffer, p_use_additive ? RID() : p_render_buffers->get_internal_texture(), p_render_buffers->ssr.output, view_count);
  1086. }
  1087. void RendererSceneRenderRD::_process_ssao(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection) {
  1088. ERR_FAIL_NULL(ss_effects);
  1089. ERR_FAIL_COND(p_render_buffers.is_null());
  1090. ERR_FAIL_COND(p_environment.is_null());
  1091. RENDER_TIMESTAMP("Process SSAO");
  1092. RendererRD::SSEffects::SSAOSettings settings;
  1093. settings.radius = environment_get_ssao_radius(p_environment);
  1094. settings.intensity = environment_get_ssao_intensity(p_environment);
  1095. settings.power = environment_get_ssao_power(p_environment);
  1096. settings.detail = environment_get_ssao_detail(p_environment);
  1097. settings.horizon = environment_get_ssao_horizon(p_environment);
  1098. settings.sharpness = environment_get_ssao_sharpness(p_environment);
  1099. settings.quality = ssao_quality;
  1100. settings.half_size = ssao_half_size;
  1101. settings.adaptive_target = ssao_adaptive_target;
  1102. settings.blur_passes = ssao_blur_passes;
  1103. settings.fadeout_from = ssao_fadeout_from;
  1104. settings.fadeout_to = ssao_fadeout_to;
  1105. settings.full_screen_size = p_render_buffers->get_internal_size();
  1106. ss_effects->ssao_allocate_buffers(p_render_buffers->ss_effects.ssao, settings, p_render_buffers->ss_effects.linear_depth);
  1107. ss_effects->generate_ssao(p_render_buffers->ss_effects.ssao, p_normal_buffer, p_projection, settings);
  1108. }
  1109. void RendererSceneRenderRD::_process_ssil(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, RID p_normal_buffer, const Projection &p_projection, const Transform3D &p_transform) {
  1110. ERR_FAIL_NULL(ss_effects);
  1111. ERR_FAIL_COND(p_render_buffers.is_null());
  1112. ERR_FAIL_COND(p_environment.is_null());
  1113. RENDER_TIMESTAMP("Process SSIL");
  1114. RendererRD::SSEffects::SSILSettings settings;
  1115. settings.radius = environment_get_ssil_radius(p_environment);
  1116. settings.intensity = environment_get_ssil_intensity(p_environment);
  1117. settings.sharpness = environment_get_ssil_sharpness(p_environment);
  1118. settings.normal_rejection = environment_get_ssil_normal_rejection(p_environment);
  1119. settings.quality = ssil_quality;
  1120. settings.half_size = ssil_half_size;
  1121. settings.adaptive_target = ssil_adaptive_target;
  1122. settings.blur_passes = ssil_blur_passes;
  1123. settings.fadeout_from = ssil_fadeout_from;
  1124. settings.fadeout_to = ssil_fadeout_to;
  1125. settings.full_screen_size = p_render_buffers->get_internal_size();
  1126. Projection correction;
  1127. correction.set_depth_correction(true);
  1128. Projection projection = correction * p_projection;
  1129. Transform3D transform = p_transform;
  1130. transform.set_origin(Vector3(0.0, 0.0, 0.0));
  1131. Projection last_frame_projection = p_render_buffers->ss_effects.last_frame_projection * Projection(p_render_buffers->ss_effects.last_frame_transform.affine_inverse()) * Projection(transform) * projection.inverse();
  1132. ss_effects->ssil_allocate_buffers(p_render_buffers->ss_effects.ssil, settings, p_render_buffers->ss_effects.linear_depth);
  1133. ss_effects->screen_space_indirect_lighting(p_render_buffers->ss_effects.ssil, p_normal_buffer, p_projection, last_frame_projection, settings);
  1134. p_render_buffers->ss_effects.last_frame_projection = projection;
  1135. p_render_buffers->ss_effects.last_frame_transform = transform;
  1136. }
  1137. void RendererSceneRenderRD::_copy_framebuffer_to_ssil(Ref<RenderSceneBuffersRD> p_render_buffers) {
  1138. ERR_FAIL_COND(p_render_buffers.is_null());
  1139. if (p_render_buffers->ss_effects.ssil.last_frame.is_valid()) {
  1140. Size2i size = p_render_buffers->get_internal_size();
  1141. RID texture = p_render_buffers->get_internal_texture();
  1142. copy_effects->copy_to_rect(texture, p_render_buffers->ss_effects.ssil.last_frame, Rect2i(0, 0, size.x, size.y));
  1143. int width = size.x;
  1144. int height = size.y;
  1145. for (int i = 0; i < p_render_buffers->ss_effects.ssil.last_frame_slices.size() - 1; i++) {
  1146. width = MAX(1, width >> 1);
  1147. height = MAX(1, height >> 1);
  1148. copy_effects->make_mipmap(p_render_buffers->ss_effects.ssil.last_frame_slices[i], p_render_buffers->ss_effects.ssil.last_frame_slices[i + 1], Size2i(width, height));
  1149. }
  1150. }
  1151. }
  1152. void RendererSceneRenderRD::_render_buffers_copy_screen_texture(const RenderDataRD *p_render_data) {
  1153. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1154. ERR_FAIL_COND(rb.is_null());
  1155. RD::get_singleton()->draw_command_begin_label("Copy screen texture");
  1156. rb->allocate_blur_textures();
  1157. bool can_use_storage = _render_buffers_can_be_storage();
  1158. Size2i size = rb->get_internal_size();
  1159. for (uint32_t v = 0; v < rb->get_view_count(); v++) {
  1160. RID texture = rb->get_internal_texture(v);
  1161. int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0).mipmaps);
  1162. RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, 0);
  1163. if (can_use_storage) {
  1164. copy_effects->copy_to_rect(texture, dest, Rect2i(0, 0, size.x, size.y));
  1165. } else {
  1166. RID fb = FramebufferCacheRD::get_singleton()->get_cache(dest);
  1167. copy_effects->copy_to_fb_rect(texture, fb, Rect2i(0, 0, size.x, size.y));
  1168. }
  1169. for (int i = 1; i < mipmaps; i++) {
  1170. RID source = dest;
  1171. dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);
  1172. Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, v, i);
  1173. if (can_use_storage) {
  1174. copy_effects->make_mipmap(source, dest, msize);
  1175. } else {
  1176. copy_effects->make_mipmap_raster(source, dest, msize);
  1177. }
  1178. }
  1179. }
  1180. RD::get_singleton()->draw_command_end_label();
  1181. }
  1182. void RendererSceneRenderRD::_render_buffers_copy_depth_texture(const RenderDataRD *p_render_data) {
  1183. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1184. ERR_FAIL_COND(rb.is_null());
  1185. RD::get_singleton()->draw_command_begin_label("Copy depth texture");
  1186. // note, this only creates our back depth texture if we haven't already created it.
  1187. uint32_t usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT;
  1188. usage_bits |= RD::TEXTURE_USAGE_CAN_COPY_TO_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  1189. usage_bits |= RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT; // set this as color attachment because we're copying data into it, it's not actually used as a depth buffer
  1190. rb->create_texture(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, RD::DATA_FORMAT_R32_SFLOAT, usage_bits, RD::TEXTURE_SAMPLES_1);
  1191. bool can_use_storage = _render_buffers_can_be_storage();
  1192. Size2i size = rb->get_internal_size();
  1193. for (uint32_t v = 0; v < p_render_data->scene_data->view_count; v++) {
  1194. RID depth_texture = rb->get_depth_texture(v);
  1195. RID depth_back_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BACK_DEPTH, v, 0);
  1196. if (can_use_storage) {
  1197. copy_effects->copy_to_rect(depth_texture, depth_back_texture, Rect2i(0, 0, size.x, size.y));
  1198. } else {
  1199. RID depth_back_fb = FramebufferCacheRD::get_singleton()->get_cache(depth_back_texture);
  1200. copy_effects->copy_to_fb_rect(depth_texture, depth_back_fb, Rect2i(0, 0, size.x, size.y));
  1201. }
  1202. }
  1203. RD::get_singleton()->draw_command_end_label();
  1204. }
  1205. void RendererSceneRenderRD::_render_buffers_post_process_and_tonemap(const RenderDataRD *p_render_data) {
  1206. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1207. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1208. ERR_FAIL_COND(rb.is_null());
  1209. // Glow, auto exposure and DoF (if enabled).
  1210. Size2i internal_size = rb->get_internal_size();
  1211. Size2i target_size = rb->get_target_size();
  1212. bool can_use_effects = target_size.x >= 8 && target_size.y >= 8; // FIXME I think this should check internal size, we do all our post processing at this size...
  1213. bool can_use_storage = _render_buffers_can_be_storage();
  1214. RID render_target = rb->get_render_target();
  1215. RID internal_texture = rb->get_internal_texture();
  1216. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_dof(p_render_data->camera_attributes)) {
  1217. RENDER_TIMESTAMP("Depth of Field");
  1218. RD::get_singleton()->draw_command_begin_label("DOF");
  1219. rb->allocate_blur_textures();
  1220. RendererRD::BokehDOF::BokehBuffers buffers;
  1221. // Textures we use
  1222. buffers.base_texture_size = rb->get_internal_size();
  1223. buffers.secondary_texture = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 0);
  1224. buffers.half_texture[0] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
  1225. buffers.half_texture[1] = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_0, 0, 1);
  1226. if (can_use_storage) {
  1227. for (uint32_t i = 0; i < rb->get_view_count(); i++) {
  1228. buffers.base_texture = rb->get_internal_texture(i);
  1229. buffers.depth_texture = rb->get_depth_texture(i);
  1230. // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
  1231. float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
  1232. float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
  1233. bokeh_dof->bokeh_dof_compute(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
  1234. };
  1235. } else {
  1236. // Set framebuffers.
  1237. buffers.secondary_fb = rb->weight_buffers[1].fb;
  1238. buffers.half_fb[0] = rb->weight_buffers[2].fb;
  1239. buffers.half_fb[1] = rb->weight_buffers[3].fb;
  1240. buffers.weight_texture[0] = rb->weight_buffers[0].weight;
  1241. buffers.weight_texture[1] = rb->weight_buffers[1].weight;
  1242. buffers.weight_texture[2] = rb->weight_buffers[2].weight;
  1243. buffers.weight_texture[3] = rb->weight_buffers[3].weight;
  1244. // Set weight buffers.
  1245. buffers.base_weight_fb = rb->weight_buffers[0].fb;
  1246. for (uint32_t i = 0; i < rb->get_view_count(); i++) {
  1247. buffers.base_texture = rb->get_internal_texture(i);
  1248. buffers.depth_texture = rb->get_depth_texture(i);
  1249. buffers.base_fb = FramebufferCacheRD::get_singleton()->get_cache(buffers.base_texture); // TODO move this into bokeh_dof_raster, we can do this internally
  1250. // In stereo p_render_data->z_near and p_render_data->z_far can be offset for our combined frustrum
  1251. float z_near = p_render_data->scene_data->view_projection[i].get_z_near();
  1252. float z_far = p_render_data->scene_data->view_projection[i].get_z_far();
  1253. bokeh_dof->bokeh_dof_raster(buffers, p_render_data->camera_attributes, z_near, z_far, p_render_data->scene_data->cam_orthogonal);
  1254. }
  1255. }
  1256. RD::get_singleton()->draw_command_end_label();
  1257. }
  1258. float auto_exposure_scale = 1.0;
  1259. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
  1260. RENDER_TIMESTAMP("Auto exposure");
  1261. RD::get_singleton()->draw_command_begin_label("Auto exposure");
  1262. if (rb->luminance.current.is_null()) {
  1263. _allocate_luminance_textures(rb);
  1264. }
  1265. uint64_t auto_exposure_version = RSG::camera_attributes->camera_attributes_get_auto_exposure_version(p_render_data->camera_attributes);
  1266. bool set_immediate = auto_exposure_version != rb->get_auto_exposure_version();
  1267. rb->set_auto_exposure_version(auto_exposure_version);
  1268. double step = RSG::camera_attributes->camera_attributes_get_auto_exposure_adjust_speed(p_render_data->camera_attributes) * time_step;
  1269. float auto_exposure_min_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_min_sensitivity(p_render_data->camera_attributes);
  1270. float auto_exposure_max_sensitivity = RSG::camera_attributes->camera_attributes_get_auto_exposure_max_sensitivity(p_render_data->camera_attributes);
  1271. if (can_use_storage) {
  1272. RendererCompositorRD::singleton->get_effects()->luminance_reduction(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
  1273. } else {
  1274. RendererCompositorRD::singleton->get_effects()->luminance_reduction_raster(internal_texture, internal_size, rb->luminance.reduce, rb->luminance.fb, rb->luminance.current, auto_exposure_min_sensitivity, auto_exposure_max_sensitivity, step, set_immediate);
  1275. }
  1276. // Swap final reduce with prev luminance.
  1277. SWAP(rb->luminance.current, rb->luminance.reduce.write[rb->luminance.reduce.size() - 1]);
  1278. if (!can_use_storage) {
  1279. SWAP(rb->luminance.current_fb, rb->luminance.fb.write[rb->luminance.fb.size() - 1]);
  1280. }
  1281. auto_exposure_scale = RSG::camera_attributes->camera_attributes_get_auto_exposure_scale(p_render_data->camera_attributes);
  1282. RenderingServerDefault::redraw_request(); // Redraw all the time if auto exposure rendering is on.
  1283. RD::get_singleton()->draw_command_end_label();
  1284. }
  1285. int max_glow_level = -1;
  1286. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
  1287. RENDER_TIMESTAMP("Glow");
  1288. RD::get_singleton()->draw_command_begin_label("Gaussian Glow");
  1289. rb->allocate_blur_textures();
  1290. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1291. if (environment_get_glow_levels(p_render_data->environment)[i] > 0.0) {
  1292. int mipmaps = int(rb->get_texture_format(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1).mipmaps);
  1293. if (i >= mipmaps) {
  1294. max_glow_level = mipmaps - 1;
  1295. } else {
  1296. max_glow_level = i;
  1297. }
  1298. }
  1299. }
  1300. float luminance_multiplier = _render_buffers_get_luminance_multiplier();
  1301. for (uint32_t l = 0; l < rb->get_view_count(); l++) {
  1302. for (int i = 0; i < (max_glow_level + 1); i++) {
  1303. Size2i vp_size = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
  1304. if (i == 0) {
  1305. RID luminance_texture;
  1306. if (RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
  1307. luminance_texture = rb->luminance.current;
  1308. }
  1309. RID source = rb->get_internal_texture(l);
  1310. RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
  1311. if (can_use_storage) {
  1312. copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
  1313. } else {
  1314. RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
  1315. copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality, true, environment_get_glow_hdr_luminance_cap(p_render_data->environment), environment_get_exposure(p_render_data->environment), environment_get_glow_bloom(p_render_data->environment), environment_get_glow_hdr_bleed_threshold(p_render_data->environment), environment_get_glow_hdr_bleed_scale(p_render_data->environment), luminance_texture, auto_exposure_scale);
  1316. }
  1317. } else {
  1318. RID source = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i - 1);
  1319. RID dest = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, l, i);
  1320. if (can_use_storage) {
  1321. copy_effects->gaussian_glow(source, dest, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
  1322. } else {
  1323. RID half = rb->get_texture_slice(RB_SCOPE_BUFFERS, RB_TEX_HALF_BLUR, 0, i); // we can reuse this for each view
  1324. copy_effects->gaussian_glow_raster(source, half, dest, luminance_multiplier, vp_size, environment_get_glow_strength(p_render_data->environment), glow_high_quality);
  1325. }
  1326. }
  1327. }
  1328. }
  1329. RD::get_singleton()->draw_command_end_label();
  1330. }
  1331. {
  1332. RENDER_TIMESTAMP("Tonemap");
  1333. RD::get_singleton()->draw_command_begin_label("Tonemap");
  1334. RendererRD::ToneMapper::TonemapSettings tonemap;
  1335. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes) && rb->luminance.current.is_valid()) {
  1336. tonemap.use_auto_exposure = true;
  1337. tonemap.exposure_texture = rb->luminance.current;
  1338. tonemap.auto_exposure_scale = auto_exposure_scale;
  1339. } else {
  1340. tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1341. }
  1342. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
  1343. tonemap.use_glow = true;
  1344. tonemap.glow_mode = RendererRD::ToneMapper::TonemapSettings::GlowMode(environment_get_glow_blend_mode(p_render_data->environment));
  1345. tonemap.glow_intensity = environment_get_glow_blend_mode(p_render_data->environment) == RS::ENV_GLOW_BLEND_MODE_MIX ? environment_get_glow_mix(p_render_data->environment) : environment_get_glow_intensity(p_render_data->environment);
  1346. for (int i = 0; i < RS::MAX_GLOW_LEVELS; i++) {
  1347. tonemap.glow_levels[i] = environment_get_glow_levels(p_render_data->environment)[i];
  1348. }
  1349. Size2i msize = rb->get_texture_slice_size(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1, 0, 0);
  1350. tonemap.glow_texture_size.x = msize.width;
  1351. tonemap.glow_texture_size.y = msize.height;
  1352. tonemap.glow_use_bicubic_upscale = glow_bicubic_upscale;
  1353. tonemap.glow_texture = rb->get_texture(RB_SCOPE_BUFFERS, RB_TEX_BLUR_1);
  1354. if (environment_get_glow_map(p_render_data->environment).is_valid()) {
  1355. tonemap.glow_map_strength = environment_get_glow_map_strength(p_render_data->environment);
  1356. tonemap.glow_map = texture_storage->texture_get_rd_texture(environment_get_glow_map(p_render_data->environment));
  1357. } else {
  1358. tonemap.glow_map_strength = 0.0f;
  1359. tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1360. }
  1361. } else {
  1362. tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  1363. tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1364. }
  1365. if (rb->get_screen_space_aa() == RS::VIEWPORT_SCREEN_SPACE_AA_FXAA) {
  1366. tonemap.use_fxaa = true;
  1367. }
  1368. tonemap.use_debanding = rb->get_use_debanding();
  1369. tonemap.texture_size = Vector2i(rb->get_internal_size().x, rb->get_internal_size().y);
  1370. if (p_render_data->environment.is_valid()) {
  1371. tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
  1372. tonemap.white = environment_get_white(p_render_data->environment);
  1373. tonemap.exposure = environment_get_exposure(p_render_data->environment);
  1374. }
  1375. tonemap.use_color_correction = false;
  1376. tonemap.use_1d_color_correction = false;
  1377. tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
  1378. if (can_use_effects && p_render_data->environment.is_valid()) {
  1379. tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
  1380. tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
  1381. tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
  1382. tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
  1383. if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
  1384. tonemap.use_color_correction = true;
  1385. tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
  1386. tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
  1387. }
  1388. }
  1389. tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
  1390. tonemap.view_count = rb->get_view_count();
  1391. RID dest_fb;
  1392. if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
  1393. // If we use FSR to upscale we need to write our result into an intermediate buffer.
  1394. // Note that this is cached so we only create the texture the first time.
  1395. RID dest_texture = rb->create_texture(SNAME("Tonemapper"), SNAME("destination"), _render_buffers_get_color_format(), RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT | RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT);
  1396. dest_fb = FramebufferCacheRD::get_singleton()->get_cache(dest_texture);
  1397. } else {
  1398. // If we do a bilinear upscale we just render into our render target and our shader will upscale automatically.
  1399. // Target size in this case is lying as we never get our real target size communicated.
  1400. // Bit nasty but...
  1401. dest_fb = texture_storage->render_target_get_rd_framebuffer(render_target);
  1402. }
  1403. tone_mapper->tonemapper(internal_texture, dest_fb, tonemap);
  1404. RD::get_singleton()->draw_command_end_label();
  1405. }
  1406. if (fsr && can_use_effects && (internal_size.x != target_size.x || internal_size.y != target_size.y)) {
  1407. // TODO Investigate? Does this work? We never write into our render target and we've already done so up above in our tonemapper.
  1408. // I think FSR should either work before our tonemapper or as an alternative of our tonemapper.
  1409. RD::get_singleton()->draw_command_begin_label("FSR 1.0 Upscale");
  1410. for (uint32_t v = 0; v < rb->get_view_count(); v++) {
  1411. RID source_texture = rb->get_texture_slice(SNAME("Tonemapper"), SNAME("destination"), v, 0);
  1412. RID dest_texture = texture_storage->render_target_get_rd_texture_slice(render_target, v);
  1413. fsr->fsr_upscale(rb, source_texture, dest_texture);
  1414. }
  1415. RD::get_singleton()->draw_command_end_label();
  1416. }
  1417. texture_storage->render_target_disable_clear_request(render_target);
  1418. }
  1419. void RendererSceneRenderRD::_post_process_subpass(RID p_source_texture, RID p_framebuffer, const RenderDataRD *p_render_data) {
  1420. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1421. RD::get_singleton()->draw_command_begin_label("Post Process Subpass");
  1422. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  1423. ERR_FAIL_COND(rb.is_null());
  1424. // FIXME: Our input it our internal_texture, shouldn't this be using internal_size ??
  1425. // Seeing we don't support FSR in our mobile renderer right now target_size = internal_size...
  1426. Size2i target_size = rb->get_target_size();
  1427. bool can_use_effects = target_size.x >= 8 && target_size.y >= 8;
  1428. RD::DrawListID draw_list = RD::get_singleton()->draw_list_switch_to_next_pass();
  1429. RendererRD::ToneMapper::TonemapSettings tonemap;
  1430. if (p_render_data->environment.is_valid()) {
  1431. tonemap.tonemap_mode = environment_get_tone_mapper(p_render_data->environment);
  1432. tonemap.exposure = environment_get_exposure(p_render_data->environment);
  1433. tonemap.white = environment_get_white(p_render_data->environment);
  1434. }
  1435. // We don't support glow or auto exposure here, if they are needed, don't use subpasses!
  1436. // The problem is that we need to use the result so far and process them before we can
  1437. // apply this to our results.
  1438. if (can_use_effects && p_render_data->environment.is_valid() && environment_get_glow_enabled(p_render_data->environment)) {
  1439. ERR_FAIL_MSG("Glow is not supported when using subpasses.");
  1440. }
  1441. if (can_use_effects && RSG::camera_attributes->camera_attributes_uses_auto_exposure(p_render_data->camera_attributes)) {
  1442. ERR_FAIL_MSG("Auto Exposure is not supported when using subpasses.");
  1443. }
  1444. tonemap.use_glow = false;
  1445. tonemap.glow_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  1446. tonemap.glow_map = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1447. tonemap.use_auto_exposure = false;
  1448. tonemap.exposure_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_WHITE);
  1449. tonemap.use_color_correction = false;
  1450. tonemap.use_1d_color_correction = false;
  1451. tonemap.color_correction_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_3D_WHITE);
  1452. if (can_use_effects && p_render_data->environment.is_valid()) {
  1453. tonemap.use_bcs = environment_get_adjustments_enabled(p_render_data->environment);
  1454. tonemap.brightness = environment_get_adjustments_brightness(p_render_data->environment);
  1455. tonemap.contrast = environment_get_adjustments_contrast(p_render_data->environment);
  1456. tonemap.saturation = environment_get_adjustments_saturation(p_render_data->environment);
  1457. if (environment_get_adjustments_enabled(p_render_data->environment) && environment_get_color_correction(p_render_data->environment).is_valid()) {
  1458. tonemap.use_color_correction = true;
  1459. tonemap.use_1d_color_correction = environment_get_use_1d_color_correction(p_render_data->environment);
  1460. tonemap.color_correction_texture = texture_storage->texture_get_rd_texture(environment_get_color_correction(p_render_data->environment));
  1461. }
  1462. }
  1463. tonemap.use_debanding = rb->get_use_debanding();
  1464. tonemap.texture_size = Vector2i(target_size.x, target_size.y);
  1465. tonemap.luminance_multiplier = _render_buffers_get_luminance_multiplier();
  1466. tonemap.view_count = rb->get_view_count();
  1467. tone_mapper->tonemapper(draw_list, p_source_texture, RD::get_singleton()->framebuffer_get_format(p_framebuffer), tonemap);
  1468. RD::get_singleton()->draw_command_end_label();
  1469. }
  1470. void RendererSceneRenderRD::_disable_clear_request(const RenderDataRD *p_render_data) {
  1471. ERR_FAIL_COND(p_render_data->render_buffers.is_null());
  1472. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1473. texture_storage->render_target_disable_clear_request(p_render_data->render_buffers->get_render_target());
  1474. }
  1475. void RendererSceneRenderRD::_render_buffers_debug_draw(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_shadow_atlas, RID p_occlusion_buffer) {
  1476. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1477. ERR_FAIL_COND(p_render_buffers.is_null());
  1478. RID render_target = p_render_buffers->get_render_target();
  1479. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SHADOW_ATLAS) {
  1480. if (p_shadow_atlas.is_valid()) {
  1481. RID shadow_atlas_texture = shadow_atlas_get_texture(p_shadow_atlas);
  1482. if (shadow_atlas_texture.is_null()) {
  1483. shadow_atlas_texture = texture_storage->texture_rd_get_default(RendererRD::TextureStorage::DEFAULT_RD_TEXTURE_BLACK);
  1484. }
  1485. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1486. copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1487. }
  1488. }
  1489. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DIRECTIONAL_SHADOW_ATLAS) {
  1490. if (directional_shadow_get_texture().is_valid()) {
  1491. RID shadow_atlas_texture = directional_shadow_get_texture();
  1492. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1493. copy_effects->copy_to_fb_rect(shadow_atlas_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, true);
  1494. }
  1495. }
  1496. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_DECAL_ATLAS) {
  1497. RID decal_atlas = RendererRD::TextureStorage::get_singleton()->decal_atlas_get_texture();
  1498. if (decal_atlas.is_valid()) {
  1499. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1500. copy_effects->copy_to_fb_rect(decal_atlas, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize / 2), false, false, true);
  1501. }
  1502. }
  1503. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SCENE_LUMINANCE) {
  1504. if (p_render_buffers->luminance.current.is_valid()) {
  1505. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1506. copy_effects->copy_to_fb_rect(p_render_buffers->luminance.current, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize / 8), false, true);
  1507. }
  1508. }
  1509. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSAO && p_render_buffers->ss_effects.ssao.ao_final.is_valid()) {
  1510. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1511. copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssao.ao_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, true);
  1512. }
  1513. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SSIL && p_render_buffers->ss_effects.ssil.ssil_final.is_valid()) {
  1514. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1515. copy_effects->copy_to_fb_rect(p_render_buffers->ss_effects.ssil.ssil_final, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
  1516. }
  1517. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_NORMAL_BUFFER && _render_buffers_get_normal_texture(p_render_buffers).is_valid()) {
  1518. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1519. copy_effects->copy_to_fb_rect(_render_buffers_get_normal_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
  1520. }
  1521. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_GI_BUFFER && p_render_buffers->has_texture(RB_SCOPE_GI, RB_TEX_AMBIENT)) {
  1522. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1523. RID ambient_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_AMBIENT);
  1524. RID reflection_texture = p_render_buffers->get_texture(RB_SCOPE_GI, RB_TEX_REFLECTION);
  1525. copy_effects->copy_to_fb_rect(ambient_texture, texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false, false, true, reflection_texture, p_render_buffers->get_view_count() > 1);
  1526. }
  1527. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_OCCLUDERS) {
  1528. if (p_occlusion_buffer.is_valid()) {
  1529. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1530. copy_effects->copy_to_fb_rect(texture_storage->texture_get_rd_texture(p_occlusion_buffer), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2i(Vector2(), rtsize), true, false);
  1531. }
  1532. }
  1533. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_MOTION_VECTORS && _render_buffers_get_velocity_texture(p_render_buffers).is_valid()) {
  1534. Size2 rtsize = texture_storage->render_target_get_size(render_target);
  1535. copy_effects->copy_to_fb_rect(_render_buffers_get_velocity_texture(p_render_buffers), texture_storage->render_target_get_rd_framebuffer(render_target), Rect2(Vector2(), rtsize), false, false);
  1536. }
  1537. }
  1538. RID RendererSceneRenderRD::render_buffers_get_default_voxel_gi_buffer() {
  1539. return gi.default_voxel_gi_buffer;
  1540. }
  1541. float RendererSceneRenderRD::_render_buffers_get_luminance_multiplier() {
  1542. return 1.0;
  1543. }
  1544. RD::DataFormat RendererSceneRenderRD::_render_buffers_get_color_format() {
  1545. return RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  1546. }
  1547. bool RendererSceneRenderRD::_render_buffers_can_be_storage() {
  1548. return true;
  1549. }
  1550. void RendererSceneRenderRD::gi_set_use_half_resolution(bool p_enable) {
  1551. gi.half_resolution = p_enable;
  1552. }
  1553. void RendererSceneRenderRD::sub_surface_scattering_set_quality(RS::SubSurfaceScatteringQuality p_quality) {
  1554. sss_quality = p_quality;
  1555. }
  1556. RS::SubSurfaceScatteringQuality RendererSceneRenderRD::sub_surface_scattering_get_quality() const {
  1557. return sss_quality;
  1558. }
  1559. void RendererSceneRenderRD::sub_surface_scattering_set_scale(float p_scale, float p_depth_scale) {
  1560. sss_scale = p_scale;
  1561. sss_depth_scale = p_depth_scale;
  1562. }
  1563. void RendererSceneRenderRD::positional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
  1564. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1565. if (shadows_quality != p_quality) {
  1566. shadows_quality = p_quality;
  1567. switch (shadows_quality) {
  1568. case RS::SHADOW_QUALITY_HARD: {
  1569. penumbra_shadow_samples = 4;
  1570. soft_shadow_samples = 0;
  1571. shadows_quality_radius = 1.0;
  1572. } break;
  1573. case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
  1574. penumbra_shadow_samples = 4;
  1575. soft_shadow_samples = 1;
  1576. shadows_quality_radius = 1.5;
  1577. } break;
  1578. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1579. penumbra_shadow_samples = 8;
  1580. soft_shadow_samples = 4;
  1581. shadows_quality_radius = 2.0;
  1582. } break;
  1583. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1584. penumbra_shadow_samples = 12;
  1585. soft_shadow_samples = 8;
  1586. shadows_quality_radius = 2.0;
  1587. } break;
  1588. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1589. penumbra_shadow_samples = 24;
  1590. soft_shadow_samples = 16;
  1591. shadows_quality_radius = 3.0;
  1592. } break;
  1593. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1594. penumbra_shadow_samples = 32;
  1595. soft_shadow_samples = 32;
  1596. shadows_quality_radius = 4.0;
  1597. } break;
  1598. case RS::SHADOW_QUALITY_MAX:
  1599. break;
  1600. }
  1601. get_vogel_disk(penumbra_shadow_kernel, penumbra_shadow_samples);
  1602. get_vogel_disk(soft_shadow_kernel, soft_shadow_samples);
  1603. }
  1604. _update_shader_quality_settings();
  1605. }
  1606. void RendererSceneRenderRD::directional_soft_shadow_filter_set_quality(RS::ShadowQuality p_quality) {
  1607. ERR_FAIL_INDEX_MSG(p_quality, RS::SHADOW_QUALITY_MAX, "Shadow quality too high, please see RenderingServer's ShadowQuality enum");
  1608. if (directional_shadow_quality != p_quality) {
  1609. directional_shadow_quality = p_quality;
  1610. switch (directional_shadow_quality) {
  1611. case RS::SHADOW_QUALITY_HARD: {
  1612. directional_penumbra_shadow_samples = 4;
  1613. directional_soft_shadow_samples = 0;
  1614. directional_shadow_quality_radius = 1.0;
  1615. } break;
  1616. case RS::SHADOW_QUALITY_SOFT_VERY_LOW: {
  1617. directional_penumbra_shadow_samples = 4;
  1618. directional_soft_shadow_samples = 1;
  1619. directional_shadow_quality_radius = 1.5;
  1620. } break;
  1621. case RS::SHADOW_QUALITY_SOFT_LOW: {
  1622. directional_penumbra_shadow_samples = 8;
  1623. directional_soft_shadow_samples = 4;
  1624. directional_shadow_quality_radius = 2.0;
  1625. } break;
  1626. case RS::SHADOW_QUALITY_SOFT_MEDIUM: {
  1627. directional_penumbra_shadow_samples = 12;
  1628. directional_soft_shadow_samples = 8;
  1629. directional_shadow_quality_radius = 2.0;
  1630. } break;
  1631. case RS::SHADOW_QUALITY_SOFT_HIGH: {
  1632. directional_penumbra_shadow_samples = 24;
  1633. directional_soft_shadow_samples = 16;
  1634. directional_shadow_quality_radius = 3.0;
  1635. } break;
  1636. case RS::SHADOW_QUALITY_SOFT_ULTRA: {
  1637. directional_penumbra_shadow_samples = 32;
  1638. directional_soft_shadow_samples = 32;
  1639. directional_shadow_quality_radius = 4.0;
  1640. } break;
  1641. case RS::SHADOW_QUALITY_MAX:
  1642. break;
  1643. }
  1644. get_vogel_disk(directional_penumbra_shadow_kernel, directional_penumbra_shadow_samples);
  1645. get_vogel_disk(directional_soft_shadow_kernel, directional_soft_shadow_samples);
  1646. }
  1647. _update_shader_quality_settings();
  1648. }
  1649. void RendererSceneRenderRD::decals_set_filter(RenderingServer::DecalFilter p_filter) {
  1650. if (decals_filter == p_filter) {
  1651. return;
  1652. }
  1653. decals_filter = p_filter;
  1654. _update_shader_quality_settings();
  1655. }
  1656. void RendererSceneRenderRD::light_projectors_set_filter(RenderingServer::LightProjectorFilter p_filter) {
  1657. if (light_projectors_filter == p_filter) {
  1658. return;
  1659. }
  1660. light_projectors_filter = p_filter;
  1661. _update_shader_quality_settings();
  1662. }
  1663. int RendererSceneRenderRD::get_roughness_layers() const {
  1664. return sky.roughness_layers;
  1665. }
  1666. bool RendererSceneRenderRD::is_using_radiance_cubemap_array() const {
  1667. return sky.sky_use_cubemap_array;
  1668. }
  1669. void RendererSceneRenderRD::_setup_reflections(RenderDataRD *p_render_data, const PagedArray<RID> &p_reflections, const Transform3D &p_camera_inverse_transform, RID p_environment) {
  1670. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  1671. cluster.reflection_count = 0;
  1672. for (uint32_t i = 0; i < (uint32_t)p_reflections.size(); i++) {
  1673. if (cluster.reflection_count == cluster.max_reflections) {
  1674. break;
  1675. }
  1676. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_reflections[i]);
  1677. if (!rpi) {
  1678. continue;
  1679. }
  1680. cluster.reflection_sort[cluster.reflection_count].instance = rpi;
  1681. cluster.reflection_sort[cluster.reflection_count].depth = -p_camera_inverse_transform.xform(rpi->transform.origin).z;
  1682. cluster.reflection_count++;
  1683. }
  1684. if (cluster.reflection_count > 0) {
  1685. SortArray<Cluster::InstanceSort<ReflectionProbeInstance>> sort_array;
  1686. sort_array.sort(cluster.reflection_sort, cluster.reflection_count);
  1687. }
  1688. bool using_forward_ids = _uses_forward_ids();
  1689. for (uint32_t i = 0; i < cluster.reflection_count; i++) {
  1690. ReflectionProbeInstance *rpi = cluster.reflection_sort[i].instance;
  1691. if (using_forward_ids) {
  1692. _map_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id, i);
  1693. }
  1694. RID base_probe = rpi->probe;
  1695. Cluster::ReflectionData &reflection_ubo = cluster.reflections[i];
  1696. Vector3 extents = light_storage->reflection_probe_get_extents(base_probe);
  1697. rpi->cull_mask = light_storage->reflection_probe_get_cull_mask(base_probe);
  1698. reflection_ubo.box_extents[0] = extents.x;
  1699. reflection_ubo.box_extents[1] = extents.y;
  1700. reflection_ubo.box_extents[2] = extents.z;
  1701. reflection_ubo.index = rpi->atlas_index;
  1702. Vector3 origin_offset = light_storage->reflection_probe_get_origin_offset(base_probe);
  1703. reflection_ubo.box_offset[0] = origin_offset.x;
  1704. reflection_ubo.box_offset[1] = origin_offset.y;
  1705. reflection_ubo.box_offset[2] = origin_offset.z;
  1706. reflection_ubo.mask = light_storage->reflection_probe_get_cull_mask(base_probe);
  1707. reflection_ubo.intensity = light_storage->reflection_probe_get_intensity(base_probe);
  1708. reflection_ubo.ambient_mode = light_storage->reflection_probe_get_ambient_mode(base_probe);
  1709. reflection_ubo.exterior = !light_storage->reflection_probe_is_interior(base_probe);
  1710. reflection_ubo.box_project = light_storage->reflection_probe_is_box_projection(base_probe);
  1711. reflection_ubo.exposure_normalization = 1.0;
  1712. if (p_render_data->camera_attributes.is_valid()) {
  1713. float exposure = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1714. reflection_ubo.exposure_normalization = exposure / light_storage->reflection_probe_get_baked_exposure(base_probe);
  1715. }
  1716. Color ambient_linear = light_storage->reflection_probe_get_ambient_color(base_probe).srgb_to_linear();
  1717. float interior_ambient_energy = light_storage->reflection_probe_get_ambient_color_energy(base_probe);
  1718. reflection_ubo.ambient[0] = ambient_linear.r * interior_ambient_energy;
  1719. reflection_ubo.ambient[1] = ambient_linear.g * interior_ambient_energy;
  1720. reflection_ubo.ambient[2] = ambient_linear.b * interior_ambient_energy;
  1721. Transform3D transform = rpi->transform;
  1722. Transform3D proj = (p_camera_inverse_transform * transform).inverse();
  1723. RendererRD::MaterialStorage::store_transform(proj, reflection_ubo.local_matrix);
  1724. if (current_cluster_builder != nullptr) {
  1725. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_REFLECTION_PROBE, transform, extents);
  1726. }
  1727. rpi->last_pass = RSG::rasterizer->get_frame_number();
  1728. }
  1729. if (cluster.reflection_count) {
  1730. RD::get_singleton()->buffer_update(cluster.reflection_buffer, 0, cluster.reflection_count * sizeof(Cluster::ReflectionData), cluster.reflections, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  1731. }
  1732. }
  1733. void RendererSceneRenderRD::_setup_lights(RenderDataRD *p_render_data, const PagedArray<RID> &p_lights, const Transform3D &p_camera_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count, bool &r_directional_light_soft_shadows) {
  1734. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  1735. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  1736. Transform3D inverse_transform = p_camera_transform.affine_inverse();
  1737. r_directional_light_count = 0;
  1738. r_positional_light_count = 0;
  1739. Plane camera_plane(-p_camera_transform.basis.get_column(Vector3::AXIS_Z).normalized(), p_camera_transform.origin);
  1740. cluster.omni_light_count = 0;
  1741. cluster.spot_light_count = 0;
  1742. r_directional_light_soft_shadows = false;
  1743. for (int i = 0; i < (int)p_lights.size(); i++) {
  1744. LightInstance *li = light_instance_owner.get_or_null(p_lights[i]);
  1745. if (!li) {
  1746. continue;
  1747. }
  1748. RID base = li->light;
  1749. ERR_CONTINUE(base.is_null());
  1750. RS::LightType type = light_storage->light_get_type(base);
  1751. switch (type) {
  1752. case RS::LIGHT_DIRECTIONAL: {
  1753. if (r_directional_light_count >= cluster.max_directional_lights || light_storage->light_directional_get_sky_mode(base) == RS::LIGHT_DIRECTIONAL_SKY_MODE_SKY_ONLY) {
  1754. continue;
  1755. }
  1756. Cluster::DirectionalLightData &light_data = cluster.directional_lights[r_directional_light_count];
  1757. Transform3D light_transform = li->transform;
  1758. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, 1))).normalized();
  1759. light_data.direction[0] = direction.x;
  1760. light_data.direction[1] = direction.y;
  1761. light_data.direction[2] = direction.z;
  1762. float sign = light_storage->light_is_negative(base) ? -1 : 1;
  1763. light_data.energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY);
  1764. if (is_using_physical_light_units()) {
  1765. light_data.energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
  1766. } else {
  1767. light_data.energy *= Math_PI;
  1768. }
  1769. if (p_render_data->camera_attributes.is_valid()) {
  1770. light_data.energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1771. }
  1772. Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
  1773. light_data.color[0] = linear_col.r;
  1774. light_data.color[1] = linear_col.g;
  1775. light_data.color[2] = linear_col.b;
  1776. light_data.specular = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR);
  1777. light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
  1778. light_data.mask = light_storage->light_get_cull_mask(base);
  1779. float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1780. light_data.size = 1.0 - Math::cos(Math::deg_to_rad(size)); //angle to cosine offset
  1781. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_PSSM_SPLITS) {
  1782. WARN_PRINT_ONCE("The DirectionalLight3D PSSM splits debug draw mode is not reimplemented yet.");
  1783. }
  1784. light_data.shadow_opacity = (p_using_shadows && light_storage->light_has_shadow(base))
  1785. ? light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY)
  1786. : 0.0;
  1787. float angular_diameter = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1788. if (angular_diameter > 0.0) {
  1789. // I know tan(0) is 0, but let's not risk it with numerical precision.
  1790. // technically this will keep expanding until reaching the sun, but all we care
  1791. // is expand until we reach the radius of the near plane (there can't be more occluders than that)
  1792. angular_diameter = Math::tan(Math::deg_to_rad(angular_diameter));
  1793. if (light_storage->light_has_shadow(base) && light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR) > 0.0) {
  1794. // Only enable PCSS-like soft shadows if blurring is enabled.
  1795. // Otherwise, performance would decrease with no visual difference.
  1796. r_directional_light_soft_shadows = true;
  1797. }
  1798. } else {
  1799. angular_diameter = 0.0;
  1800. }
  1801. if (light_data.shadow_opacity > 0.001) {
  1802. RS::LightDirectionalShadowMode smode = light_storage->light_directional_get_shadow_mode(base);
  1803. int limit = smode == RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL ? 0 : (smode == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS ? 1 : 3);
  1804. light_data.blend_splits = (smode != RS::LIGHT_DIRECTIONAL_SHADOW_ORTHOGONAL) && light_storage->light_directional_get_blend_splits(base);
  1805. for (int j = 0; j < 4; j++) {
  1806. Rect2 atlas_rect = li->shadow_transform[j].atlas_rect;
  1807. Projection matrix = li->shadow_transform[j].camera;
  1808. float split = li->shadow_transform[MIN(limit, j)].split;
  1809. Projection bias;
  1810. bias.set_light_bias();
  1811. Projection rectm;
  1812. rectm.set_light_atlas_rect(atlas_rect);
  1813. Transform3D modelview = (inverse_transform * li->shadow_transform[j].transform).inverse();
  1814. Projection shadow_mtx = rectm * bias * matrix * modelview;
  1815. light_data.shadow_split_offsets[j] = split;
  1816. float bias_scale = li->shadow_transform[j].bias_scale;
  1817. light_data.shadow_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0 * bias_scale;
  1818. light_data.shadow_normal_bias[j] = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * li->shadow_transform[j].shadow_texel_size;
  1819. light_data.shadow_transmittance_bias[j] = light_storage->light_get_transmittance_bias(base) * bias_scale;
  1820. light_data.shadow_z_range[j] = li->shadow_transform[j].farplane;
  1821. light_data.shadow_range_begin[j] = li->shadow_transform[j].range_begin;
  1822. RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
  1823. Vector2 uv_scale = li->shadow_transform[j].uv_scale;
  1824. uv_scale *= atlas_rect.size; //adapt to atlas size
  1825. switch (j) {
  1826. case 0: {
  1827. light_data.uv_scale1[0] = uv_scale.x;
  1828. light_data.uv_scale1[1] = uv_scale.y;
  1829. } break;
  1830. case 1: {
  1831. light_data.uv_scale2[0] = uv_scale.x;
  1832. light_data.uv_scale2[1] = uv_scale.y;
  1833. } break;
  1834. case 2: {
  1835. light_data.uv_scale3[0] = uv_scale.x;
  1836. light_data.uv_scale3[1] = uv_scale.y;
  1837. } break;
  1838. case 3: {
  1839. light_data.uv_scale4[0] = uv_scale.x;
  1840. light_data.uv_scale4[1] = uv_scale.y;
  1841. } break;
  1842. }
  1843. }
  1844. float fade_start = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
  1845. light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
  1846. light_data.fade_to = -light_data.shadow_split_offsets[3];
  1847. light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  1848. light_data.softshadow_angle = angular_diameter;
  1849. light_data.bake_mode = light_storage->light_get_bake_mode(base);
  1850. if (angular_diameter <= 0.0) {
  1851. light_data.soft_shadow_scale *= directional_shadow_quality_radius_get(); // Only use quality radius for PCF
  1852. }
  1853. }
  1854. r_directional_light_count++;
  1855. } break;
  1856. case RS::LIGHT_OMNI: {
  1857. if (cluster.omni_light_count >= cluster.max_lights) {
  1858. continue;
  1859. }
  1860. const real_t distance = camera_plane.distance_to(li->transform.origin);
  1861. if (light_storage->light_is_distance_fade_enabled(li->light)) {
  1862. const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
  1863. const float fade_length = light_storage->light_get_distance_fade_length(li->light);
  1864. if (distance > fade_begin) {
  1865. if (distance > fade_begin + fade_length) {
  1866. // Out of range, don't draw this light to improve performance.
  1867. continue;
  1868. }
  1869. }
  1870. }
  1871. cluster.omni_light_sort[cluster.omni_light_count].instance = li;
  1872. cluster.omni_light_sort[cluster.omni_light_count].depth = distance;
  1873. cluster.omni_light_count++;
  1874. } break;
  1875. case RS::LIGHT_SPOT: {
  1876. if (cluster.spot_light_count >= cluster.max_lights) {
  1877. continue;
  1878. }
  1879. const real_t distance = camera_plane.distance_to(li->transform.origin);
  1880. if (light_storage->light_is_distance_fade_enabled(li->light)) {
  1881. const float fade_begin = light_storage->light_get_distance_fade_begin(li->light);
  1882. const float fade_length = light_storage->light_get_distance_fade_length(li->light);
  1883. if (distance > fade_begin) {
  1884. if (distance > fade_begin + fade_length) {
  1885. // Out of range, don't draw this light to improve performance.
  1886. continue;
  1887. }
  1888. }
  1889. }
  1890. cluster.spot_light_sort[cluster.spot_light_count].instance = li;
  1891. cluster.spot_light_sort[cluster.spot_light_count].depth = distance;
  1892. cluster.spot_light_count++;
  1893. } break;
  1894. }
  1895. li->last_pass = RSG::rasterizer->get_frame_number();
  1896. }
  1897. if (cluster.omni_light_count) {
  1898. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  1899. sorter.sort(cluster.omni_light_sort, cluster.omni_light_count);
  1900. }
  1901. if (cluster.spot_light_count) {
  1902. SortArray<Cluster::InstanceSort<LightInstance>> sorter;
  1903. sorter.sort(cluster.spot_light_sort, cluster.spot_light_count);
  1904. }
  1905. ShadowAtlas *shadow_atlas = nullptr;
  1906. if (p_shadow_atlas.is_valid() && p_using_shadows) {
  1907. shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
  1908. }
  1909. bool using_forward_ids = _uses_forward_ids();
  1910. for (uint32_t i = 0; i < (cluster.omni_light_count + cluster.spot_light_count); i++) {
  1911. uint32_t index = (i < cluster.omni_light_count) ? i : i - (cluster.omni_light_count);
  1912. Cluster::LightData &light_data = (i < cluster.omni_light_count) ? cluster.omni_lights[index] : cluster.spot_lights[index];
  1913. RS::LightType type = (i < cluster.omni_light_count) ? RS::LIGHT_OMNI : RS::LIGHT_SPOT;
  1914. LightInstance *li = (i < cluster.omni_light_count) ? cluster.omni_light_sort[index].instance : cluster.spot_light_sort[index].instance;
  1915. RID base = li->light;
  1916. if (using_forward_ids) {
  1917. _map_forward_id(type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, li->forward_id, index);
  1918. }
  1919. Transform3D light_transform = li->transform;
  1920. float sign = light_storage->light_is_negative(base) ? -1 : 1;
  1921. Color linear_col = light_storage->light_get_color(base).srgb_to_linear();
  1922. light_data.attenuation = light_storage->light_get_param(base, RS::LIGHT_PARAM_ATTENUATION);
  1923. // Reuse fade begin, fade length and distance for shadow LOD determination later.
  1924. float fade_begin = 0.0;
  1925. float fade_shadow = 0.0;
  1926. float fade_length = 0.0;
  1927. real_t distance = 0.0;
  1928. float fade = 1.0;
  1929. float shadow_opacity_fade = 1.0;
  1930. if (light_storage->light_is_distance_fade_enabled(li->light)) {
  1931. fade_begin = light_storage->light_get_distance_fade_begin(li->light);
  1932. fade_shadow = light_storage->light_get_distance_fade_shadow(li->light);
  1933. fade_length = light_storage->light_get_distance_fade_length(li->light);
  1934. distance = camera_plane.distance_to(li->transform.origin);
  1935. // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
  1936. if (distance > fade_begin) {
  1937. fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
  1938. }
  1939. if (distance > fade_shadow) {
  1940. shadow_opacity_fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_shadow) / fade_length);
  1941. }
  1942. }
  1943. float energy = sign * light_storage->light_get_param(base, RS::LIGHT_PARAM_ENERGY) * fade;
  1944. if (is_using_physical_light_units()) {
  1945. energy *= light_storage->light_get_param(base, RS::LIGHT_PARAM_INTENSITY);
  1946. // Convert from Luminous Power to Luminous Intensity
  1947. if (type == RS::LIGHT_OMNI) {
  1948. energy *= 1.0 / (Math_PI * 4.0);
  1949. } else {
  1950. // Spot Lights are not physically accurate, Luminous Intensity should change in relation to the cone angle.
  1951. // We make this assumption to keep them easy to control.
  1952. energy *= 1.0 / Math_PI;
  1953. }
  1954. } else {
  1955. energy *= Math_PI;
  1956. }
  1957. if (p_render_data->camera_attributes.is_valid()) {
  1958. energy *= RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_render_data->camera_attributes);
  1959. }
  1960. light_data.color[0] = linear_col.r * energy;
  1961. light_data.color[1] = linear_col.g * energy;
  1962. light_data.color[2] = linear_col.b * energy;
  1963. light_data.specular_amount = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPECULAR) * 2.0;
  1964. light_data.volumetric_fog_energy = light_storage->light_get_param(base, RS::LIGHT_PARAM_VOLUMETRIC_FOG_ENERGY);
  1965. light_data.bake_mode = light_storage->light_get_bake_mode(base);
  1966. float radius = MAX(0.001, light_storage->light_get_param(base, RS::LIGHT_PARAM_RANGE));
  1967. light_data.inv_radius = 1.0 / radius;
  1968. Vector3 pos = inverse_transform.xform(light_transform.origin);
  1969. light_data.position[0] = pos.x;
  1970. light_data.position[1] = pos.y;
  1971. light_data.position[2] = pos.z;
  1972. Vector3 direction = inverse_transform.basis.xform(light_transform.basis.xform(Vector3(0, 0, -1))).normalized();
  1973. light_data.direction[0] = direction.x;
  1974. light_data.direction[1] = direction.y;
  1975. light_data.direction[2] = direction.z;
  1976. float size = light_storage->light_get_param(base, RS::LIGHT_PARAM_SIZE);
  1977. light_data.size = size;
  1978. light_data.inv_spot_attenuation = 1.0f / light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ATTENUATION);
  1979. float spot_angle = light_storage->light_get_param(base, RS::LIGHT_PARAM_SPOT_ANGLE);
  1980. light_data.cos_spot_angle = Math::cos(Math::deg_to_rad(spot_angle));
  1981. light_data.mask = light_storage->light_get_cull_mask(base);
  1982. light_data.atlas_rect[0] = 0;
  1983. light_data.atlas_rect[1] = 0;
  1984. light_data.atlas_rect[2] = 0;
  1985. light_data.atlas_rect[3] = 0;
  1986. RID projector = light_storage->light_get_projector(base);
  1987. if (projector.is_valid()) {
  1988. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(projector);
  1989. if (type == RS::LIGHT_SPOT) {
  1990. light_data.projector_rect[0] = rect.position.x;
  1991. light_data.projector_rect[1] = rect.position.y + rect.size.height; //flip because shadow is flipped
  1992. light_data.projector_rect[2] = rect.size.width;
  1993. light_data.projector_rect[3] = -rect.size.height;
  1994. } else {
  1995. light_data.projector_rect[0] = rect.position.x;
  1996. light_data.projector_rect[1] = rect.position.y;
  1997. light_data.projector_rect[2] = rect.size.width;
  1998. light_data.projector_rect[3] = rect.size.height * 0.5; //used by dp, so needs to be half
  1999. }
  2000. } else {
  2001. light_data.projector_rect[0] = 0;
  2002. light_data.projector_rect[1] = 0;
  2003. light_data.projector_rect[2] = 0;
  2004. light_data.projector_rect[3] = 0;
  2005. }
  2006. const bool needs_shadow =
  2007. shadow_atlas &&
  2008. shadow_atlas->shadow_owners.has(li->self) &&
  2009. p_using_shadows &&
  2010. light_storage->light_has_shadow(base);
  2011. bool in_shadow_range = true;
  2012. if (needs_shadow && light_storage->light_is_distance_fade_enabled(li->light)) {
  2013. if (distance > light_storage->light_get_distance_fade_shadow(li->light) + light_storage->light_get_distance_fade_length(li->light)) {
  2014. // Out of range, don't draw shadows to improve performance.
  2015. in_shadow_range = false;
  2016. }
  2017. }
  2018. if (needs_shadow && in_shadow_range) {
  2019. // fill in the shadow information
  2020. light_data.shadow_opacity = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_OPACITY) * shadow_opacity_fade;
  2021. float shadow_texel_size = light_instance_get_shadow_texel_size(li->self, p_shadow_atlas);
  2022. light_data.shadow_normal_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * shadow_texel_size * 10.0;
  2023. if (type == RS::LIGHT_SPOT) {
  2024. light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) / 100.0;
  2025. } else { //omni
  2026. light_data.shadow_bias = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS);
  2027. }
  2028. light_data.transmittance_bias = light_storage->light_get_transmittance_bias(base);
  2029. Vector2i omni_offset;
  2030. Rect2 rect = light_instance_get_shadow_atlas_rect(li->self, p_shadow_atlas, omni_offset);
  2031. light_data.atlas_rect[0] = rect.position.x;
  2032. light_data.atlas_rect[1] = rect.position.y;
  2033. light_data.atlas_rect[2] = rect.size.width;
  2034. light_data.atlas_rect[3] = rect.size.height;
  2035. light_data.soft_shadow_scale = light_storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
  2036. if (type == RS::LIGHT_OMNI) {
  2037. Transform3D proj = (inverse_transform * light_transform).inverse();
  2038. RendererRD::MaterialStorage::store_transform(proj, light_data.shadow_matrix);
  2039. if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
  2040. // Only enable PCSS-like soft shadows if blurring is enabled.
  2041. // Otherwise, performance would decrease with no visual difference.
  2042. light_data.soft_shadow_size = size;
  2043. } else {
  2044. light_data.soft_shadow_size = 0.0;
  2045. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2046. }
  2047. light_data.direction[0] = omni_offset.x * float(rect.size.width);
  2048. light_data.direction[1] = omni_offset.y * float(rect.size.height);
  2049. } else if (type == RS::LIGHT_SPOT) {
  2050. Transform3D modelview = (inverse_transform * light_transform).inverse();
  2051. Projection bias;
  2052. bias.set_light_bias();
  2053. Projection shadow_mtx = bias * li->shadow_transform[0].camera * modelview;
  2054. RendererRD::MaterialStorage::store_camera(shadow_mtx, light_data.shadow_matrix);
  2055. if (size > 0.0 && light_data.soft_shadow_scale > 0.0) {
  2056. // Only enable PCSS-like soft shadows if blurring is enabled.
  2057. // Otherwise, performance would decrease with no visual difference.
  2058. Projection cm = li->shadow_transform[0].camera;
  2059. float half_np = cm.get_z_near() * Math::tan(Math::deg_to_rad(spot_angle));
  2060. light_data.soft_shadow_size = (size * 0.5 / radius) / (half_np / cm.get_z_near()) * rect.size.width;
  2061. } else {
  2062. light_data.soft_shadow_size = 0.0;
  2063. light_data.soft_shadow_scale *= shadows_quality_radius_get(); // Only use quality radius for PCF
  2064. }
  2065. }
  2066. } else {
  2067. light_data.shadow_opacity = 0.0;
  2068. }
  2069. li->cull_mask = light_storage->light_get_cull_mask(base);
  2070. if (current_cluster_builder != nullptr) {
  2071. current_cluster_builder->add_light(type == RS::LIGHT_SPOT ? ClusterBuilderRD::LIGHT_TYPE_SPOT : ClusterBuilderRD::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
  2072. }
  2073. r_positional_light_count++;
  2074. }
  2075. //update without barriers
  2076. if (cluster.omni_light_count) {
  2077. RD::get_singleton()->buffer_update(cluster.omni_light_buffer, 0, sizeof(Cluster::LightData) * cluster.omni_light_count, cluster.omni_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2078. }
  2079. if (cluster.spot_light_count) {
  2080. RD::get_singleton()->buffer_update(cluster.spot_light_buffer, 0, sizeof(Cluster::LightData) * cluster.spot_light_count, cluster.spot_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2081. }
  2082. if (r_directional_light_count) {
  2083. RD::get_singleton()->buffer_update(cluster.directional_light_buffer, 0, sizeof(Cluster::DirectionalLightData) * r_directional_light_count, cluster.directional_lights, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2084. }
  2085. }
  2086. void RendererSceneRenderRD::_setup_decals(const PagedArray<RID> &p_decals, const Transform3D &p_camera_inverse_xform) {
  2087. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2088. Transform3D uv_xform;
  2089. uv_xform.basis.scale(Vector3(2.0, 1.0, 2.0));
  2090. uv_xform.origin = Vector3(-1.0, 0.0, -1.0);
  2091. uint32_t decal_count = p_decals.size();
  2092. cluster.decal_count = 0;
  2093. for (uint32_t i = 0; i < decal_count; i++) {
  2094. if (cluster.decal_count == cluster.max_decals) {
  2095. break;
  2096. }
  2097. DecalInstance *di = decal_instance_owner.get_or_null(p_decals[i]);
  2098. if (!di) {
  2099. continue;
  2100. }
  2101. RID decal = di->decal;
  2102. Transform3D xform = di->transform;
  2103. real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2104. if (texture_storage->decal_is_distance_fade_enabled(decal)) {
  2105. float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
  2106. float fade_length = texture_storage->decal_get_distance_fade_length(decal);
  2107. if (distance > fade_begin) {
  2108. if (distance > fade_begin + fade_length) {
  2109. continue; // do not use this decal, its invisible
  2110. }
  2111. }
  2112. }
  2113. cluster.decal_sort[cluster.decal_count].instance = di;
  2114. cluster.decal_sort[cluster.decal_count].depth = distance;
  2115. cluster.decal_count++;
  2116. }
  2117. if (cluster.decal_count > 0) {
  2118. SortArray<Cluster::InstanceSort<DecalInstance>> sort_array;
  2119. sort_array.sort(cluster.decal_sort, cluster.decal_count);
  2120. }
  2121. bool using_forward_ids = _uses_forward_ids();
  2122. for (uint32_t i = 0; i < cluster.decal_count; i++) {
  2123. DecalInstance *di = cluster.decal_sort[i].instance;
  2124. RID decal = di->decal;
  2125. if (using_forward_ids) {
  2126. _map_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id, i);
  2127. }
  2128. di->cull_mask = texture_storage->decal_get_cull_mask(decal);
  2129. Transform3D xform = di->transform;
  2130. float fade = 1.0;
  2131. if (texture_storage->decal_is_distance_fade_enabled(decal)) {
  2132. const real_t distance = -p_camera_inverse_xform.xform(xform.origin).z;
  2133. const float fade_begin = texture_storage->decal_get_distance_fade_begin(decal);
  2134. const float fade_length = texture_storage->decal_get_distance_fade_length(decal);
  2135. if (distance > fade_begin) {
  2136. // Use `smoothstep()` to make opacity changes more gradual and less noticeable to the player.
  2137. fade = Math::smoothstep(0.0f, 1.0f, 1.0f - float(distance - fade_begin) / fade_length);
  2138. }
  2139. }
  2140. Cluster::DecalData &dd = cluster.decals[i];
  2141. Vector3 decal_extents = texture_storage->decal_get_extents(decal);
  2142. Transform3D scale_xform;
  2143. scale_xform.basis.scale(decal_extents);
  2144. Transform3D to_decal_xform = (p_camera_inverse_xform * di->transform * scale_xform * uv_xform).affine_inverse();
  2145. RendererRD::MaterialStorage::store_transform(to_decal_xform, dd.xform);
  2146. Vector3 normal = xform.basis.get_column(Vector3::AXIS_Y).normalized();
  2147. normal = p_camera_inverse_xform.basis.xform(normal); //camera is normalized, so fine
  2148. dd.normal[0] = normal.x;
  2149. dd.normal[1] = normal.y;
  2150. dd.normal[2] = normal.z;
  2151. dd.normal_fade = texture_storage->decal_get_normal_fade(decal);
  2152. RID albedo_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ALBEDO);
  2153. RID emission_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_EMISSION);
  2154. if (albedo_tex.is_valid()) {
  2155. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(albedo_tex);
  2156. dd.albedo_rect[0] = rect.position.x;
  2157. dd.albedo_rect[1] = rect.position.y;
  2158. dd.albedo_rect[2] = rect.size.x;
  2159. dd.albedo_rect[3] = rect.size.y;
  2160. } else {
  2161. if (!emission_tex.is_valid()) {
  2162. continue; //no albedo, no emission, no decal.
  2163. }
  2164. dd.albedo_rect[0] = 0;
  2165. dd.albedo_rect[1] = 0;
  2166. dd.albedo_rect[2] = 0;
  2167. dd.albedo_rect[3] = 0;
  2168. }
  2169. RID normal_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_NORMAL);
  2170. if (normal_tex.is_valid()) {
  2171. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(normal_tex);
  2172. dd.normal_rect[0] = rect.position.x;
  2173. dd.normal_rect[1] = rect.position.y;
  2174. dd.normal_rect[2] = rect.size.x;
  2175. dd.normal_rect[3] = rect.size.y;
  2176. Basis normal_xform = p_camera_inverse_xform.basis * xform.basis.orthonormalized();
  2177. RendererRD::MaterialStorage::store_basis_3x4(normal_xform, dd.normal_xform);
  2178. } else {
  2179. dd.normal_rect[0] = 0;
  2180. dd.normal_rect[1] = 0;
  2181. dd.normal_rect[2] = 0;
  2182. dd.normal_rect[3] = 0;
  2183. }
  2184. RID orm_tex = texture_storage->decal_get_texture(decal, RS::DECAL_TEXTURE_ORM);
  2185. if (orm_tex.is_valid()) {
  2186. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(orm_tex);
  2187. dd.orm_rect[0] = rect.position.x;
  2188. dd.orm_rect[1] = rect.position.y;
  2189. dd.orm_rect[2] = rect.size.x;
  2190. dd.orm_rect[3] = rect.size.y;
  2191. } else {
  2192. dd.orm_rect[0] = 0;
  2193. dd.orm_rect[1] = 0;
  2194. dd.orm_rect[2] = 0;
  2195. dd.orm_rect[3] = 0;
  2196. }
  2197. if (emission_tex.is_valid()) {
  2198. Rect2 rect = texture_storage->decal_atlas_get_texture_rect(emission_tex);
  2199. dd.emission_rect[0] = rect.position.x;
  2200. dd.emission_rect[1] = rect.position.y;
  2201. dd.emission_rect[2] = rect.size.x;
  2202. dd.emission_rect[3] = rect.size.y;
  2203. } else {
  2204. dd.emission_rect[0] = 0;
  2205. dd.emission_rect[1] = 0;
  2206. dd.emission_rect[2] = 0;
  2207. dd.emission_rect[3] = 0;
  2208. }
  2209. Color modulate = texture_storage->decal_get_modulate(decal);
  2210. dd.modulate[0] = modulate.r;
  2211. dd.modulate[1] = modulate.g;
  2212. dd.modulate[2] = modulate.b;
  2213. dd.modulate[3] = modulate.a * fade;
  2214. dd.emission_energy = texture_storage->decal_get_emission_energy(decal) * fade;
  2215. dd.albedo_mix = texture_storage->decal_get_albedo_mix(decal);
  2216. dd.mask = texture_storage->decal_get_cull_mask(decal);
  2217. dd.upper_fade = texture_storage->decal_get_upper_fade(decal);
  2218. dd.lower_fade = texture_storage->decal_get_lower_fade(decal);
  2219. if (current_cluster_builder != nullptr) {
  2220. current_cluster_builder->add_box(ClusterBuilderRD::BOX_TYPE_DECAL, xform, decal_extents);
  2221. }
  2222. }
  2223. if (cluster.decal_count > 0) {
  2224. RD::get_singleton()->buffer_update(cluster.decal_buffer, 0, sizeof(Cluster::DecalData) * cluster.decal_count, cluster.decals, RD::BARRIER_MASK_RASTER | RD::BARRIER_MASK_COMPUTE);
  2225. }
  2226. }
  2227. ////////////////////////////////////////////////////////////////////////////////
  2228. // FOG SHADER
  2229. void RendererSceneRenderRD::_update_volumetric_fog(Ref<RenderSceneBuffersRD> p_render_buffers, RID p_environment, const Projection &p_cam_projection, const Transform3D &p_cam_transform, const Transform3D &p_prev_cam_inv_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_voxel_gi_count, const PagedArray<RID> &p_fog_volumes) {
  2230. ERR_FAIL_COND(!is_clustered_enabled()); // can't use volumetric fog without clustered
  2231. ERR_FAIL_COND(p_render_buffers.is_null());
  2232. // These should be available for our clustered renderer, at some point _update_volumetric_fog should be called by the renderer implemetentation itself
  2233. ERR_FAIL_COND(!p_render_buffers->has_custom_data(RB_SCOPE_GI));
  2234. Ref<RendererRD::GI::RenderBuffersGI> rbgi = p_render_buffers->get_custom_data(RB_SCOPE_GI);
  2235. Ref<RendererRD::GI::SDFGI> sdfgi;
  2236. if (p_render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2237. sdfgi = p_render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  2238. }
  2239. Size2i size = p_render_buffers->get_internal_size();
  2240. float ratio = float(size.x) / float((size.x + size.y) / 2);
  2241. uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
  2242. uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
  2243. if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  2244. Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
  2245. //validate
  2246. if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment) || fog->width != target_width || fog->height != target_height || fog->depth != volumetric_fog_depth) {
  2247. p_render_buffers->set_custom_data(RB_SCOPE_FOG, Ref<RenderBufferCustomDataRD>());
  2248. }
  2249. }
  2250. if (p_environment.is_null() || !environment_get_volumetric_fog_enabled(p_environment)) {
  2251. //no reason to enable or update, bye
  2252. return;
  2253. }
  2254. if (p_environment.is_valid() && environment_get_volumetric_fog_enabled(p_environment) && !p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  2255. //required volumetric fog but not existing, create
  2256. Ref<RendererRD::Fog::VolumetricFog> fog;
  2257. fog.instantiate();
  2258. fog->init(Vector3i(target_width, target_height, volumetric_fog_depth), sky.sky_shader.default_shader_rd);
  2259. p_render_buffers->set_custom_data(RB_SCOPE_FOG, fog);
  2260. }
  2261. if (p_render_buffers->has_custom_data(RB_SCOPE_FOG)) {
  2262. Ref<RendererRD::Fog::VolumetricFog> fog = p_render_buffers->get_custom_data(RB_SCOPE_FOG);
  2263. RendererRD::Fog::VolumetricFogSettings settings;
  2264. settings.rb_size = size;
  2265. settings.time = time;
  2266. settings.is_using_radiance_cubemap_array = is_using_radiance_cubemap_array();
  2267. settings.max_cluster_elements = max_cluster_elements;
  2268. settings.volumetric_fog_filter_active = volumetric_fog_filter_active;
  2269. settings.shadow_sampler = shadow_sampler;
  2270. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
  2271. settings.shadow_atlas_depth = shadow_atlas ? shadow_atlas->depth : RID();
  2272. settings.voxel_gi_buffer = rbgi->get_voxel_gi_buffer();
  2273. settings.omni_light_buffer = get_omni_light_buffer();
  2274. settings.spot_light_buffer = get_spot_light_buffer();
  2275. settings.directional_shadow_depth = directional_shadow.depth;
  2276. settings.directional_light_buffer = get_directional_light_buffer();
  2277. settings.vfog = fog;
  2278. settings.cluster_builder = p_render_buffers->cluster_builder;
  2279. settings.rbgi = rbgi;
  2280. settings.sdfgi = sdfgi;
  2281. settings.env = p_environment;
  2282. settings.sky = &sky;
  2283. settings.gi = &gi;
  2284. RendererRD::Fog::get_singleton()->volumetric_fog_update(settings, p_cam_projection, p_cam_transform, p_prev_cam_inv_transform, p_shadow_atlas, p_directional_light_count, p_use_directional_shadows, p_positional_light_count, p_voxel_gi_count, p_fog_volumes);
  2285. }
  2286. }
  2287. bool RendererSceneRenderRD::_needs_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2288. if (p_render_data->render_buffers.is_valid()) {
  2289. if (p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2290. return true;
  2291. }
  2292. }
  2293. return false;
  2294. }
  2295. void RendererSceneRenderRD::_post_prepass_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2296. if (p_render_data->render_buffers.is_valid() && p_use_gi) {
  2297. if (!p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2298. return;
  2299. }
  2300. Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  2301. sdfgi->update_probes(p_render_data->environment, sky.sky_owner.get_or_null(environment_get_sky(p_render_data->environment)));
  2302. }
  2303. }
  2304. void RendererSceneRenderRD::_pre_resolve_render(RenderDataRD *p_render_data, bool p_use_gi) {
  2305. if (p_render_data->render_buffers.is_valid()) {
  2306. if (p_use_gi) {
  2307. RD::get_singleton()->compute_list_end();
  2308. }
  2309. }
  2310. }
  2311. void RendererSceneRenderRD::_pre_opaque_render(RenderDataRD *p_render_data, bool p_use_ssao, bool p_use_ssil, bool p_use_gi, const RID *p_normal_roughness_slices, RID p_voxel_gi_buffer) {
  2312. // Render shadows while GI is rendering, due to how barriers are handled, this should happen at the same time
  2313. RendererRD::LightStorage *light_storage = RendererRD::LightStorage::get_singleton();
  2314. if (p_render_data->render_buffers.is_valid() && p_use_gi && p_render_data->render_buffers->has_custom_data(RB_SCOPE_SDFGI)) {
  2315. Ref<RendererRD::GI::SDFGI> sdfgi = p_render_data->render_buffers->get_custom_data(RB_SCOPE_SDFGI);
  2316. sdfgi->store_probes();
  2317. }
  2318. render_state.cube_shadows.clear();
  2319. render_state.shadows.clear();
  2320. render_state.directional_shadows.clear();
  2321. Plane camera_plane(-p_render_data->scene_data->cam_transform.basis.get_column(Vector3::AXIS_Z), p_render_data->scene_data->cam_transform.origin);
  2322. float lod_distance_multiplier = p_render_data->scene_data->cam_projection.get_lod_multiplier();
  2323. {
  2324. for (int i = 0; i < render_state.render_shadow_count; i++) {
  2325. LightInstance *li = light_instance_owner.get_or_null(render_state.render_shadows[i].light);
  2326. if (light_storage->light_get_type(li->light) == RS::LIGHT_DIRECTIONAL) {
  2327. render_state.directional_shadows.push_back(i);
  2328. } else if (light_storage->light_get_type(li->light) == RS::LIGHT_OMNI && light_storage->light_omni_get_shadow_mode(li->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2329. render_state.cube_shadows.push_back(i);
  2330. } else {
  2331. render_state.shadows.push_back(i);
  2332. }
  2333. }
  2334. //cube shadows are rendered in their own way
  2335. for (uint32_t i = 0; i < render_state.cube_shadows.size(); i++) {
  2336. _render_shadow_pass(render_state.render_shadows[render_state.cube_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.cube_shadows[i]].pass, render_state.render_shadows[render_state.cube_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, true, true, true, p_render_data->render_info);
  2337. }
  2338. if (render_state.directional_shadows.size()) {
  2339. //open the pass for directional shadows
  2340. _update_directional_shadow_atlas();
  2341. RD::get_singleton()->draw_list_begin(directional_shadow.fb, RD::INITIAL_ACTION_DROP, RD::FINAL_ACTION_DISCARD, RD::INITIAL_ACTION_CLEAR, RD::FINAL_ACTION_CONTINUE);
  2342. RD::get_singleton()->draw_list_end();
  2343. }
  2344. }
  2345. // Render GI
  2346. bool render_shadows = render_state.directional_shadows.size() || render_state.shadows.size();
  2347. bool render_gi = p_render_data->render_buffers.is_valid() && p_use_gi;
  2348. if (render_shadows && render_gi) {
  2349. RENDER_TIMESTAMP("Render GI + Render Shadows (Parallel)");
  2350. } else if (render_shadows) {
  2351. RENDER_TIMESTAMP("Render Shadows");
  2352. } else if (render_gi) {
  2353. RENDER_TIMESTAMP("Render GI");
  2354. }
  2355. //prepare shadow rendering
  2356. if (render_shadows) {
  2357. _render_shadow_begin();
  2358. //render directional shadows
  2359. for (uint32_t i = 0; i < render_state.directional_shadows.size(); i++) {
  2360. _render_shadow_pass(render_state.render_shadows[render_state.directional_shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.directional_shadows[i]].pass, render_state.render_shadows[render_state.directional_shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, false, i == render_state.directional_shadows.size() - 1, false, p_render_data->render_info);
  2361. }
  2362. //render positional shadows
  2363. for (uint32_t i = 0; i < render_state.shadows.size(); i++) {
  2364. _render_shadow_pass(render_state.render_shadows[render_state.shadows[i]].light, p_render_data->shadow_atlas, render_state.render_shadows[render_state.shadows[i]].pass, render_state.render_shadows[render_state.shadows[i]].instances, camera_plane, lod_distance_multiplier, p_render_data->scene_data->screen_mesh_lod_threshold, i == 0, i == render_state.shadows.size() - 1, true, p_render_data->render_info);
  2365. }
  2366. _render_shadow_process();
  2367. }
  2368. //start GI
  2369. if (render_gi) {
  2370. gi.process_gi(p_render_data->render_buffers, p_normal_roughness_slices, p_voxel_gi_buffer, p_render_data->environment, p_render_data->scene_data->view_count, p_render_data->scene_data->view_projection, p_render_data->scene_data->view_eye_offset, p_render_data->scene_data->cam_transform, *p_render_data->voxel_gi_instances);
  2371. }
  2372. //Do shadow rendering (in parallel with GI)
  2373. if (render_shadows) {
  2374. _render_shadow_end(RD::BARRIER_MASK_NO_BARRIER);
  2375. }
  2376. if (render_gi) {
  2377. RD::get_singleton()->compute_list_end(RD::BARRIER_MASK_NO_BARRIER); //use a later barrier
  2378. }
  2379. if (p_render_data->render_buffers.is_valid() && ss_effects) {
  2380. if (p_use_ssao || p_use_ssil) {
  2381. Ref<RenderSceneBuffersRD> rb = p_render_data->render_buffers;
  2382. ERR_FAIL_COND(rb.is_null());
  2383. Size2i size = rb->get_internal_size();
  2384. bool invalidate_uniform_set = false;
  2385. if (rb->ss_effects.linear_depth.is_null()) {
  2386. RD::TextureFormat tf;
  2387. tf.format = RD::DATA_FORMAT_R16_SFLOAT;
  2388. tf.texture_type = RD::TEXTURE_TYPE_2D_ARRAY;
  2389. tf.width = (size.x + 1) / 2;
  2390. tf.height = (size.y + 1) / 2;
  2391. tf.mipmaps = 5;
  2392. tf.array_layers = 4;
  2393. tf.usage_bits = RD::TEXTURE_USAGE_SAMPLING_BIT | RD::TEXTURE_USAGE_STORAGE_BIT;
  2394. rb->ss_effects.linear_depth = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2395. RD::get_singleton()->set_resource_name(rb->ss_effects.linear_depth, "SS Effects Depth");
  2396. for (uint32_t i = 0; i < tf.mipmaps; i++) {
  2397. RID slice = RD::get_singleton()->texture_create_shared_from_slice(RD::TextureView(), rb->ss_effects.linear_depth, 0, i, 1, RD::TEXTURE_SLICE_2D_ARRAY);
  2398. rb->ss_effects.linear_depth_slices.push_back(slice);
  2399. RD::get_singleton()->set_resource_name(slice, "SS Effects Depth Mip " + itos(i) + " ");
  2400. }
  2401. invalidate_uniform_set = true;
  2402. }
  2403. RID depth_texture = rb->get_depth_texture();
  2404. ss_effects->downsample_depth(depth_texture, rb->ss_effects.linear_depth_slices, ssao_quality, ssil_quality, invalidate_uniform_set, ssao_half_size, ssil_half_size, size, p_render_data->scene_data->cam_projection);
  2405. }
  2406. if (p_use_ssao) {
  2407. // TODO make these proper stereo
  2408. _process_ssao(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection);
  2409. }
  2410. if (p_use_ssil) {
  2411. // TODO make these proper stereo
  2412. _process_ssil(p_render_data->render_buffers, p_render_data->environment, p_normal_roughness_slices[0], p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform);
  2413. }
  2414. }
  2415. //full barrier here, we need raster, transfer and compute and it depends from the previous work
  2416. RD::get_singleton()->barrier(RD::BARRIER_MASK_ALL, RD::BARRIER_MASK_ALL);
  2417. if (current_cluster_builder) {
  2418. current_cluster_builder->begin(p_render_data->scene_data->cam_transform, p_render_data->scene_data->cam_projection, !p_render_data->reflection_probe.is_valid());
  2419. }
  2420. bool using_shadows = true;
  2421. if (p_render_data->reflection_probe.is_valid()) {
  2422. if (!RSG::light_storage->reflection_probe_renders_shadows(reflection_probe_instance_get_probe(p_render_data->reflection_probe))) {
  2423. using_shadows = false;
  2424. }
  2425. } else {
  2426. //do not render reflections when rendering a reflection probe
  2427. _setup_reflections(p_render_data, *p_render_data->reflection_probes, p_render_data->scene_data->cam_transform.affine_inverse(), p_render_data->environment);
  2428. }
  2429. uint32_t directional_light_count = 0;
  2430. uint32_t positional_light_count = 0;
  2431. _setup_lights(p_render_data, *p_render_data->lights, p_render_data->scene_data->cam_transform, p_render_data->shadow_atlas, using_shadows, directional_light_count, positional_light_count, p_render_data->directional_light_soft_shadows);
  2432. _setup_decals(*p_render_data->decals, p_render_data->scene_data->cam_transform.affine_inverse());
  2433. p_render_data->directional_light_count = directional_light_count;
  2434. if (current_cluster_builder) {
  2435. current_cluster_builder->bake_cluster();
  2436. }
  2437. if (p_render_data->render_buffers.is_valid()) {
  2438. bool directional_shadows = false;
  2439. for (uint32_t i = 0; i < directional_light_count; i++) {
  2440. if (cluster.directional_lights[i].shadow_opacity > 0.001) {
  2441. directional_shadows = true;
  2442. break;
  2443. }
  2444. }
  2445. if (is_volumetric_supported()) {
  2446. _update_volumetric_fog(p_render_data->render_buffers, p_render_data->environment, p_render_data->scene_data->cam_projection, p_render_data->scene_data->cam_transform, p_render_data->scene_data->prev_cam_transform.affine_inverse(), p_render_data->shadow_atlas, directional_light_count, directional_shadows, positional_light_count, render_state.voxel_gi_count, *p_render_data->fog_volumes);
  2447. }
  2448. }
  2449. }
  2450. void RendererSceneRenderRD::render_scene(const Ref<RenderSceneBuffers> &p_render_buffers, const CameraData *p_camera_data, const CameraData *p_prev_camera_data, const PagedArray<RenderGeometryInstance *> &p_instances, const PagedArray<RID> &p_lights, const PagedArray<RID> &p_reflection_probes, const PagedArray<RID> &p_voxel_gi_instances, const PagedArray<RID> &p_decals, const PagedArray<RID> &p_lightmaps, const PagedArray<RID> &p_fog_volumes, RID p_environment, RID p_camera_attributes, RID p_shadow_atlas, RID p_occluder_debug_tex, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, float p_screen_mesh_lod_threshold, const RenderShadowData *p_render_shadows, int p_render_shadow_count, const RenderSDFGIData *p_render_sdfgi_regions, int p_render_sdfgi_region_count, const RenderSDFGIUpdateData *p_sdfgi_update_data, RenderingMethod::RenderInfo *r_render_info) {
  2451. RendererRD::TextureStorage *texture_storage = RendererRD::TextureStorage::get_singleton();
  2452. // getting this here now so we can direct call a bunch of things more easily
  2453. Ref<RenderSceneBuffersRD> rb;
  2454. if (p_render_buffers.is_valid()) {
  2455. rb = p_render_buffers; // cast it...
  2456. ERR_FAIL_COND(rb.is_null());
  2457. }
  2458. // setup scene data
  2459. RenderSceneDataRD scene_data;
  2460. {
  2461. // Our first camera is used by default
  2462. scene_data.cam_transform = p_camera_data->main_transform;
  2463. scene_data.cam_projection = p_camera_data->main_projection;
  2464. scene_data.cam_orthogonal = p_camera_data->is_orthogonal;
  2465. scene_data.taa_jitter = p_camera_data->taa_jitter;
  2466. scene_data.view_count = p_camera_data->view_count;
  2467. for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
  2468. scene_data.view_eye_offset[v] = p_camera_data->view_offset[v].origin;
  2469. scene_data.view_projection[v] = p_camera_data->view_projection[v];
  2470. }
  2471. scene_data.prev_cam_transform = p_prev_camera_data->main_transform;
  2472. scene_data.prev_cam_projection = p_prev_camera_data->main_projection;
  2473. scene_data.prev_taa_jitter = p_prev_camera_data->taa_jitter;
  2474. for (uint32_t v = 0; v < p_camera_data->view_count; v++) {
  2475. scene_data.prev_view_projection[v] = p_prev_camera_data->view_projection[v];
  2476. }
  2477. scene_data.z_near = p_camera_data->main_projection.get_z_near();
  2478. scene_data.z_far = p_camera_data->main_projection.get_z_far();
  2479. // this should be the same for all cameras..
  2480. scene_data.lod_distance_multiplier = p_camera_data->main_projection.get_lod_multiplier();
  2481. scene_data.lod_camera_plane = Plane(-p_camera_data->main_transform.basis.get_column(Vector3::AXIS_Z), p_camera_data->main_transform.get_origin());
  2482. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_DISABLE_LOD) {
  2483. scene_data.screen_mesh_lod_threshold = 0.0;
  2484. } else {
  2485. scene_data.screen_mesh_lod_threshold = p_screen_mesh_lod_threshold;
  2486. }
  2487. if (p_shadow_atlas.is_valid()) {
  2488. Vector2 sas = shadow_atlas_get_size(p_shadow_atlas);
  2489. scene_data.shadow_atlas_pixel_size.x = 1.0 / sas.x;
  2490. scene_data.shadow_atlas_pixel_size.y = 1.0 / sas.y;
  2491. }
  2492. {
  2493. Vector2 dss = directional_shadow_get_size();
  2494. scene_data.directional_shadow_pixel_size.x = 1.0 / dss.x;
  2495. scene_data.directional_shadow_pixel_size.y = 1.0 / dss.y;
  2496. }
  2497. scene_data.time = time;
  2498. scene_data.time_step = time_step;
  2499. }
  2500. //assign render data
  2501. RenderDataRD render_data;
  2502. {
  2503. render_data.render_buffers = rb;
  2504. render_data.scene_data = &scene_data;
  2505. render_data.instances = &p_instances;
  2506. render_data.lights = &p_lights;
  2507. render_data.reflection_probes = &p_reflection_probes;
  2508. render_data.voxel_gi_instances = &p_voxel_gi_instances;
  2509. render_data.decals = &p_decals;
  2510. render_data.lightmaps = &p_lightmaps;
  2511. render_data.fog_volumes = &p_fog_volumes;
  2512. render_data.environment = p_environment;
  2513. render_data.camera_attributes = p_camera_attributes;
  2514. render_data.shadow_atlas = p_shadow_atlas;
  2515. render_data.reflection_atlas = p_reflection_atlas;
  2516. render_data.reflection_probe = p_reflection_probe;
  2517. render_data.reflection_probe_pass = p_reflection_probe_pass;
  2518. render_state.render_shadows = p_render_shadows;
  2519. render_state.render_shadow_count = p_render_shadow_count;
  2520. render_state.render_sdfgi_regions = p_render_sdfgi_regions;
  2521. render_state.render_sdfgi_region_count = p_render_sdfgi_region_count;
  2522. render_state.sdfgi_update_data = p_sdfgi_update_data;
  2523. render_data.render_info = r_render_info;
  2524. }
  2525. PagedArray<RID> empty;
  2526. if (get_debug_draw_mode() == RS::VIEWPORT_DEBUG_DRAW_UNSHADED) {
  2527. render_data.lights = &empty;
  2528. render_data.reflection_probes = &empty;
  2529. render_data.voxel_gi_instances = &empty;
  2530. }
  2531. // sdfgi first
  2532. if (rb.is_valid() && rb->has_custom_data(RB_SCOPE_SDFGI)) {
  2533. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  2534. float exposure_normalization = 1.0;
  2535. if (p_camera_attributes.is_valid()) {
  2536. exposure_normalization = RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes);
  2537. }
  2538. for (int i = 0; i < render_state.render_sdfgi_region_count; i++) {
  2539. sdfgi->render_region(rb, render_state.render_sdfgi_regions[i].region, render_state.render_sdfgi_regions[i].instances, this, exposure_normalization);
  2540. }
  2541. if (render_state.sdfgi_update_data->update_static) {
  2542. sdfgi->render_static_lights(&render_data, rb, render_state.sdfgi_update_data->static_cascade_count, p_sdfgi_update_data->static_cascade_indices, render_state.sdfgi_update_data->static_positional_lights, this);
  2543. }
  2544. }
  2545. Color clear_color;
  2546. if (p_render_buffers.is_valid()) {
  2547. clear_color = texture_storage->render_target_get_clear_request_color(rb->get_render_target());
  2548. } else {
  2549. clear_color = RSG::texture_storage->get_default_clear_color();
  2550. }
  2551. //assign render indices to voxel_gi_instances
  2552. if (is_dynamic_gi_supported()) {
  2553. for (uint32_t i = 0; i < (uint32_t)p_voxel_gi_instances.size(); i++) {
  2554. gi.voxel_gi_instance_set_render_index(p_voxel_gi_instances[i], i);
  2555. }
  2556. }
  2557. if (rb.is_valid()) {
  2558. // render_data.render_buffers == p_render_buffers so we can use our already retrieved rb
  2559. current_cluster_builder = rb->cluster_builder;
  2560. } else if (reflection_probe_instance_owner.owns(render_data.reflection_probe)) {
  2561. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(render_data.reflection_probe);
  2562. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(rpi->atlas);
  2563. if (!ra) {
  2564. ERR_PRINT("reflection probe has no reflection atlas! Bug?");
  2565. current_cluster_builder = nullptr;
  2566. } else {
  2567. current_cluster_builder = ra->cluster_builder;
  2568. }
  2569. if (p_camera_attributes.is_valid()) {
  2570. RendererRD::LightStorage::get_singleton()->reflection_probe_set_baked_exposure(rpi->probe, RSG::camera_attributes->camera_attributes_get_exposure_normalization_factor(p_camera_attributes));
  2571. }
  2572. } else {
  2573. ERR_PRINT("No render buffer nor reflection atlas, bug"); //should never happen, will crash
  2574. current_cluster_builder = nullptr;
  2575. }
  2576. render_state.voxel_gi_count = 0;
  2577. if (rb.is_valid() && is_dynamic_gi_supported()) {
  2578. if (rb->has_custom_data(RB_SCOPE_SDFGI)) {
  2579. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  2580. if (sdfgi.is_valid()) {
  2581. sdfgi->update_cascades();
  2582. sdfgi->pre_process_gi(scene_data.cam_transform, &render_data, this);
  2583. sdfgi->update_light();
  2584. }
  2585. }
  2586. gi.setup_voxel_gi_instances(&render_data, render_data.render_buffers, scene_data.cam_transform, *render_data.voxel_gi_instances, render_state.voxel_gi_count, this);
  2587. }
  2588. render_state.depth_prepass_used = false;
  2589. //calls _pre_opaque_render between depth pre-pass and opaque pass
  2590. if (current_cluster_builder != nullptr) {
  2591. render_data.cluster_buffer = current_cluster_builder->get_cluster_buffer();
  2592. render_data.cluster_size = current_cluster_builder->get_cluster_size();
  2593. render_data.cluster_max_elements = current_cluster_builder->get_max_cluster_elements();
  2594. }
  2595. if (rb.is_valid() && vrs) {
  2596. RS::ViewportVRSMode vrs_mode = texture_storage->render_target_get_vrs_mode(rb->get_render_target());
  2597. if (vrs_mode != RS::VIEWPORT_VRS_DISABLED) {
  2598. RID vrs_texture = rb->get_texture(RB_SCOPE_VRS, RB_TEXTURE);
  2599. // We use get_cache_multipass instead of get_cache_multiview because the default behavior is for
  2600. // our vrs_texture to be used as the VRS attachment. In this particular case we're writing to it
  2601. // so it needs to be set as our color attachment
  2602. Vector<RID> textures;
  2603. textures.push_back(vrs_texture);
  2604. Vector<RD::FramebufferPass> passes;
  2605. RD::FramebufferPass pass;
  2606. pass.color_attachments.push_back(0);
  2607. passes.push_back(pass);
  2608. RID vrs_fb = FramebufferCacheRD::get_singleton()->get_cache_multipass(textures, passes, rb->get_view_count());
  2609. vrs->update_vrs_texture(vrs_fb, rb->get_render_target());
  2610. }
  2611. }
  2612. _render_scene(&render_data, clear_color);
  2613. if (rb.is_valid()) {
  2614. _render_buffers_debug_draw(rb, p_shadow_atlas, p_occluder_debug_tex);
  2615. if (debug_draw == RS::VIEWPORT_DEBUG_DRAW_SDFGI && rb->has_custom_data(RB_SCOPE_SDFGI)) {
  2616. Ref<RendererRD::GI::SDFGI> sdfgi = rb->get_custom_data(RB_SCOPE_SDFGI);
  2617. Vector<RID> view_rids;
  2618. // SDFGI renders at internal resolution, need to check if our debug correctly supports outputting upscaled.
  2619. Size2i size = rb->get_internal_size();
  2620. RID source_texture = rb->get_internal_texture();
  2621. for (uint32_t v = 0; v < rb->get_view_count(); v++) {
  2622. view_rids.push_back(rb->get_internal_texture(v));
  2623. }
  2624. sdfgi->debug_draw(scene_data.view_count, scene_data.view_projection, scene_data.cam_transform, size.x, size.y, rb->get_render_target(), source_texture, view_rids);
  2625. }
  2626. }
  2627. }
  2628. void RendererSceneRenderRD::_debug_draw_cluster(Ref<RenderSceneBuffersRD> p_render_buffers) {
  2629. if (p_render_buffers.is_valid() && current_cluster_builder != nullptr) {
  2630. RS::ViewportDebugDraw dd = get_debug_draw_mode();
  2631. if (dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS || dd == RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES) {
  2632. ClusterBuilderRD::ElementType elem_type = ClusterBuilderRD::ELEMENT_TYPE_MAX;
  2633. switch (dd) {
  2634. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_OMNI_LIGHTS:
  2635. elem_type = ClusterBuilderRD::ELEMENT_TYPE_OMNI_LIGHT;
  2636. break;
  2637. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_SPOT_LIGHTS:
  2638. elem_type = ClusterBuilderRD::ELEMENT_TYPE_SPOT_LIGHT;
  2639. break;
  2640. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_DECALS:
  2641. elem_type = ClusterBuilderRD::ELEMENT_TYPE_DECAL;
  2642. break;
  2643. case RS::VIEWPORT_DEBUG_DRAW_CLUSTER_REFLECTION_PROBES:
  2644. elem_type = ClusterBuilderRD::ELEMENT_TYPE_REFLECTION_PROBE;
  2645. break;
  2646. default: {
  2647. }
  2648. }
  2649. current_cluster_builder->debug(elem_type);
  2650. }
  2651. }
  2652. }
  2653. void RendererSceneRenderRD::_render_shadow_pass(RID p_light, RID p_shadow_atlas, int p_pass, const PagedArray<RenderGeometryInstance *> &p_instances, const Plane &p_camera_plane, float p_lod_distance_multiplier, float p_screen_mesh_lod_threshold, bool p_open_pass, bool p_close_pass, bool p_clear_region, RenderingMethod::RenderInfo *p_render_info) {
  2654. LightInstance *light_instance = light_instance_owner.get_or_null(p_light);
  2655. ERR_FAIL_COND(!light_instance);
  2656. Rect2i atlas_rect;
  2657. uint32_t atlas_size = 1;
  2658. RID atlas_fb;
  2659. bool using_dual_paraboloid = false;
  2660. bool using_dual_paraboloid_flip = false;
  2661. Vector2i dual_paraboloid_offset;
  2662. RID render_fb;
  2663. RID render_texture;
  2664. float zfar;
  2665. bool use_pancake = false;
  2666. bool render_cubemap = false;
  2667. bool finalize_cubemap = false;
  2668. bool flip_y = false;
  2669. Projection light_projection;
  2670. Transform3D light_transform;
  2671. if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_DIRECTIONAL) {
  2672. //set pssm stuff
  2673. if (light_instance->last_scene_shadow_pass != scene_pass) {
  2674. light_instance->directional_rect = _get_directional_shadow_rect(directional_shadow.size, directional_shadow.light_count, directional_shadow.current_light);
  2675. directional_shadow.current_light++;
  2676. light_instance->last_scene_shadow_pass = scene_pass;
  2677. }
  2678. use_pancake = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE) > 0;
  2679. light_projection = light_instance->shadow_transform[p_pass].camera;
  2680. light_transform = light_instance->shadow_transform[p_pass].transform;
  2681. atlas_rect = light_instance->directional_rect;
  2682. if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_4_SPLITS) {
  2683. atlas_rect.size.width /= 2;
  2684. atlas_rect.size.height /= 2;
  2685. if (p_pass == 1) {
  2686. atlas_rect.position.x += atlas_rect.size.width;
  2687. } else if (p_pass == 2) {
  2688. atlas_rect.position.y += atlas_rect.size.height;
  2689. } else if (p_pass == 3) {
  2690. atlas_rect.position += atlas_rect.size;
  2691. }
  2692. } else if (RSG::light_storage->light_directional_get_shadow_mode(light_instance->light) == RS::LIGHT_DIRECTIONAL_SHADOW_PARALLEL_2_SPLITS) {
  2693. atlas_rect.size.height /= 2;
  2694. if (p_pass == 0) {
  2695. } else {
  2696. atlas_rect.position.y += atlas_rect.size.height;
  2697. }
  2698. }
  2699. light_instance->shadow_transform[p_pass].atlas_rect = atlas_rect;
  2700. light_instance->shadow_transform[p_pass].atlas_rect.position /= directional_shadow.size;
  2701. light_instance->shadow_transform[p_pass].atlas_rect.size /= directional_shadow.size;
  2702. zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2703. render_fb = directional_shadow.fb;
  2704. render_texture = RID();
  2705. flip_y = true;
  2706. } else {
  2707. //set from shadow atlas
  2708. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(p_shadow_atlas);
  2709. ERR_FAIL_COND(!shadow_atlas);
  2710. ERR_FAIL_COND(!shadow_atlas->shadow_owners.has(p_light));
  2711. _update_shadow_atlas(shadow_atlas);
  2712. uint32_t key = shadow_atlas->shadow_owners[p_light];
  2713. uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2714. uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2715. ERR_FAIL_INDEX((int)shadow, shadow_atlas->quadrants[quadrant].shadows.size());
  2716. uint32_t quadrant_size = shadow_atlas->size >> 1;
  2717. atlas_rect.position.x = (quadrant & 1) * quadrant_size;
  2718. atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
  2719. uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
  2720. atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2721. atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
  2722. atlas_rect.size.width = shadow_size;
  2723. atlas_rect.size.height = shadow_size;
  2724. zfar = RSG::light_storage->light_get_param(light_instance->light, RS::LIGHT_PARAM_RANGE);
  2725. if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_OMNI) {
  2726. bool wrap = (shadow + 1) % shadow_atlas->quadrants[quadrant].subdivision == 0;
  2727. dual_paraboloid_offset = wrap ? Vector2i(1 - shadow_atlas->quadrants[quadrant].subdivision, 1) : Vector2i(1, 0);
  2728. if (RSG::light_storage->light_omni_get_shadow_mode(light_instance->light) == RS::LIGHT_OMNI_SHADOW_CUBE) {
  2729. ShadowCubemap *cubemap = _get_shadow_cubemap(shadow_size / 2);
  2730. render_fb = cubemap->side_fb[p_pass];
  2731. render_texture = cubemap->cubemap;
  2732. light_projection = light_instance->shadow_transform[p_pass].camera;
  2733. light_transform = light_instance->shadow_transform[p_pass].transform;
  2734. render_cubemap = true;
  2735. finalize_cubemap = p_pass == 5;
  2736. atlas_fb = shadow_atlas->fb;
  2737. atlas_size = shadow_atlas->size;
  2738. if (p_pass == 0) {
  2739. _render_shadow_begin();
  2740. }
  2741. } else {
  2742. atlas_rect.position.x += 1;
  2743. atlas_rect.position.y += 1;
  2744. atlas_rect.size.x -= 2;
  2745. atlas_rect.size.y -= 2;
  2746. atlas_rect.position += p_pass * atlas_rect.size * dual_paraboloid_offset;
  2747. light_projection = light_instance->shadow_transform[0].camera;
  2748. light_transform = light_instance->shadow_transform[0].transform;
  2749. using_dual_paraboloid = true;
  2750. using_dual_paraboloid_flip = p_pass == 1;
  2751. render_fb = shadow_atlas->fb;
  2752. flip_y = true;
  2753. }
  2754. } else if (RSG::light_storage->light_get_type(light_instance->light) == RS::LIGHT_SPOT) {
  2755. light_projection = light_instance->shadow_transform[0].camera;
  2756. light_transform = light_instance->shadow_transform[0].transform;
  2757. render_fb = shadow_atlas->fb;
  2758. flip_y = true;
  2759. }
  2760. }
  2761. if (render_cubemap) {
  2762. //rendering to cubemap
  2763. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, false, false, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, Rect2(), false, true, true, true, p_render_info);
  2764. if (finalize_cubemap) {
  2765. _render_shadow_process();
  2766. _render_shadow_end();
  2767. //reblit
  2768. Rect2 atlas_rect_norm = atlas_rect;
  2769. atlas_rect_norm.position /= float(atlas_size);
  2770. atlas_rect_norm.size /= float(atlas_size);
  2771. copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), false);
  2772. atlas_rect_norm.position += Vector2(dual_paraboloid_offset) * atlas_rect_norm.size;
  2773. copy_effects->copy_cubemap_to_dp(render_texture, atlas_fb, atlas_rect_norm, atlas_rect.size, light_projection.get_z_near(), light_projection.get_z_far(), true);
  2774. //restore transform so it can be properly used
  2775. light_instance_set_shadow_transform(p_light, Projection(), light_instance->transform, zfar, 0, 0, 0);
  2776. }
  2777. } else {
  2778. //render shadow
  2779. _render_shadow_append(render_fb, p_instances, light_projection, light_transform, zfar, 0, 0, using_dual_paraboloid, using_dual_paraboloid_flip, use_pancake, p_camera_plane, p_lod_distance_multiplier, p_screen_mesh_lod_threshold, atlas_rect, flip_y, p_clear_region, p_open_pass, p_close_pass, p_render_info);
  2780. }
  2781. }
  2782. void RendererSceneRenderRD::render_material(const Transform3D &p_cam_transform, const Projection &p_cam_projection, bool p_cam_orthogonal, const PagedArray<RenderGeometryInstance *> &p_instances, RID p_framebuffer, const Rect2i &p_region) {
  2783. _render_material(p_cam_transform, p_cam_projection, p_cam_orthogonal, p_instances, p_framebuffer, p_region, 1.0);
  2784. }
  2785. void RendererSceneRenderRD::render_particle_collider_heightfield(RID p_collider, const Transform3D &p_transform, const PagedArray<RenderGeometryInstance *> &p_instances) {
  2786. RendererRD::ParticlesStorage *particles_storage = RendererRD::ParticlesStorage::get_singleton();
  2787. ERR_FAIL_COND(!particles_storage->particles_collision_is_heightfield(p_collider));
  2788. Vector3 extents = particles_storage->particles_collision_get_extents(p_collider) * p_transform.basis.get_scale();
  2789. Projection cm;
  2790. cm.set_orthogonal(-extents.x, extents.x, -extents.z, extents.z, 0, extents.y * 2.0);
  2791. Vector3 cam_pos = p_transform.origin;
  2792. cam_pos.y += extents.y;
  2793. Transform3D cam_xform;
  2794. cam_xform.set_look_at(cam_pos, cam_pos - p_transform.basis.get_column(Vector3::AXIS_Y), -p_transform.basis.get_column(Vector3::AXIS_Z).normalized());
  2795. RID fb = particles_storage->particles_collision_get_heightfield_framebuffer(p_collider);
  2796. _render_particle_collider_heightfield(fb, cam_xform, cm, p_instances);
  2797. }
  2798. bool RendererSceneRenderRD::free(RID p_rid) {
  2799. if (is_environment(p_rid)) {
  2800. environment_free(p_rid);
  2801. } else if (RSG::camera_attributes->owns_camera_attributes(p_rid)) {
  2802. RSG::camera_attributes->camera_attributes_free(p_rid);
  2803. } else if (reflection_atlas_owner.owns(p_rid)) {
  2804. reflection_atlas_set_size(p_rid, 0, 0);
  2805. ReflectionAtlas *ra = reflection_atlas_owner.get_or_null(p_rid);
  2806. if (ra->cluster_builder) {
  2807. memdelete(ra->cluster_builder);
  2808. }
  2809. reflection_atlas_owner.free(p_rid);
  2810. } else if (reflection_probe_instance_owner.owns(p_rid)) {
  2811. ReflectionProbeInstance *rpi = reflection_probe_instance_owner.get_or_null(p_rid);
  2812. _free_forward_id(FORWARD_ID_TYPE_REFLECTION_PROBE, rpi->forward_id);
  2813. reflection_probe_release_atlas_index(p_rid);
  2814. reflection_probe_instance_owner.free(p_rid);
  2815. } else if (decal_instance_owner.owns(p_rid)) {
  2816. DecalInstance *di = decal_instance_owner.get_or_null(p_rid);
  2817. _free_forward_id(FORWARD_ID_TYPE_DECAL, di->forward_id);
  2818. decal_instance_owner.free(p_rid);
  2819. } else if (lightmap_instance_owner.owns(p_rid)) {
  2820. lightmap_instance_owner.free(p_rid);
  2821. } else if (gi.voxel_gi_instance_owns(p_rid)) {
  2822. gi.voxel_gi_instance_free(p_rid);
  2823. } else if (sky.sky_owner.owns(p_rid)) {
  2824. sky.update_dirty_skys();
  2825. sky.free_sky(p_rid);
  2826. } else if (light_instance_owner.owns(p_rid)) {
  2827. LightInstance *light_instance = light_instance_owner.get_or_null(p_rid);
  2828. //remove from shadow atlases..
  2829. for (const RID &E : light_instance->shadow_atlases) {
  2830. ShadowAtlas *shadow_atlas = shadow_atlas_owner.get_or_null(E);
  2831. ERR_CONTINUE(!shadow_atlas->shadow_owners.has(p_rid));
  2832. uint32_t key = shadow_atlas->shadow_owners[p_rid];
  2833. uint32_t q = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
  2834. uint32_t s = key & ShadowAtlas::SHADOW_INDEX_MASK;
  2835. shadow_atlas->quadrants[q].shadows.write[s].owner = RID();
  2836. if (key & ShadowAtlas::OMNI_LIGHT_FLAG) {
  2837. // Omni lights use two atlas spots, make sure to clear the other as well
  2838. shadow_atlas->quadrants[q].shadows.write[s + 1].owner = RID();
  2839. }
  2840. shadow_atlas->shadow_owners.erase(p_rid);
  2841. }
  2842. if (light_instance->light_type != RS::LIGHT_DIRECTIONAL) {
  2843. _free_forward_id(light_instance->light_type == RS::LIGHT_OMNI ? FORWARD_ID_TYPE_OMNI_LIGHT : FORWARD_ID_TYPE_SPOT_LIGHT, light_instance->forward_id);
  2844. }
  2845. light_instance_owner.free(p_rid);
  2846. } else if (shadow_atlas_owner.owns(p_rid)) {
  2847. shadow_atlas_set_size(p_rid, 0);
  2848. shadow_atlas_owner.free(p_rid);
  2849. } else if (RendererRD::Fog::get_singleton()->owns_fog_volume_instance(p_rid)) {
  2850. RendererRD::Fog::get_singleton()->fog_instance_free(p_rid);
  2851. } else {
  2852. return false;
  2853. }
  2854. return true;
  2855. }
  2856. void RendererSceneRenderRD::set_debug_draw_mode(RS::ViewportDebugDraw p_debug_draw) {
  2857. debug_draw = p_debug_draw;
  2858. }
  2859. void RendererSceneRenderRD::update() {
  2860. sky.update_dirty_skys();
  2861. }
  2862. void RendererSceneRenderRD::set_time(double p_time, double p_step) {
  2863. time = p_time;
  2864. time_step = p_step;
  2865. }
  2866. void RendererSceneRenderRD::screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) {
  2867. screen_space_roughness_limiter = p_enable;
  2868. screen_space_roughness_limiter_amount = p_amount;
  2869. screen_space_roughness_limiter_limit = p_limit;
  2870. }
  2871. bool RendererSceneRenderRD::screen_space_roughness_limiter_is_active() const {
  2872. return screen_space_roughness_limiter;
  2873. }
  2874. float RendererSceneRenderRD::screen_space_roughness_limiter_get_amount() const {
  2875. return screen_space_roughness_limiter_amount;
  2876. }
  2877. float RendererSceneRenderRD::screen_space_roughness_limiter_get_limit() const {
  2878. return screen_space_roughness_limiter_limit;
  2879. }
  2880. TypedArray<Image> RendererSceneRenderRD::bake_render_uv2(RID p_base, const TypedArray<RID> &p_material_overrides, const Size2i &p_image_size) {
  2881. RD::TextureFormat tf;
  2882. tf.format = RD::DATA_FORMAT_R8G8B8A8_UNORM;
  2883. tf.width = p_image_size.width; // Always 64x64
  2884. tf.height = p_image_size.height;
  2885. tf.usage_bits = RD::TEXTURE_USAGE_COLOR_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  2886. RID albedo_alpha_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2887. RID normal_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2888. RID orm_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2889. tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
  2890. RID emission_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2891. tf.format = RD::DATA_FORMAT_R32_SFLOAT;
  2892. RID depth_write_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2893. tf.usage_bits = RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | RD::TEXTURE_USAGE_CAN_COPY_FROM_BIT;
  2894. tf.format = RD::get_singleton()->texture_is_format_supported_for_usage(RD::DATA_FORMAT_D32_SFLOAT, RD::TEXTURE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) ? RD::DATA_FORMAT_D32_SFLOAT : RD::DATA_FORMAT_X8_D24_UNORM_PACK32;
  2895. RID depth_tex = RD::get_singleton()->texture_create(tf, RD::TextureView());
  2896. Vector<RID> fb_tex;
  2897. fb_tex.push_back(albedo_alpha_tex);
  2898. fb_tex.push_back(normal_tex);
  2899. fb_tex.push_back(orm_tex);
  2900. fb_tex.push_back(emission_tex);
  2901. fb_tex.push_back(depth_write_tex);
  2902. fb_tex.push_back(depth_tex);
  2903. RID fb = RD::get_singleton()->framebuffer_create(fb_tex);
  2904. //RID sampled_light;
  2905. RenderGeometryInstance *gi = geometry_instance_create(p_base);
  2906. ERR_FAIL_NULL_V(gi, TypedArray<Image>());
  2907. uint32_t sc = RSG::mesh_storage->mesh_get_surface_count(p_base);
  2908. Vector<RID> materials;
  2909. materials.resize(sc);
  2910. for (uint32_t i = 0; i < sc; i++) {
  2911. if (i < (uint32_t)p_material_overrides.size()) {
  2912. materials.write[i] = p_material_overrides[i];
  2913. }
  2914. }
  2915. gi->set_surface_materials(materials);
  2916. if (cull_argument.size() == 0) {
  2917. cull_argument.push_back(nullptr);
  2918. }
  2919. cull_argument[0] = gi;
  2920. _render_uv2(cull_argument, fb, Rect2i(0, 0, p_image_size.width, p_image_size.height));
  2921. geometry_instance_free(gi);
  2922. TypedArray<Image> ret;
  2923. {
  2924. PackedByteArray data = RD::get_singleton()->texture_get_data(albedo_alpha_tex, 0);
  2925. Ref<Image> img;
  2926. img.instantiate();
  2927. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  2928. RD::get_singleton()->free(albedo_alpha_tex);
  2929. ret.push_back(img);
  2930. }
  2931. {
  2932. PackedByteArray data = RD::get_singleton()->texture_get_data(normal_tex, 0);
  2933. Ref<Image> img;
  2934. img.instantiate();
  2935. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  2936. RD::get_singleton()->free(normal_tex);
  2937. ret.push_back(img);
  2938. }
  2939. {
  2940. PackedByteArray data = RD::get_singleton()->texture_get_data(orm_tex, 0);
  2941. Ref<Image> img;
  2942. img.instantiate();
  2943. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBA8, data);
  2944. RD::get_singleton()->free(orm_tex);
  2945. ret.push_back(img);
  2946. }
  2947. {
  2948. PackedByteArray data = RD::get_singleton()->texture_get_data(emission_tex, 0);
  2949. Ref<Image> img;
  2950. img.instantiate();
  2951. img->create(p_image_size.width, p_image_size.height, false, Image::FORMAT_RGBAH, data);
  2952. RD::get_singleton()->free(emission_tex);
  2953. ret.push_back(img);
  2954. }
  2955. RD::get_singleton()->free(depth_write_tex);
  2956. RD::get_singleton()->free(depth_tex);
  2957. return ret;
  2958. }
  2959. void RendererSceneRenderRD::sdfgi_set_debug_probe_select(const Vector3 &p_position, const Vector3 &p_dir) {
  2960. gi.sdfgi_debug_probe_pos = p_position;
  2961. gi.sdfgi_debug_probe_dir = p_dir;
  2962. }
  2963. RendererSceneRenderRD *RendererSceneRenderRD::singleton = nullptr;
  2964. RID RendererSceneRenderRD::get_reflection_probe_buffer() {
  2965. return cluster.reflection_buffer;
  2966. }
  2967. RID RendererSceneRenderRD::get_omni_light_buffer() {
  2968. return cluster.omni_light_buffer;
  2969. }
  2970. RID RendererSceneRenderRD::get_spot_light_buffer() {
  2971. return cluster.spot_light_buffer;
  2972. }
  2973. RID RendererSceneRenderRD::get_directional_light_buffer() {
  2974. return cluster.directional_light_buffer;
  2975. }
  2976. RID RendererSceneRenderRD::get_decal_buffer() {
  2977. return cluster.decal_buffer;
  2978. }
  2979. int RendererSceneRenderRD::get_max_directional_lights() const {
  2980. return cluster.max_directional_lights;
  2981. }
  2982. bool RendererSceneRenderRD::is_vrs_supported() const {
  2983. return RD::get_singleton()->has_feature(RD::SUPPORTS_ATTACHMENT_VRS);
  2984. }
  2985. bool RendererSceneRenderRD::is_dynamic_gi_supported() const {
  2986. // usable by default (unless low end = true)
  2987. return true;
  2988. }
  2989. bool RendererSceneRenderRD::is_clustered_enabled() const {
  2990. // used by default.
  2991. return true;
  2992. }
  2993. bool RendererSceneRenderRD::is_volumetric_supported() const {
  2994. // usable by default (unless low end = true)
  2995. return true;
  2996. }
  2997. uint32_t RendererSceneRenderRD::get_max_elements() const {
  2998. return GLOBAL_GET("rendering/limits/cluster_builder/max_clustered_elements");
  2999. }
  3000. RendererSceneRenderRD::RendererSceneRenderRD() {
  3001. singleton = this;
  3002. }
  3003. void RendererSceneRenderRD::init() {
  3004. max_cluster_elements = get_max_elements();
  3005. directional_shadow.size = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/size");
  3006. directional_shadow.use_16_bits = GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/16_bits");
  3007. /* SKY SHADER */
  3008. sky.init();
  3009. /* GI */
  3010. if (is_dynamic_gi_supported()) {
  3011. gi.init(&sky);
  3012. }
  3013. { //decals
  3014. cluster.max_decals = max_cluster_elements;
  3015. uint32_t decal_buffer_size = cluster.max_decals * sizeof(Cluster::DecalData);
  3016. cluster.decals = memnew_arr(Cluster::DecalData, cluster.max_decals);
  3017. cluster.decal_sort = memnew_arr(Cluster::InstanceSort<DecalInstance>, cluster.max_decals);
  3018. cluster.decal_buffer = RD::get_singleton()->storage_buffer_create(decal_buffer_size);
  3019. }
  3020. { //reflections
  3021. cluster.max_reflections = max_cluster_elements;
  3022. cluster.reflections = memnew_arr(Cluster::ReflectionData, cluster.max_reflections);
  3023. cluster.reflection_sort = memnew_arr(Cluster::InstanceSort<ReflectionProbeInstance>, cluster.max_reflections);
  3024. cluster.reflection_buffer = RD::get_singleton()->storage_buffer_create(sizeof(Cluster::ReflectionData) * cluster.max_reflections);
  3025. }
  3026. { //lights
  3027. cluster.max_lights = max_cluster_elements;
  3028. uint32_t light_buffer_size = cluster.max_lights * sizeof(Cluster::LightData);
  3029. cluster.omni_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3030. cluster.omni_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3031. cluster.omni_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3032. cluster.spot_lights = memnew_arr(Cluster::LightData, cluster.max_lights);
  3033. cluster.spot_light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
  3034. cluster.spot_light_sort = memnew_arr(Cluster::InstanceSort<LightInstance>, cluster.max_lights);
  3035. //defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
  3036. cluster.max_directional_lights = MAX_DIRECTIONAL_LIGHTS;
  3037. uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
  3038. cluster.directional_lights = memnew_arr(Cluster::DirectionalLightData, cluster.max_directional_lights);
  3039. cluster.directional_light_buffer = RD::get_singleton()->uniform_buffer_create(directional_light_buffer_size);
  3040. }
  3041. if (is_volumetric_supported()) {
  3042. RendererRD::Fog::get_singleton()->init_fog_shader(cluster.max_directional_lights, get_roughness_layers(), is_using_radiance_cubemap_array());
  3043. }
  3044. {
  3045. RD::SamplerState sampler;
  3046. sampler.mag_filter = RD::SAMPLER_FILTER_NEAREST;
  3047. sampler.min_filter = RD::SAMPLER_FILTER_NEAREST;
  3048. sampler.enable_compare = true;
  3049. sampler.compare_op = RD::COMPARE_OP_LESS;
  3050. shadow_sampler = RD::get_singleton()->sampler_create(sampler);
  3051. }
  3052. RSG::camera_attributes->camera_attributes_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_shape"))));
  3053. RSG::camera_attributes->camera_attributes_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/camera/depth_of_field/depth_of_field_use_jitter"));
  3054. use_physical_light_units = GLOBAL_GET("rendering/lights_and_shadows/use_physical_light_units");
  3055. environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/environment/ssao/quality"))), GLOBAL_GET("rendering/environment/ssao/half_size"), GLOBAL_GET("rendering/environment/ssao/adaptive_target"), GLOBAL_GET("rendering/environment/ssao/blur_passes"), GLOBAL_GET("rendering/environment/ssao/fadeout_from"), GLOBAL_GET("rendering/environment/ssao/fadeout_to"));
  3056. screen_space_roughness_limiter = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/enabled");
  3057. screen_space_roughness_limiter_amount = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/amount");
  3058. screen_space_roughness_limiter_limit = GLOBAL_GET("rendering/anti_aliasing/screen_space_roughness_limiter/limit");
  3059. glow_bicubic_upscale = int(GLOBAL_GET("rendering/environment/glow/upscale_mode")) > 0;
  3060. glow_high_quality = GLOBAL_GET("rendering/environment/glow/use_high_quality");
  3061. ssr_roughness_quality = RS::EnvironmentSSRRoughnessQuality(int(GLOBAL_GET("rendering/environment/screen_space_reflection/roughness_quality")));
  3062. sss_quality = RS::SubSurfaceScatteringQuality(int(GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_quality")));
  3063. sss_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_scale");
  3064. sss_depth_scale = GLOBAL_GET("rendering/environment/subsurface_scattering/subsurface_scattering_depth_scale");
  3065. environment_set_ssil_quality(RS::EnvironmentSSILQuality(int(GLOBAL_GET("rendering/environment/ssil/quality"))), GLOBAL_GET("rendering/environment/ssil/half_size"), GLOBAL_GET("rendering/environment/ssil/adaptive_target"), GLOBAL_GET("rendering/environment/ssil/blur_passes"), GLOBAL_GET("rendering/environment/ssil/fadeout_from"), GLOBAL_GET("rendering/environment/ssil/fadeout_to"));
  3066. directional_penumbra_shadow_kernel = memnew_arr(float, 128);
  3067. directional_soft_shadow_kernel = memnew_arr(float, 128);
  3068. penumbra_shadow_kernel = memnew_arr(float, 128);
  3069. soft_shadow_kernel = memnew_arr(float, 128);
  3070. positional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/positional_shadow/soft_shadow_filter_quality"))));
  3071. directional_soft_shadow_filter_set_quality(RS::ShadowQuality(int(GLOBAL_GET("rendering/lights_and_shadows/directional_shadow/soft_shadow_filter_quality"))));
  3072. environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/environment/volumetric_fog/volume_size"), GLOBAL_GET("rendering/environment/volumetric_fog/volume_depth"));
  3073. environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/environment/volumetric_fog/use_filter"));
  3074. decals_set_filter(RS::DecalFilter(int(GLOBAL_GET("rendering/textures/decals/filter"))));
  3075. light_projectors_set_filter(RS::LightProjectorFilter(int(GLOBAL_GET("rendering/textures/light_projectors/filter"))));
  3076. cull_argument.set_page_pool(&cull_argument_pool);
  3077. bool can_use_storage = _render_buffers_can_be_storage();
  3078. bokeh_dof = memnew(RendererRD::BokehDOF(!can_use_storage));
  3079. copy_effects = memnew(RendererRD::CopyEffects(!can_use_storage));
  3080. tone_mapper = memnew(RendererRD::ToneMapper);
  3081. vrs = memnew(RendererRD::VRS);
  3082. if (can_use_storage) {
  3083. fsr = memnew(RendererRD::FSR);
  3084. ss_effects = memnew(RendererRD::SSEffects);
  3085. }
  3086. }
  3087. RendererSceneRenderRD::~RendererSceneRenderRD() {
  3088. if (bokeh_dof) {
  3089. memdelete(bokeh_dof);
  3090. }
  3091. if (copy_effects) {
  3092. memdelete(copy_effects);
  3093. }
  3094. if (tone_mapper) {
  3095. memdelete(tone_mapper);
  3096. }
  3097. if (vrs) {
  3098. memdelete(vrs);
  3099. }
  3100. if (fsr) {
  3101. memdelete(fsr);
  3102. }
  3103. if (ss_effects) {
  3104. memdelete(ss_effects);
  3105. }
  3106. for (const KeyValue<int, ShadowCubemap> &E : shadow_cubemaps) {
  3107. RD::get_singleton()->free(E.value.cubemap);
  3108. }
  3109. if (sky.sky_scene_state.uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(sky.sky_scene_state.uniform_set)) {
  3110. RD::get_singleton()->free(sky.sky_scene_state.uniform_set);
  3111. }
  3112. if (is_dynamic_gi_supported()) {
  3113. gi.free();
  3114. }
  3115. if (is_volumetric_supported()) {
  3116. RendererRD::Fog::get_singleton()->free_fog_shader();
  3117. }
  3118. memdelete_arr(directional_penumbra_shadow_kernel);
  3119. memdelete_arr(directional_soft_shadow_kernel);
  3120. memdelete_arr(penumbra_shadow_kernel);
  3121. memdelete_arr(soft_shadow_kernel);
  3122. {
  3123. RD::get_singleton()->free(cluster.directional_light_buffer);
  3124. RD::get_singleton()->free(cluster.omni_light_buffer);
  3125. RD::get_singleton()->free(cluster.spot_light_buffer);
  3126. RD::get_singleton()->free(cluster.reflection_buffer);
  3127. RD::get_singleton()->free(cluster.decal_buffer);
  3128. memdelete_arr(cluster.directional_lights);
  3129. memdelete_arr(cluster.omni_lights);
  3130. memdelete_arr(cluster.spot_lights);
  3131. memdelete_arr(cluster.omni_light_sort);
  3132. memdelete_arr(cluster.spot_light_sort);
  3133. memdelete_arr(cluster.reflections);
  3134. memdelete_arr(cluster.reflection_sort);
  3135. memdelete_arr(cluster.decals);
  3136. memdelete_arr(cluster.decal_sort);
  3137. }
  3138. RD::get_singleton()->free(shadow_sampler);
  3139. directional_shadow_atlas_set_size(0);
  3140. cull_argument.reset(); //avoid exit error
  3141. }