marshalls.cpp 54 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152
  1. /**************************************************************************/
  2. /* marshalls.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "marshalls.h"
  31. #include "core/io/resource_loader.h"
  32. #include "core/object/ref_counted.h"
  33. #include "core/object/script_language.h"
  34. #include "core/variant/container_type_validate.h"
  35. #include <climits>
  36. #include <cstdio>
  37. void EncodedObjectAsID::_bind_methods() {
  38. ClassDB::bind_method(D_METHOD("set_object_id", "id"), &EncodedObjectAsID::set_object_id);
  39. ClassDB::bind_method(D_METHOD("get_object_id"), &EncodedObjectAsID::get_object_id);
  40. ADD_PROPERTY(PropertyInfo(Variant::INT, "object_id"), "set_object_id", "get_object_id");
  41. }
  42. void EncodedObjectAsID::set_object_id(ObjectID p_id) {
  43. id = p_id;
  44. }
  45. ObjectID EncodedObjectAsID::get_object_id() const {
  46. return id;
  47. }
  48. #define ERR_FAIL_ADD_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(b)) < 0 || ((int32_t)(a)) < 0 || ((int32_t)(a)) > INT_MAX - ((int32_t)(b)), err)
  49. #define ERR_FAIL_MUL_OF(a, b, err) ERR_FAIL_COND_V(((int32_t)(a)) < 0 || ((int32_t)(b)) <= 0 || ((int32_t)(a)) > INT_MAX / ((int32_t)(b)), err)
  50. // Byte 0: `Variant::Type`, byte 1: unused, bytes 2 and 3: additional data.
  51. #define HEADER_TYPE_MASK 0xFF
  52. // For `Variant::INT`, `Variant::FLOAT` and other math types.
  53. #define HEADER_DATA_FLAG_64 (1 << 16)
  54. // For `Variant::OBJECT`.
  55. #define HEADER_DATA_FLAG_OBJECT_AS_ID (1 << 16)
  56. // For `Variant::ARRAY`.
  57. // Occupies bits 16 and 17.
  58. #define HEADER_DATA_FIELD_TYPED_ARRAY_MASK (0b11 << 16)
  59. #define HEADER_DATA_FIELD_TYPED_ARRAY_SHIFT 16
  60. // For `Variant::DICTIONARY`.
  61. // Occupies bits 16 and 17.
  62. #define HEADER_DATA_FIELD_TYPED_DICTIONARY_KEY_MASK (0b11 << 16)
  63. #define HEADER_DATA_FIELD_TYPED_DICTIONARY_KEY_SHIFT 16
  64. // Occupies bits 18 and 19.
  65. #define HEADER_DATA_FIELD_TYPED_DICTIONARY_VALUE_MASK (0b11 << 18)
  66. #define HEADER_DATA_FIELD_TYPED_DICTIONARY_VALUE_SHIFT 18
  67. enum ContainerTypeKind {
  68. CONTAINER_TYPE_KIND_NONE = 0b00,
  69. CONTAINER_TYPE_KIND_BUILTIN = 0b01,
  70. CONTAINER_TYPE_KIND_CLASS_NAME = 0b10,
  71. CONTAINER_TYPE_KIND_SCRIPT = 0b11,
  72. };
  73. #define GET_CONTAINER_TYPE_KIND(m_header, m_field) \
  74. ((ContainerTypeKind)(((m_header) & HEADER_DATA_FIELD_##m_field##_MASK) >> HEADER_DATA_FIELD_##m_field##_SHIFT))
  75. static Error _decode_string(const uint8_t *&buf, int &len, int *r_len, String &r_string) {
  76. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  77. int32_t strlen = decode_uint32(buf);
  78. int32_t pad = 0;
  79. // Handle padding.
  80. if (strlen % 4) {
  81. pad = 4 - strlen % 4;
  82. }
  83. buf += 4;
  84. len -= 4;
  85. // Ensure buffer is big enough.
  86. ERR_FAIL_ADD_OF(strlen, pad, ERR_FILE_EOF);
  87. ERR_FAIL_COND_V(strlen < 0 || strlen + pad > len, ERR_FILE_EOF);
  88. String str;
  89. ERR_FAIL_COND_V(str.append_utf8((const char *)buf, strlen) != OK, ERR_INVALID_DATA);
  90. r_string = str;
  91. // Add padding.
  92. strlen += pad;
  93. // Update buffer pos, left data count, and return size.
  94. buf += strlen;
  95. len -= strlen;
  96. if (r_len) {
  97. (*r_len) += 4 + strlen;
  98. }
  99. return OK;
  100. }
  101. static Error _decode_container_type(const uint8_t *&buf, int &len, int *r_len, bool p_allow_objects, ContainerTypeKind p_type_kind, ContainerType &r_type) {
  102. switch (p_type_kind) {
  103. case CONTAINER_TYPE_KIND_NONE: {
  104. return OK;
  105. } break;
  106. case CONTAINER_TYPE_KIND_BUILTIN: {
  107. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  108. int32_t bt = decode_uint32(buf);
  109. buf += 4;
  110. len -= 4;
  111. if (r_len) {
  112. (*r_len) += 4;
  113. }
  114. ERR_FAIL_INDEX_V(bt, Variant::VARIANT_MAX, ERR_INVALID_DATA);
  115. r_type.builtin_type = (Variant::Type)bt;
  116. if (!p_allow_objects && r_type.builtin_type == Variant::OBJECT) {
  117. r_type.class_name = EncodedObjectAsID::get_class_static();
  118. }
  119. return OK;
  120. } break;
  121. case CONTAINER_TYPE_KIND_CLASS_NAME: {
  122. String str;
  123. Error err = _decode_string(buf, len, r_len, str);
  124. if (err) {
  125. return err;
  126. }
  127. r_type.builtin_type = Variant::OBJECT;
  128. if (p_allow_objects) {
  129. r_type.class_name = str;
  130. } else {
  131. r_type.class_name = EncodedObjectAsID::get_class_static();
  132. }
  133. return OK;
  134. } break;
  135. case CONTAINER_TYPE_KIND_SCRIPT: {
  136. String path;
  137. Error err = _decode_string(buf, len, r_len, path);
  138. if (err) {
  139. return err;
  140. }
  141. r_type.builtin_type = Variant::OBJECT;
  142. if (p_allow_objects) {
  143. ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://") || !ResourceLoader::exists(path, "Script"), ERR_INVALID_DATA, vformat("Invalid script path \"%s\".", path));
  144. r_type.script = ResourceLoader::load(path, "Script");
  145. ERR_FAIL_COND_V_MSG(r_type.script.is_null(), ERR_INVALID_DATA, vformat("Can't load script at path \"%s\".", path));
  146. r_type.class_name = r_type.script->get_instance_base_type();
  147. } else {
  148. r_type.class_name = EncodedObjectAsID::get_class_static();
  149. }
  150. return OK;
  151. } break;
  152. }
  153. ERR_FAIL_V_MSG(ERR_INVALID_DATA, "Invalid container type kind."); // Future proofing.
  154. }
  155. Error decode_variant(Variant &r_variant, const uint8_t *p_buffer, int p_len, int *r_len, bool p_allow_objects, int p_depth) {
  156. ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Variant is too deep. Bailing.");
  157. const uint8_t *buf = p_buffer;
  158. int len = p_len;
  159. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  160. uint32_t header = decode_uint32(buf);
  161. ERR_FAIL_COND_V((header & HEADER_TYPE_MASK) >= Variant::VARIANT_MAX, ERR_INVALID_DATA);
  162. buf += 4;
  163. len -= 4;
  164. if (r_len) {
  165. *r_len = 4;
  166. }
  167. // NOTE: We cannot use `sizeof(real_t)` for decoding, in case a different size is encoded.
  168. // Decoding math types always checks for the encoded size, while encoding always uses compilation setting.
  169. // This does lead to some code duplication for decoding, but compatibility is the priority.
  170. switch (header & HEADER_TYPE_MASK) {
  171. case Variant::NIL: {
  172. r_variant = Variant();
  173. } break;
  174. case Variant::BOOL: {
  175. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  176. bool val = decode_uint32(buf);
  177. r_variant = val;
  178. if (r_len) {
  179. (*r_len) += 4;
  180. }
  181. } break;
  182. case Variant::INT: {
  183. if (header & HEADER_DATA_FLAG_64) {
  184. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  185. int64_t val = int64_t(decode_uint64(buf));
  186. r_variant = val;
  187. if (r_len) {
  188. (*r_len) += 8;
  189. }
  190. } else {
  191. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  192. int32_t val = int32_t(decode_uint32(buf));
  193. r_variant = val;
  194. if (r_len) {
  195. (*r_len) += 4;
  196. }
  197. }
  198. } break;
  199. case Variant::FLOAT: {
  200. if (header & HEADER_DATA_FLAG_64) {
  201. ERR_FAIL_COND_V((size_t)len < sizeof(double), ERR_INVALID_DATA);
  202. double val = decode_double(buf);
  203. r_variant = val;
  204. if (r_len) {
  205. (*r_len) += sizeof(double);
  206. }
  207. } else {
  208. ERR_FAIL_COND_V((size_t)len < sizeof(float), ERR_INVALID_DATA);
  209. float val = decode_float(buf);
  210. r_variant = val;
  211. if (r_len) {
  212. (*r_len) += sizeof(float);
  213. }
  214. }
  215. } break;
  216. case Variant::STRING: {
  217. String str;
  218. Error err = _decode_string(buf, len, r_len, str);
  219. if (err) {
  220. return err;
  221. }
  222. r_variant = str;
  223. } break;
  224. // Math types.
  225. case Variant::VECTOR2: {
  226. Vector2 val;
  227. if (header & HEADER_DATA_FLAG_64) {
  228. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 2, ERR_INVALID_DATA);
  229. val.x = decode_double(&buf[0]);
  230. val.y = decode_double(&buf[sizeof(double)]);
  231. if (r_len) {
  232. (*r_len) += sizeof(double) * 2;
  233. }
  234. } else {
  235. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 2, ERR_INVALID_DATA);
  236. val.x = decode_float(&buf[0]);
  237. val.y = decode_float(&buf[sizeof(float)]);
  238. if (r_len) {
  239. (*r_len) += sizeof(float) * 2;
  240. }
  241. }
  242. r_variant = val;
  243. } break;
  244. case Variant::VECTOR2I: {
  245. ERR_FAIL_COND_V(len < 4 * 2, ERR_INVALID_DATA);
  246. Vector2i val;
  247. val.x = decode_uint32(&buf[0]);
  248. val.y = decode_uint32(&buf[4]);
  249. r_variant = val;
  250. if (r_len) {
  251. (*r_len) += 4 * 2;
  252. }
  253. } break;
  254. case Variant::RECT2: {
  255. Rect2 val;
  256. if (header & HEADER_DATA_FLAG_64) {
  257. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  258. val.position.x = decode_double(&buf[0]);
  259. val.position.y = decode_double(&buf[sizeof(double)]);
  260. val.size.x = decode_double(&buf[sizeof(double) * 2]);
  261. val.size.y = decode_double(&buf[sizeof(double) * 3]);
  262. if (r_len) {
  263. (*r_len) += sizeof(double) * 4;
  264. }
  265. } else {
  266. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  267. val.position.x = decode_float(&buf[0]);
  268. val.position.y = decode_float(&buf[sizeof(float)]);
  269. val.size.x = decode_float(&buf[sizeof(float) * 2]);
  270. val.size.y = decode_float(&buf[sizeof(float) * 3]);
  271. if (r_len) {
  272. (*r_len) += sizeof(float) * 4;
  273. }
  274. }
  275. r_variant = val;
  276. } break;
  277. case Variant::RECT2I: {
  278. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  279. Rect2i val;
  280. val.position.x = decode_uint32(&buf[0]);
  281. val.position.y = decode_uint32(&buf[4]);
  282. val.size.x = decode_uint32(&buf[8]);
  283. val.size.y = decode_uint32(&buf[12]);
  284. r_variant = val;
  285. if (r_len) {
  286. (*r_len) += 4 * 4;
  287. }
  288. } break;
  289. case Variant::VECTOR3: {
  290. Vector3 val;
  291. if (header & HEADER_DATA_FLAG_64) {
  292. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 3, ERR_INVALID_DATA);
  293. val.x = decode_double(&buf[0]);
  294. val.y = decode_double(&buf[sizeof(double)]);
  295. val.z = decode_double(&buf[sizeof(double) * 2]);
  296. if (r_len) {
  297. (*r_len) += sizeof(double) * 3;
  298. }
  299. } else {
  300. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 3, ERR_INVALID_DATA);
  301. val.x = decode_float(&buf[0]);
  302. val.y = decode_float(&buf[sizeof(float)]);
  303. val.z = decode_float(&buf[sizeof(float) * 2]);
  304. if (r_len) {
  305. (*r_len) += sizeof(float) * 3;
  306. }
  307. }
  308. r_variant = val;
  309. } break;
  310. case Variant::VECTOR3I: {
  311. ERR_FAIL_COND_V(len < 4 * 3, ERR_INVALID_DATA);
  312. Vector3i val;
  313. val.x = decode_uint32(&buf[0]);
  314. val.y = decode_uint32(&buf[4]);
  315. val.z = decode_uint32(&buf[8]);
  316. r_variant = val;
  317. if (r_len) {
  318. (*r_len) += 4 * 3;
  319. }
  320. } break;
  321. case Variant::VECTOR4: {
  322. Vector4 val;
  323. if (header & HEADER_DATA_FLAG_64) {
  324. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  325. val.x = decode_double(&buf[0]);
  326. val.y = decode_double(&buf[sizeof(double)]);
  327. val.z = decode_double(&buf[sizeof(double) * 2]);
  328. val.w = decode_double(&buf[sizeof(double) * 3]);
  329. if (r_len) {
  330. (*r_len) += sizeof(double) * 4;
  331. }
  332. } else {
  333. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  334. val.x = decode_float(&buf[0]);
  335. val.y = decode_float(&buf[sizeof(float)]);
  336. val.z = decode_float(&buf[sizeof(float) * 2]);
  337. val.w = decode_float(&buf[sizeof(float) * 3]);
  338. if (r_len) {
  339. (*r_len) += sizeof(float) * 4;
  340. }
  341. }
  342. r_variant = val;
  343. } break;
  344. case Variant::VECTOR4I: {
  345. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  346. Vector4i val;
  347. val.x = decode_uint32(&buf[0]);
  348. val.y = decode_uint32(&buf[4]);
  349. val.z = decode_uint32(&buf[8]);
  350. val.w = decode_uint32(&buf[12]);
  351. r_variant = val;
  352. if (r_len) {
  353. (*r_len) += 4 * 4;
  354. }
  355. } break;
  356. case Variant::TRANSFORM2D: {
  357. Transform2D val;
  358. if (header & HEADER_DATA_FLAG_64) {
  359. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  360. for (int i = 0; i < 3; i++) {
  361. for (int j = 0; j < 2; j++) {
  362. val.columns[i][j] = decode_double(&buf[(i * 2 + j) * sizeof(double)]);
  363. }
  364. }
  365. if (r_len) {
  366. (*r_len) += sizeof(double) * 6;
  367. }
  368. } else {
  369. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  370. for (int i = 0; i < 3; i++) {
  371. for (int j = 0; j < 2; j++) {
  372. val.columns[i][j] = decode_float(&buf[(i * 2 + j) * sizeof(float)]);
  373. }
  374. }
  375. if (r_len) {
  376. (*r_len) += sizeof(float) * 6;
  377. }
  378. }
  379. r_variant = val;
  380. } break;
  381. case Variant::PLANE: {
  382. Plane val;
  383. if (header & HEADER_DATA_FLAG_64) {
  384. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  385. val.normal.x = decode_double(&buf[0]);
  386. val.normal.y = decode_double(&buf[sizeof(double)]);
  387. val.normal.z = decode_double(&buf[sizeof(double) * 2]);
  388. val.d = decode_double(&buf[sizeof(double) * 3]);
  389. if (r_len) {
  390. (*r_len) += sizeof(double) * 4;
  391. }
  392. } else {
  393. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  394. val.normal.x = decode_float(&buf[0]);
  395. val.normal.y = decode_float(&buf[sizeof(float)]);
  396. val.normal.z = decode_float(&buf[sizeof(float) * 2]);
  397. val.d = decode_float(&buf[sizeof(float) * 3]);
  398. if (r_len) {
  399. (*r_len) += sizeof(float) * 4;
  400. }
  401. }
  402. r_variant = val;
  403. } break;
  404. case Variant::QUATERNION: {
  405. Quaternion val;
  406. if (header & HEADER_DATA_FLAG_64) {
  407. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 4, ERR_INVALID_DATA);
  408. val.x = decode_double(&buf[0]);
  409. val.y = decode_double(&buf[sizeof(double)]);
  410. val.z = decode_double(&buf[sizeof(double) * 2]);
  411. val.w = decode_double(&buf[sizeof(double) * 3]);
  412. if (r_len) {
  413. (*r_len) += sizeof(double) * 4;
  414. }
  415. } else {
  416. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 4, ERR_INVALID_DATA);
  417. val.x = decode_float(&buf[0]);
  418. val.y = decode_float(&buf[sizeof(float)]);
  419. val.z = decode_float(&buf[sizeof(float) * 2]);
  420. val.w = decode_float(&buf[sizeof(float) * 3]);
  421. if (r_len) {
  422. (*r_len) += sizeof(float) * 4;
  423. }
  424. }
  425. r_variant = val;
  426. } break;
  427. case Variant::AABB: {
  428. AABB val;
  429. if (header & HEADER_DATA_FLAG_64) {
  430. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 6, ERR_INVALID_DATA);
  431. val.position.x = decode_double(&buf[0]);
  432. val.position.y = decode_double(&buf[sizeof(double)]);
  433. val.position.z = decode_double(&buf[sizeof(double) * 2]);
  434. val.size.x = decode_double(&buf[sizeof(double) * 3]);
  435. val.size.y = decode_double(&buf[sizeof(double) * 4]);
  436. val.size.z = decode_double(&buf[sizeof(double) * 5]);
  437. if (r_len) {
  438. (*r_len) += sizeof(double) * 6;
  439. }
  440. } else {
  441. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 6, ERR_INVALID_DATA);
  442. val.position.x = decode_float(&buf[0]);
  443. val.position.y = decode_float(&buf[sizeof(float)]);
  444. val.position.z = decode_float(&buf[sizeof(float) * 2]);
  445. val.size.x = decode_float(&buf[sizeof(float) * 3]);
  446. val.size.y = decode_float(&buf[sizeof(float) * 4]);
  447. val.size.z = decode_float(&buf[sizeof(float) * 5]);
  448. if (r_len) {
  449. (*r_len) += sizeof(float) * 6;
  450. }
  451. }
  452. r_variant = val;
  453. } break;
  454. case Variant::BASIS: {
  455. Basis val;
  456. if (header & HEADER_DATA_FLAG_64) {
  457. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 9, ERR_INVALID_DATA);
  458. for (int i = 0; i < 3; i++) {
  459. for (int j = 0; j < 3; j++) {
  460. val.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  461. }
  462. }
  463. if (r_len) {
  464. (*r_len) += sizeof(double) * 9;
  465. }
  466. } else {
  467. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 9, ERR_INVALID_DATA);
  468. for (int i = 0; i < 3; i++) {
  469. for (int j = 0; j < 3; j++) {
  470. val.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  471. }
  472. }
  473. if (r_len) {
  474. (*r_len) += sizeof(float) * 9;
  475. }
  476. }
  477. r_variant = val;
  478. } break;
  479. case Variant::TRANSFORM3D: {
  480. Transform3D val;
  481. if (header & HEADER_DATA_FLAG_64) {
  482. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 12, ERR_INVALID_DATA);
  483. for (int i = 0; i < 3; i++) {
  484. for (int j = 0; j < 3; j++) {
  485. val.basis.rows[i][j] = decode_double(&buf[(i * 3 + j) * sizeof(double)]);
  486. }
  487. }
  488. val.origin[0] = decode_double(&buf[sizeof(double) * 9]);
  489. val.origin[1] = decode_double(&buf[sizeof(double) * 10]);
  490. val.origin[2] = decode_double(&buf[sizeof(double) * 11]);
  491. if (r_len) {
  492. (*r_len) += sizeof(double) * 12;
  493. }
  494. } else {
  495. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 12, ERR_INVALID_DATA);
  496. for (int i = 0; i < 3; i++) {
  497. for (int j = 0; j < 3; j++) {
  498. val.basis.rows[i][j] = decode_float(&buf[(i * 3 + j) * sizeof(float)]);
  499. }
  500. }
  501. val.origin[0] = decode_float(&buf[sizeof(float) * 9]);
  502. val.origin[1] = decode_float(&buf[sizeof(float) * 10]);
  503. val.origin[2] = decode_float(&buf[sizeof(float) * 11]);
  504. if (r_len) {
  505. (*r_len) += sizeof(float) * 12;
  506. }
  507. }
  508. r_variant = val;
  509. } break;
  510. case Variant::PROJECTION: {
  511. Projection val;
  512. if (header & HEADER_DATA_FLAG_64) {
  513. ERR_FAIL_COND_V((size_t)len < sizeof(double) * 16, ERR_INVALID_DATA);
  514. for (int i = 0; i < 4; i++) {
  515. for (int j = 0; j < 4; j++) {
  516. val.columns[i][j] = decode_double(&buf[(i * 4 + j) * sizeof(double)]);
  517. }
  518. }
  519. if (r_len) {
  520. (*r_len) += sizeof(double) * 16;
  521. }
  522. } else {
  523. ERR_FAIL_COND_V((size_t)len < sizeof(float) * 16, ERR_INVALID_DATA);
  524. for (int i = 0; i < 4; i++) {
  525. for (int j = 0; j < 4; j++) {
  526. val.columns[i][j] = decode_float(&buf[(i * 4 + j) * sizeof(float)]);
  527. }
  528. }
  529. if (r_len) {
  530. (*r_len) += sizeof(float) * 16;
  531. }
  532. }
  533. r_variant = val;
  534. } break;
  535. // Misc types.
  536. case Variant::COLOR: {
  537. ERR_FAIL_COND_V(len < 4 * 4, ERR_INVALID_DATA);
  538. Color val;
  539. val.r = decode_float(&buf[0]);
  540. val.g = decode_float(&buf[4]);
  541. val.b = decode_float(&buf[8]);
  542. val.a = decode_float(&buf[12]);
  543. r_variant = val;
  544. if (r_len) {
  545. (*r_len) += 4 * 4; // Colors should always be in single-precision.
  546. }
  547. } break;
  548. case Variant::STRING_NAME: {
  549. String str;
  550. Error err = _decode_string(buf, len, r_len, str);
  551. if (err) {
  552. return err;
  553. }
  554. r_variant = StringName(str);
  555. } break;
  556. case Variant::NODE_PATH: {
  557. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  558. int32_t strlen = decode_uint32(buf);
  559. if (strlen & 0x80000000) {
  560. // New format.
  561. ERR_FAIL_COND_V(len < 12, ERR_INVALID_DATA);
  562. Vector<StringName> names;
  563. Vector<StringName> subnames;
  564. uint32_t namecount = strlen &= 0x7FFFFFFF;
  565. uint32_t subnamecount = decode_uint32(buf + 4);
  566. uint32_t np_flags = decode_uint32(buf + 8);
  567. len -= 12;
  568. buf += 12;
  569. if (np_flags & 2) { // Obsolete format with property separate from subpath.
  570. subnamecount++;
  571. }
  572. uint32_t total = namecount + subnamecount;
  573. if (r_len) {
  574. (*r_len) += 12;
  575. }
  576. for (uint32_t i = 0; i < total; i++) {
  577. String str;
  578. Error err = _decode_string(buf, len, r_len, str);
  579. if (err) {
  580. return err;
  581. }
  582. if (i < namecount) {
  583. names.push_back(str);
  584. } else {
  585. subnames.push_back(str);
  586. }
  587. }
  588. r_variant = NodePath(names, subnames, np_flags & 1);
  589. } else {
  590. // Old format, just a string.
  591. ERR_FAIL_V(ERR_INVALID_DATA);
  592. }
  593. } break;
  594. case Variant::RID: {
  595. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  596. uint64_t id = decode_uint64(buf);
  597. if (r_len) {
  598. (*r_len) += 8;
  599. }
  600. r_variant = RID::from_uint64(id);
  601. } break;
  602. case Variant::OBJECT: {
  603. if (header & HEADER_DATA_FLAG_OBJECT_AS_ID) {
  604. // This _is_ allowed.
  605. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  606. ObjectID val = ObjectID(decode_uint64(buf));
  607. if (r_len) {
  608. (*r_len) += 8;
  609. }
  610. if (val.is_null()) {
  611. r_variant = (Object *)nullptr;
  612. } else {
  613. Ref<EncodedObjectAsID> obj_as_id;
  614. obj_as_id.instantiate();
  615. obj_as_id->set_object_id(val);
  616. r_variant = obj_as_id;
  617. }
  618. } else {
  619. ERR_FAIL_COND_V(!p_allow_objects, ERR_UNAUTHORIZED);
  620. String str;
  621. Error err = _decode_string(buf, len, r_len, str);
  622. if (err) {
  623. return err;
  624. }
  625. if (str.is_empty()) {
  626. r_variant = (Object *)nullptr;
  627. } else {
  628. ERR_FAIL_COND_V(!ClassDB::can_instantiate(str), ERR_INVALID_DATA);
  629. Object *obj = ClassDB::instantiate(str);
  630. ERR_FAIL_NULL_V(obj, ERR_UNAVAILABLE);
  631. // Avoid premature free `RefCounted`. This must be done before properties are initialized,
  632. // since script functions (setters, implicit initializer) may be called. See GH-68666.
  633. Variant variant;
  634. if (Object::cast_to<RefCounted>(obj)) {
  635. Ref<RefCounted> ref = Ref<RefCounted>(Object::cast_to<RefCounted>(obj));
  636. variant = ref;
  637. } else {
  638. variant = obj;
  639. }
  640. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  641. int32_t count = decode_uint32(buf);
  642. buf += 4;
  643. len -= 4;
  644. if (r_len) {
  645. (*r_len) += 4; // Size of count number.
  646. }
  647. for (int i = 0; i < count; i++) {
  648. str = String();
  649. err = _decode_string(buf, len, r_len, str);
  650. if (err) {
  651. return err;
  652. }
  653. Variant value;
  654. int used;
  655. err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
  656. if (err) {
  657. return err;
  658. }
  659. buf += used;
  660. len -= used;
  661. if (r_len) {
  662. (*r_len) += used;
  663. }
  664. if (str == "script" && value.get_type() != Variant::NIL) {
  665. ERR_FAIL_COND_V_MSG(value.get_type() != Variant::STRING, ERR_INVALID_DATA, "Invalid value for \"script\" property, expected script path as String.");
  666. String path = value;
  667. ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://") || !ResourceLoader::exists(path, "Script"), ERR_INVALID_DATA, vformat("Invalid script path \"%s\".", path));
  668. Ref<Script> script = ResourceLoader::load(path, "Script");
  669. ERR_FAIL_COND_V_MSG(script.is_null(), ERR_INVALID_DATA, vformat("Can't load script at path \"%s\".", path));
  670. obj->set_script(script);
  671. } else {
  672. obj->set(str, value);
  673. }
  674. }
  675. r_variant = variant;
  676. }
  677. }
  678. } break;
  679. case Variant::CALLABLE: {
  680. r_variant = Callable();
  681. } break;
  682. case Variant::SIGNAL: {
  683. String name;
  684. Error err = _decode_string(buf, len, r_len, name);
  685. if (err) {
  686. return err;
  687. }
  688. ERR_FAIL_COND_V(len < 8, ERR_INVALID_DATA);
  689. ObjectID id = ObjectID(decode_uint64(buf));
  690. if (r_len) {
  691. (*r_len) += 8;
  692. }
  693. r_variant = Signal(id, StringName(name));
  694. } break;
  695. case Variant::DICTIONARY: {
  696. ContainerType key_type;
  697. {
  698. ContainerTypeKind key_type_kind = GET_CONTAINER_TYPE_KIND(header, TYPED_DICTIONARY_KEY);
  699. Error err = _decode_container_type(buf, len, r_len, p_allow_objects, key_type_kind, key_type);
  700. if (err) {
  701. return err;
  702. }
  703. }
  704. ContainerType value_type;
  705. {
  706. ContainerTypeKind value_type_kind = GET_CONTAINER_TYPE_KIND(header, TYPED_DICTIONARY_VALUE);
  707. Error err = _decode_container_type(buf, len, r_len, p_allow_objects, value_type_kind, value_type);
  708. if (err) {
  709. return err;
  710. }
  711. }
  712. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  713. int32_t count = decode_uint32(buf);
  714. //bool shared = count & 0x80000000;
  715. count &= 0x7FFFFFFF;
  716. buf += 4;
  717. len -= 4;
  718. if (r_len) {
  719. (*r_len) += 4; // Size of count number.
  720. }
  721. Dictionary dict;
  722. if (key_type.builtin_type != Variant::NIL || value_type.builtin_type != Variant::NIL) {
  723. dict.set_typed(key_type, value_type);
  724. }
  725. for (int i = 0; i < count; i++) {
  726. Variant key, value;
  727. int used;
  728. Error err = decode_variant(key, buf, len, &used, p_allow_objects, p_depth + 1);
  729. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  730. buf += used;
  731. len -= used;
  732. if (r_len) {
  733. (*r_len) += used;
  734. }
  735. err = decode_variant(value, buf, len, &used, p_allow_objects, p_depth + 1);
  736. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  737. buf += used;
  738. len -= used;
  739. if (r_len) {
  740. (*r_len) += used;
  741. }
  742. dict[key] = value;
  743. }
  744. r_variant = dict;
  745. } break;
  746. case Variant::ARRAY: {
  747. ContainerType type;
  748. {
  749. ContainerTypeKind type_kind = GET_CONTAINER_TYPE_KIND(header, TYPED_ARRAY);
  750. Error err = _decode_container_type(buf, len, r_len, p_allow_objects, type_kind, type);
  751. if (err) {
  752. return err;
  753. }
  754. }
  755. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  756. int32_t count = decode_uint32(buf);
  757. //bool shared = count & 0x80000000;
  758. count &= 0x7FFFFFFF;
  759. buf += 4;
  760. len -= 4;
  761. if (r_len) {
  762. (*r_len) += 4; // Size of count number.
  763. }
  764. Array array;
  765. if (type.builtin_type != Variant::NIL) {
  766. array.set_typed(type);
  767. }
  768. for (int i = 0; i < count; i++) {
  769. int used = 0;
  770. Variant elem;
  771. Error err = decode_variant(elem, buf, len, &used, p_allow_objects, p_depth + 1);
  772. ERR_FAIL_COND_V_MSG(err != OK, err, "Error when trying to decode Variant.");
  773. buf += used;
  774. len -= used;
  775. array.push_back(elem);
  776. if (r_len) {
  777. (*r_len) += used;
  778. }
  779. }
  780. r_variant = array;
  781. } break;
  782. // Packed arrays.
  783. case Variant::PACKED_BYTE_ARRAY: {
  784. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  785. int32_t count = decode_uint32(buf);
  786. buf += 4;
  787. len -= 4;
  788. ERR_FAIL_COND_V(count < 0 || count > len, ERR_INVALID_DATA);
  789. Vector<uint8_t> data;
  790. if (count) {
  791. data.resize(count);
  792. uint8_t *w = data.ptrw();
  793. for (int32_t i = 0; i < count; i++) {
  794. w[i] = buf[i];
  795. }
  796. }
  797. r_variant = data;
  798. if (r_len) {
  799. if (count % 4) {
  800. (*r_len) += 4 - count % 4;
  801. }
  802. (*r_len) += 4 + count;
  803. }
  804. } break;
  805. case Variant::PACKED_INT32_ARRAY: {
  806. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  807. int32_t count = decode_uint32(buf);
  808. buf += 4;
  809. len -= 4;
  810. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  811. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  812. Vector<int32_t> data;
  813. if (count) {
  814. //const int *rbuf = (const int *)buf;
  815. data.resize(count);
  816. int32_t *w = data.ptrw();
  817. for (int32_t i = 0; i < count; i++) {
  818. w[i] = decode_uint32(&buf[i * 4]);
  819. }
  820. }
  821. r_variant = Variant(data);
  822. if (r_len) {
  823. (*r_len) += 4 + count * sizeof(int32_t);
  824. }
  825. } break;
  826. case Variant::PACKED_INT64_ARRAY: {
  827. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  828. int32_t count = decode_uint32(buf);
  829. buf += 4;
  830. len -= 4;
  831. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  832. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  833. Vector<int64_t> data;
  834. if (count) {
  835. //const int *rbuf = (const int *)buf;
  836. data.resize(count);
  837. int64_t *w = data.ptrw();
  838. for (int64_t i = 0; i < count; i++) {
  839. w[i] = decode_uint64(&buf[i * 8]);
  840. }
  841. }
  842. r_variant = Variant(data);
  843. if (r_len) {
  844. (*r_len) += 4 + count * sizeof(int64_t);
  845. }
  846. } break;
  847. case Variant::PACKED_FLOAT32_ARRAY: {
  848. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  849. int32_t count = decode_uint32(buf);
  850. buf += 4;
  851. len -= 4;
  852. ERR_FAIL_MUL_OF(count, 4, ERR_INVALID_DATA);
  853. ERR_FAIL_COND_V(count < 0 || count * 4 > len, ERR_INVALID_DATA);
  854. Vector<float> data;
  855. if (count) {
  856. //const float *rbuf = (const float *)buf;
  857. data.resize(count);
  858. float *w = data.ptrw();
  859. for (int32_t i = 0; i < count; i++) {
  860. w[i] = decode_float(&buf[i * 4]);
  861. }
  862. }
  863. r_variant = data;
  864. if (r_len) {
  865. (*r_len) += 4 + count * sizeof(float);
  866. }
  867. } break;
  868. case Variant::PACKED_FLOAT64_ARRAY: {
  869. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  870. int32_t count = decode_uint32(buf);
  871. buf += 4;
  872. len -= 4;
  873. ERR_FAIL_MUL_OF(count, 8, ERR_INVALID_DATA);
  874. ERR_FAIL_COND_V(count < 0 || count * 8 > len, ERR_INVALID_DATA);
  875. Vector<double> data;
  876. if (count) {
  877. data.resize(count);
  878. double *w = data.ptrw();
  879. for (int64_t i = 0; i < count; i++) {
  880. w[i] = decode_double(&buf[i * 8]);
  881. }
  882. }
  883. r_variant = data;
  884. if (r_len) {
  885. (*r_len) += 4 + count * sizeof(double);
  886. }
  887. } break;
  888. case Variant::PACKED_STRING_ARRAY: {
  889. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  890. int32_t count = decode_uint32(buf);
  891. Vector<String> strings;
  892. buf += 4;
  893. len -= 4;
  894. if (r_len) {
  895. (*r_len) += 4; // Size of count number.
  896. }
  897. for (int32_t i = 0; i < count; i++) {
  898. String str;
  899. Error err = _decode_string(buf, len, r_len, str);
  900. if (err) {
  901. return err;
  902. }
  903. strings.push_back(str);
  904. }
  905. r_variant = strings;
  906. } break;
  907. case Variant::PACKED_VECTOR2_ARRAY: {
  908. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  909. int32_t count = decode_uint32(buf);
  910. buf += 4;
  911. len -= 4;
  912. Vector<Vector2> varray;
  913. if (header & HEADER_DATA_FLAG_64) {
  914. ERR_FAIL_MUL_OF(count, sizeof(double) * 2, ERR_INVALID_DATA);
  915. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 2 > (size_t)len, ERR_INVALID_DATA);
  916. if (r_len) {
  917. (*r_len) += 4; // Size of count number.
  918. }
  919. if (count) {
  920. varray.resize(count);
  921. Vector2 *w = varray.ptrw();
  922. for (int32_t i = 0; i < count; i++) {
  923. w[i].x = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 0);
  924. w[i].y = decode_double(buf + i * sizeof(double) * 2 + sizeof(double) * 1);
  925. }
  926. int adv = sizeof(double) * 2 * count;
  927. if (r_len) {
  928. (*r_len) += adv;
  929. }
  930. len -= adv;
  931. buf += adv;
  932. }
  933. } else {
  934. ERR_FAIL_MUL_OF(count, sizeof(float) * 2, ERR_INVALID_DATA);
  935. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 2 > (size_t)len, ERR_INVALID_DATA);
  936. if (r_len) {
  937. (*r_len) += 4; // Size of count number.
  938. }
  939. if (count) {
  940. varray.resize(count);
  941. Vector2 *w = varray.ptrw();
  942. for (int32_t i = 0; i < count; i++) {
  943. w[i].x = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 0);
  944. w[i].y = decode_float(buf + i * sizeof(float) * 2 + sizeof(float) * 1);
  945. }
  946. int adv = sizeof(float) * 2 * count;
  947. if (r_len) {
  948. (*r_len) += adv;
  949. }
  950. }
  951. }
  952. r_variant = varray;
  953. } break;
  954. case Variant::PACKED_VECTOR3_ARRAY: {
  955. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  956. int32_t count = decode_uint32(buf);
  957. buf += 4;
  958. len -= 4;
  959. Vector<Vector3> varray;
  960. if (header & HEADER_DATA_FLAG_64) {
  961. ERR_FAIL_MUL_OF(count, sizeof(double) * 3, ERR_INVALID_DATA);
  962. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 3 > (size_t)len, ERR_INVALID_DATA);
  963. if (r_len) {
  964. (*r_len) += 4; // Size of count number.
  965. }
  966. if (count) {
  967. varray.resize(count);
  968. Vector3 *w = varray.ptrw();
  969. for (int32_t i = 0; i < count; i++) {
  970. w[i].x = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 0);
  971. w[i].y = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 1);
  972. w[i].z = decode_double(buf + i * sizeof(double) * 3 + sizeof(double) * 2);
  973. }
  974. int adv = sizeof(double) * 3 * count;
  975. if (r_len) {
  976. (*r_len) += adv;
  977. }
  978. len -= adv;
  979. buf += adv;
  980. }
  981. } else {
  982. ERR_FAIL_MUL_OF(count, sizeof(float) * 3, ERR_INVALID_DATA);
  983. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 3 > (size_t)len, ERR_INVALID_DATA);
  984. if (r_len) {
  985. (*r_len) += 4; // Size of count number.
  986. }
  987. if (count) {
  988. varray.resize(count);
  989. Vector3 *w = varray.ptrw();
  990. for (int32_t i = 0; i < count; i++) {
  991. w[i].x = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 0);
  992. w[i].y = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 1);
  993. w[i].z = decode_float(buf + i * sizeof(float) * 3 + sizeof(float) * 2);
  994. }
  995. int adv = sizeof(float) * 3 * count;
  996. if (r_len) {
  997. (*r_len) += adv;
  998. }
  999. len -= adv;
  1000. buf += adv;
  1001. }
  1002. }
  1003. r_variant = varray;
  1004. } break;
  1005. case Variant::PACKED_COLOR_ARRAY: {
  1006. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  1007. int32_t count = decode_uint32(buf);
  1008. buf += 4;
  1009. len -= 4;
  1010. ERR_FAIL_MUL_OF(count, 4 * 4, ERR_INVALID_DATA);
  1011. ERR_FAIL_COND_V(count < 0 || count * 4 * 4 > len, ERR_INVALID_DATA);
  1012. Vector<Color> carray;
  1013. if (r_len) {
  1014. (*r_len) += 4; // Size of count number.
  1015. }
  1016. if (count) {
  1017. carray.resize(count);
  1018. Color *w = carray.ptrw();
  1019. for (int32_t i = 0; i < count; i++) {
  1020. // Colors should always be in single-precision.
  1021. w[i].r = decode_float(buf + i * 4 * 4 + 4 * 0);
  1022. w[i].g = decode_float(buf + i * 4 * 4 + 4 * 1);
  1023. w[i].b = decode_float(buf + i * 4 * 4 + 4 * 2);
  1024. w[i].a = decode_float(buf + i * 4 * 4 + 4 * 3);
  1025. }
  1026. int adv = 4 * 4 * count;
  1027. if (r_len) {
  1028. (*r_len) += adv;
  1029. }
  1030. }
  1031. r_variant = carray;
  1032. } break;
  1033. case Variant::PACKED_VECTOR4_ARRAY: {
  1034. ERR_FAIL_COND_V(len < 4, ERR_INVALID_DATA);
  1035. int32_t count = decode_uint32(buf);
  1036. buf += 4;
  1037. len -= 4;
  1038. Vector<Vector4> varray;
  1039. if (header & HEADER_DATA_FLAG_64) {
  1040. ERR_FAIL_MUL_OF(count, sizeof(double) * 4, ERR_INVALID_DATA);
  1041. ERR_FAIL_COND_V(count < 0 || count * sizeof(double) * 4 > (size_t)len, ERR_INVALID_DATA);
  1042. if (r_len) {
  1043. (*r_len) += 4; // Size of count number.
  1044. }
  1045. if (count) {
  1046. varray.resize(count);
  1047. Vector4 *w = varray.ptrw();
  1048. for (int32_t i = 0; i < count; i++) {
  1049. w[i].x = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 0);
  1050. w[i].y = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 1);
  1051. w[i].z = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 2);
  1052. w[i].w = decode_double(buf + i * sizeof(double) * 4 + sizeof(double) * 3);
  1053. }
  1054. int adv = sizeof(double) * 4 * count;
  1055. if (r_len) {
  1056. (*r_len) += adv;
  1057. }
  1058. len -= adv;
  1059. buf += adv;
  1060. }
  1061. } else {
  1062. ERR_FAIL_MUL_OF(count, sizeof(float) * 4, ERR_INVALID_DATA);
  1063. ERR_FAIL_COND_V(count < 0 || count * sizeof(float) * 4 > (size_t)len, ERR_INVALID_DATA);
  1064. if (r_len) {
  1065. (*r_len) += 4; // Size of count number.
  1066. }
  1067. if (count) {
  1068. varray.resize(count);
  1069. Vector4 *w = varray.ptrw();
  1070. for (int32_t i = 0; i < count; i++) {
  1071. w[i].x = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 0);
  1072. w[i].y = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 1);
  1073. w[i].z = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 2);
  1074. w[i].w = decode_float(buf + i * sizeof(float) * 4 + sizeof(float) * 3);
  1075. }
  1076. int adv = sizeof(float) * 4 * count;
  1077. if (r_len) {
  1078. (*r_len) += adv;
  1079. }
  1080. len -= adv;
  1081. buf += adv;
  1082. }
  1083. }
  1084. r_variant = varray;
  1085. } break;
  1086. default: {
  1087. ERR_FAIL_V(ERR_BUG);
  1088. }
  1089. }
  1090. return OK;
  1091. }
  1092. static void _encode_string(const String &p_string, uint8_t *&buf, int &r_len) {
  1093. CharString utf8 = p_string.utf8();
  1094. if (buf) {
  1095. encode_uint32(utf8.length(), buf);
  1096. buf += 4;
  1097. memcpy(buf, utf8.get_data(), utf8.length());
  1098. buf += utf8.length();
  1099. }
  1100. r_len += 4 + utf8.length();
  1101. while (r_len % 4) {
  1102. r_len++; // Pad.
  1103. if (buf) {
  1104. *(buf++) = 0;
  1105. }
  1106. }
  1107. }
  1108. static void _encode_container_type_header(const ContainerType &p_type, uint32_t &header, uint32_t p_shift, bool p_full_objects) {
  1109. if (p_type.builtin_type != Variant::NIL) {
  1110. if (p_type.script.is_valid()) {
  1111. header |= (p_full_objects ? CONTAINER_TYPE_KIND_SCRIPT : CONTAINER_TYPE_KIND_CLASS_NAME) << p_shift;
  1112. } else if (p_type.class_name != StringName()) {
  1113. header |= CONTAINER_TYPE_KIND_CLASS_NAME << p_shift;
  1114. } else {
  1115. // No need to check `p_full_objects` since `class_name` should be non-empty for `builtin_type == Variant::OBJECT`.
  1116. header |= CONTAINER_TYPE_KIND_BUILTIN << p_shift;
  1117. }
  1118. }
  1119. }
  1120. static Error _encode_container_type(const ContainerType &p_type, uint8_t *&buf, int &r_len, bool p_full_objects) {
  1121. if (p_type.builtin_type != Variant::NIL) {
  1122. if (p_type.script.is_valid()) {
  1123. if (p_full_objects) {
  1124. String path = p_type.script->get_path();
  1125. ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://"), ERR_UNAVAILABLE, "Failed to encode a path to a custom script for a container type.");
  1126. _encode_string(path, buf, r_len);
  1127. } else {
  1128. _encode_string(EncodedObjectAsID::get_class_static(), buf, r_len);
  1129. }
  1130. } else if (p_type.class_name != StringName()) {
  1131. _encode_string(p_full_objects ? p_type.class_name : EncodedObjectAsID::get_class_static(), buf, r_len);
  1132. } else {
  1133. // No need to check `p_full_objects` since `class_name` should be non-empty for `builtin_type == Variant::OBJECT`.
  1134. if (buf) {
  1135. encode_uint32(p_type.builtin_type, buf);
  1136. buf += 4;
  1137. }
  1138. r_len += 4;
  1139. }
  1140. }
  1141. return OK;
  1142. }
  1143. Error encode_variant(const Variant &p_variant, uint8_t *r_buffer, int &r_len, bool p_full_objects, int p_depth) {
  1144. ERR_FAIL_COND_V_MSG(p_depth > Variant::MAX_RECURSION_DEPTH, ERR_OUT_OF_MEMORY, "Potential infinite recursion detected. Bailing.");
  1145. uint8_t *buf = r_buffer;
  1146. r_len = 0;
  1147. uint32_t header = p_variant.get_type();
  1148. switch (p_variant.get_type()) {
  1149. case Variant::INT: {
  1150. int64_t val = p_variant;
  1151. if (val > (int64_t)INT_MAX || val < (int64_t)INT_MIN) {
  1152. header |= HEADER_DATA_FLAG_64;
  1153. }
  1154. } break;
  1155. case Variant::FLOAT: {
  1156. double d = p_variant;
  1157. float f = d;
  1158. if (double(f) != d) {
  1159. header |= HEADER_DATA_FLAG_64;
  1160. }
  1161. } break;
  1162. case Variant::OBJECT: {
  1163. // Test for potential wrong values sent by the debugger when it breaks.
  1164. Object *obj = p_variant.get_validated_object();
  1165. if (!obj) {
  1166. // Object is invalid, send a nullptr instead.
  1167. if (buf) {
  1168. encode_uint32(Variant::NIL, buf);
  1169. }
  1170. r_len += 4;
  1171. return OK;
  1172. }
  1173. if (!p_full_objects) {
  1174. header |= HEADER_DATA_FLAG_OBJECT_AS_ID;
  1175. }
  1176. } break;
  1177. case Variant::DICTIONARY: {
  1178. const Dictionary dict = p_variant;
  1179. _encode_container_type_header(dict.get_key_type(), header, HEADER_DATA_FIELD_TYPED_DICTIONARY_KEY_SHIFT, p_full_objects);
  1180. _encode_container_type_header(dict.get_value_type(), header, HEADER_DATA_FIELD_TYPED_DICTIONARY_VALUE_SHIFT, p_full_objects);
  1181. } break;
  1182. case Variant::ARRAY: {
  1183. const Array array = p_variant;
  1184. _encode_container_type_header(array.get_element_type(), header, HEADER_DATA_FIELD_TYPED_ARRAY_SHIFT, p_full_objects);
  1185. } break;
  1186. #ifdef REAL_T_IS_DOUBLE
  1187. case Variant::VECTOR2:
  1188. case Variant::VECTOR3:
  1189. case Variant::VECTOR4:
  1190. case Variant::PACKED_VECTOR2_ARRAY:
  1191. case Variant::PACKED_VECTOR3_ARRAY:
  1192. case Variant::PACKED_VECTOR4_ARRAY:
  1193. case Variant::TRANSFORM2D:
  1194. case Variant::TRANSFORM3D:
  1195. case Variant::PROJECTION:
  1196. case Variant::QUATERNION:
  1197. case Variant::PLANE:
  1198. case Variant::BASIS:
  1199. case Variant::RECT2:
  1200. case Variant::AABB: {
  1201. header |= HEADER_DATA_FLAG_64;
  1202. } break;
  1203. #endif // REAL_T_IS_DOUBLE
  1204. default: {
  1205. // Nothing to do at this stage.
  1206. } break;
  1207. }
  1208. if (buf) {
  1209. encode_uint32(header, buf);
  1210. buf += 4;
  1211. }
  1212. r_len += 4;
  1213. switch (p_variant.get_type()) {
  1214. case Variant::NIL: {
  1215. // Nothing to do.
  1216. } break;
  1217. case Variant::BOOL: {
  1218. if (buf) {
  1219. encode_uint32(p_variant.operator bool(), buf);
  1220. }
  1221. r_len += 4;
  1222. } break;
  1223. case Variant::INT: {
  1224. if (header & HEADER_DATA_FLAG_64) {
  1225. // 64 bits.
  1226. if (buf) {
  1227. encode_uint64(p_variant.operator uint64_t(), buf);
  1228. }
  1229. r_len += 8;
  1230. } else {
  1231. if (buf) {
  1232. encode_uint32(p_variant.operator uint32_t(), buf);
  1233. }
  1234. r_len += 4;
  1235. }
  1236. } break;
  1237. case Variant::FLOAT: {
  1238. if (header & HEADER_DATA_FLAG_64) {
  1239. if (buf) {
  1240. encode_double(p_variant.operator double(), buf);
  1241. }
  1242. r_len += 8;
  1243. } else {
  1244. if (buf) {
  1245. encode_float(p_variant.operator float(), buf);
  1246. }
  1247. r_len += 4;
  1248. }
  1249. } break;
  1250. case Variant::NODE_PATH: {
  1251. NodePath np = p_variant;
  1252. if (buf) {
  1253. encode_uint32(uint32_t(np.get_name_count()) | 0x80000000, buf); // For compatibility with the old format.
  1254. encode_uint32(np.get_subname_count(), buf + 4);
  1255. uint32_t np_flags = 0;
  1256. if (np.is_absolute()) {
  1257. np_flags |= 1;
  1258. }
  1259. encode_uint32(np_flags, buf + 8);
  1260. buf += 12;
  1261. }
  1262. r_len += 12;
  1263. int total = np.get_name_count() + np.get_subname_count();
  1264. for (int i = 0; i < total; i++) {
  1265. String str;
  1266. if (i < np.get_name_count()) {
  1267. str = np.get_name(i);
  1268. } else {
  1269. str = np.get_subname(i - np.get_name_count());
  1270. }
  1271. CharString utf8 = str.utf8();
  1272. int pad = 0;
  1273. if (utf8.length() % 4) {
  1274. pad = 4 - utf8.length() % 4;
  1275. }
  1276. if (buf) {
  1277. encode_uint32(utf8.length(), buf);
  1278. buf += 4;
  1279. memcpy(buf, utf8.get_data(), utf8.length());
  1280. buf += pad + utf8.length();
  1281. }
  1282. r_len += 4 + utf8.length() + pad;
  1283. }
  1284. } break;
  1285. case Variant::STRING:
  1286. case Variant::STRING_NAME: {
  1287. _encode_string(p_variant, buf, r_len);
  1288. } break;
  1289. // Math types.
  1290. case Variant::VECTOR2: {
  1291. if (buf) {
  1292. Vector2 v2 = p_variant;
  1293. encode_real(v2.x, &buf[0]);
  1294. encode_real(v2.y, &buf[sizeof(real_t)]);
  1295. }
  1296. r_len += 2 * sizeof(real_t);
  1297. } break;
  1298. case Variant::VECTOR2I: {
  1299. if (buf) {
  1300. Vector2i v2 = p_variant;
  1301. encode_uint32(v2.x, &buf[0]);
  1302. encode_uint32(v2.y, &buf[4]);
  1303. }
  1304. r_len += 2 * 4;
  1305. } break;
  1306. case Variant::RECT2: {
  1307. if (buf) {
  1308. Rect2 r2 = p_variant;
  1309. encode_real(r2.position.x, &buf[0]);
  1310. encode_real(r2.position.y, &buf[sizeof(real_t)]);
  1311. encode_real(r2.size.x, &buf[sizeof(real_t) * 2]);
  1312. encode_real(r2.size.y, &buf[sizeof(real_t) * 3]);
  1313. }
  1314. r_len += 4 * sizeof(real_t);
  1315. } break;
  1316. case Variant::RECT2I: {
  1317. if (buf) {
  1318. Rect2i r2 = p_variant;
  1319. encode_uint32(r2.position.x, &buf[0]);
  1320. encode_uint32(r2.position.y, &buf[4]);
  1321. encode_uint32(r2.size.x, &buf[8]);
  1322. encode_uint32(r2.size.y, &buf[12]);
  1323. }
  1324. r_len += 4 * 4;
  1325. } break;
  1326. case Variant::VECTOR3: {
  1327. if (buf) {
  1328. Vector3 v3 = p_variant;
  1329. encode_real(v3.x, &buf[0]);
  1330. encode_real(v3.y, &buf[sizeof(real_t)]);
  1331. encode_real(v3.z, &buf[sizeof(real_t) * 2]);
  1332. }
  1333. r_len += 3 * sizeof(real_t);
  1334. } break;
  1335. case Variant::VECTOR3I: {
  1336. if (buf) {
  1337. Vector3i v3 = p_variant;
  1338. encode_uint32(v3.x, &buf[0]);
  1339. encode_uint32(v3.y, &buf[4]);
  1340. encode_uint32(v3.z, &buf[8]);
  1341. }
  1342. r_len += 3 * 4;
  1343. } break;
  1344. case Variant::TRANSFORM2D: {
  1345. if (buf) {
  1346. Transform2D val = p_variant;
  1347. for (int i = 0; i < 3; i++) {
  1348. for (int j = 0; j < 2; j++) {
  1349. memcpy(&buf[(i * 2 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
  1350. }
  1351. }
  1352. }
  1353. r_len += 6 * sizeof(real_t);
  1354. } break;
  1355. case Variant::VECTOR4: {
  1356. if (buf) {
  1357. Vector4 v4 = p_variant;
  1358. encode_real(v4.x, &buf[0]);
  1359. encode_real(v4.y, &buf[sizeof(real_t)]);
  1360. encode_real(v4.z, &buf[sizeof(real_t) * 2]);
  1361. encode_real(v4.w, &buf[sizeof(real_t) * 3]);
  1362. }
  1363. r_len += 4 * sizeof(real_t);
  1364. } break;
  1365. case Variant::VECTOR4I: {
  1366. if (buf) {
  1367. Vector4i v4 = p_variant;
  1368. encode_uint32(v4.x, &buf[0]);
  1369. encode_uint32(v4.y, &buf[4]);
  1370. encode_uint32(v4.z, &buf[8]);
  1371. encode_uint32(v4.w, &buf[12]);
  1372. }
  1373. r_len += 4 * 4;
  1374. } break;
  1375. case Variant::PLANE: {
  1376. if (buf) {
  1377. Plane p = p_variant;
  1378. encode_real(p.normal.x, &buf[0]);
  1379. encode_real(p.normal.y, &buf[sizeof(real_t)]);
  1380. encode_real(p.normal.z, &buf[sizeof(real_t) * 2]);
  1381. encode_real(p.d, &buf[sizeof(real_t) * 3]);
  1382. }
  1383. r_len += 4 * sizeof(real_t);
  1384. } break;
  1385. case Variant::QUATERNION: {
  1386. if (buf) {
  1387. Quaternion q = p_variant;
  1388. encode_real(q.x, &buf[0]);
  1389. encode_real(q.y, &buf[sizeof(real_t)]);
  1390. encode_real(q.z, &buf[sizeof(real_t) * 2]);
  1391. encode_real(q.w, &buf[sizeof(real_t) * 3]);
  1392. }
  1393. r_len += 4 * sizeof(real_t);
  1394. } break;
  1395. case Variant::AABB: {
  1396. if (buf) {
  1397. AABB aabb = p_variant;
  1398. encode_real(aabb.position.x, &buf[0]);
  1399. encode_real(aabb.position.y, &buf[sizeof(real_t)]);
  1400. encode_real(aabb.position.z, &buf[sizeof(real_t) * 2]);
  1401. encode_real(aabb.size.x, &buf[sizeof(real_t) * 3]);
  1402. encode_real(aabb.size.y, &buf[sizeof(real_t) * 4]);
  1403. encode_real(aabb.size.z, &buf[sizeof(real_t) * 5]);
  1404. }
  1405. r_len += 6 * sizeof(real_t);
  1406. } break;
  1407. case Variant::BASIS: {
  1408. if (buf) {
  1409. Basis val = p_variant;
  1410. for (int i = 0; i < 3; i++) {
  1411. for (int j = 0; j < 3; j++) {
  1412. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.rows[i][j], sizeof(real_t));
  1413. }
  1414. }
  1415. }
  1416. r_len += 9 * sizeof(real_t);
  1417. } break;
  1418. case Variant::TRANSFORM3D: {
  1419. if (buf) {
  1420. Transform3D val = p_variant;
  1421. for (int i = 0; i < 3; i++) {
  1422. for (int j = 0; j < 3; j++) {
  1423. memcpy(&buf[(i * 3 + j) * sizeof(real_t)], &val.basis.rows[i][j], sizeof(real_t));
  1424. }
  1425. }
  1426. encode_real(val.origin.x, &buf[sizeof(real_t) * 9]);
  1427. encode_real(val.origin.y, &buf[sizeof(real_t) * 10]);
  1428. encode_real(val.origin.z, &buf[sizeof(real_t) * 11]);
  1429. }
  1430. r_len += 12 * sizeof(real_t);
  1431. } break;
  1432. case Variant::PROJECTION: {
  1433. if (buf) {
  1434. Projection val = p_variant;
  1435. for (int i = 0; i < 4; i++) {
  1436. for (int j = 0; j < 4; j++) {
  1437. memcpy(&buf[(i * 4 + j) * sizeof(real_t)], &val.columns[i][j], sizeof(real_t));
  1438. }
  1439. }
  1440. }
  1441. r_len += 16 * sizeof(real_t);
  1442. } break;
  1443. // Misc types.
  1444. case Variant::COLOR: {
  1445. if (buf) {
  1446. Color c = p_variant;
  1447. encode_float(c.r, &buf[0]);
  1448. encode_float(c.g, &buf[4]);
  1449. encode_float(c.b, &buf[8]);
  1450. encode_float(c.a, &buf[12]);
  1451. }
  1452. r_len += 4 * 4; // Colors should always be in single-precision.
  1453. } break;
  1454. case Variant::RID: {
  1455. RID rid = p_variant;
  1456. if (buf) {
  1457. encode_uint64(rid.get_id(), buf);
  1458. }
  1459. r_len += 8;
  1460. } break;
  1461. case Variant::OBJECT: {
  1462. if (p_full_objects) {
  1463. Object *obj = p_variant;
  1464. if (!obj) {
  1465. if (buf) {
  1466. encode_uint32(0, buf);
  1467. }
  1468. r_len += 4;
  1469. } else {
  1470. ERR_FAIL_COND_V(!ClassDB::can_instantiate(obj->get_class()), ERR_INVALID_PARAMETER);
  1471. _encode_string(obj->get_class(), buf, r_len);
  1472. List<PropertyInfo> props;
  1473. obj->get_property_list(&props);
  1474. int pc = 0;
  1475. for (const PropertyInfo &E : props) {
  1476. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1477. continue;
  1478. }
  1479. pc++;
  1480. }
  1481. if (buf) {
  1482. encode_uint32(pc, buf);
  1483. buf += 4;
  1484. }
  1485. r_len += 4;
  1486. for (const PropertyInfo &E : props) {
  1487. if (!(E.usage & PROPERTY_USAGE_STORAGE)) {
  1488. continue;
  1489. }
  1490. _encode_string(E.name, buf, r_len);
  1491. Variant value;
  1492. if (E.name == CoreStringName(script)) {
  1493. Ref<Script> script = obj->get_script();
  1494. if (script.is_valid()) {
  1495. String path = script->get_path();
  1496. ERR_FAIL_COND_V_MSG(path.is_empty() || !path.begins_with("res://"), ERR_UNAVAILABLE, "Failed to encode a path to a custom script.");
  1497. value = path;
  1498. }
  1499. } else {
  1500. value = obj->get(E.name);
  1501. }
  1502. int len;
  1503. Error err = encode_variant(value, buf, len, p_full_objects, p_depth + 1);
  1504. ERR_FAIL_COND_V(err, err);
  1505. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1506. r_len += len;
  1507. if (buf) {
  1508. buf += len;
  1509. }
  1510. }
  1511. }
  1512. } else {
  1513. if (buf) {
  1514. Object *obj = p_variant.get_validated_object();
  1515. ObjectID id;
  1516. if (obj) {
  1517. id = obj->get_instance_id();
  1518. }
  1519. encode_uint64(id, buf);
  1520. }
  1521. r_len += 8;
  1522. }
  1523. } break;
  1524. case Variant::CALLABLE: {
  1525. } break;
  1526. case Variant::SIGNAL: {
  1527. Signal signal = p_variant;
  1528. _encode_string(signal.get_name(), buf, r_len);
  1529. if (buf) {
  1530. encode_uint64(signal.get_object_id(), buf);
  1531. }
  1532. r_len += 8;
  1533. } break;
  1534. case Variant::DICTIONARY: {
  1535. const Dictionary dict = p_variant;
  1536. {
  1537. Error err = _encode_container_type(dict.get_key_type(), buf, r_len, p_full_objects);
  1538. if (err) {
  1539. return err;
  1540. }
  1541. }
  1542. {
  1543. Error err = _encode_container_type(dict.get_value_type(), buf, r_len, p_full_objects);
  1544. if (err) {
  1545. return err;
  1546. }
  1547. }
  1548. if (buf) {
  1549. encode_uint32(uint32_t(dict.size()), buf);
  1550. buf += 4;
  1551. }
  1552. r_len += 4;
  1553. for (const KeyValue<Variant, Variant> &kv : dict) {
  1554. int len;
  1555. Error err = encode_variant(kv.key, buf, len, p_full_objects, p_depth + 1);
  1556. ERR_FAIL_COND_V(err, err);
  1557. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1558. r_len += len;
  1559. if (buf) {
  1560. buf += len;
  1561. }
  1562. err = encode_variant(kv.value, buf, len, p_full_objects, p_depth + 1);
  1563. ERR_FAIL_COND_V(err, err);
  1564. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1565. r_len += len;
  1566. if (buf) {
  1567. buf += len;
  1568. }
  1569. }
  1570. } break;
  1571. case Variant::ARRAY: {
  1572. const Array array = p_variant;
  1573. {
  1574. Error err = _encode_container_type(array.get_element_type(), buf, r_len, p_full_objects);
  1575. if (err) {
  1576. return err;
  1577. }
  1578. }
  1579. if (buf) {
  1580. encode_uint32(uint32_t(array.size()), buf);
  1581. buf += 4;
  1582. }
  1583. r_len += 4;
  1584. for (const Variant &elem : array) {
  1585. int len;
  1586. Error err = encode_variant(elem, buf, len, p_full_objects, p_depth + 1);
  1587. ERR_FAIL_COND_V(err, err);
  1588. ERR_FAIL_COND_V(len % 4, ERR_BUG);
  1589. if (buf) {
  1590. buf += len;
  1591. }
  1592. r_len += len;
  1593. }
  1594. } break;
  1595. // Packed arrays.
  1596. case Variant::PACKED_BYTE_ARRAY: {
  1597. Vector<uint8_t> data = p_variant;
  1598. int datalen = data.size();
  1599. int datasize = sizeof(uint8_t);
  1600. if (buf) {
  1601. encode_uint32(datalen, buf);
  1602. buf += 4;
  1603. const uint8_t *r = data.ptr();
  1604. if (r) {
  1605. memcpy(buf, &r[0], datalen * datasize);
  1606. buf += datalen * datasize;
  1607. }
  1608. }
  1609. r_len += 4 + datalen * datasize;
  1610. while (r_len % 4) {
  1611. r_len++;
  1612. if (buf) {
  1613. *(buf++) = 0;
  1614. }
  1615. }
  1616. } break;
  1617. case Variant::PACKED_INT32_ARRAY: {
  1618. Vector<int32_t> data = p_variant;
  1619. int datalen = data.size();
  1620. int datasize = sizeof(int32_t);
  1621. if (buf) {
  1622. encode_uint32(datalen, buf);
  1623. buf += 4;
  1624. const int32_t *r = data.ptr();
  1625. for (int32_t i = 0; i < datalen; i++) {
  1626. encode_uint32(r[i], &buf[i * datasize]);
  1627. }
  1628. }
  1629. r_len += 4 + datalen * datasize;
  1630. } break;
  1631. case Variant::PACKED_INT64_ARRAY: {
  1632. Vector<int64_t> data = p_variant;
  1633. int datalen = data.size();
  1634. int datasize = sizeof(int64_t);
  1635. if (buf) {
  1636. encode_uint32(datalen, buf);
  1637. buf += 4;
  1638. const int64_t *r = data.ptr();
  1639. for (int64_t i = 0; i < datalen; i++) {
  1640. encode_uint64(r[i], &buf[i * datasize]);
  1641. }
  1642. }
  1643. r_len += 4 + datalen * datasize;
  1644. } break;
  1645. case Variant::PACKED_FLOAT32_ARRAY: {
  1646. Vector<float> data = p_variant;
  1647. int datalen = data.size();
  1648. int datasize = sizeof(float);
  1649. if (buf) {
  1650. encode_uint32(datalen, buf);
  1651. buf += 4;
  1652. const float *r = data.ptr();
  1653. for (int i = 0; i < datalen; i++) {
  1654. encode_float(r[i], &buf[i * datasize]);
  1655. }
  1656. }
  1657. r_len += 4 + datalen * datasize;
  1658. } break;
  1659. case Variant::PACKED_FLOAT64_ARRAY: {
  1660. Vector<double> data = p_variant;
  1661. int datalen = data.size();
  1662. int datasize = sizeof(double);
  1663. if (buf) {
  1664. encode_uint32(datalen, buf);
  1665. buf += 4;
  1666. const double *r = data.ptr();
  1667. for (int i = 0; i < datalen; i++) {
  1668. encode_double(r[i], &buf[i * datasize]);
  1669. }
  1670. }
  1671. r_len += 4 + datalen * datasize;
  1672. } break;
  1673. case Variant::PACKED_STRING_ARRAY: {
  1674. Vector<String> data = p_variant;
  1675. int len = data.size();
  1676. if (buf) {
  1677. encode_uint32(len, buf);
  1678. buf += 4;
  1679. }
  1680. r_len += 4;
  1681. for (int i = 0; i < len; i++) {
  1682. CharString utf8 = data.get(i).utf8();
  1683. if (buf) {
  1684. encode_uint32(utf8.length() + 1, buf);
  1685. buf += 4;
  1686. memcpy(buf, utf8.get_data(), utf8.length() + 1);
  1687. buf += utf8.length() + 1;
  1688. }
  1689. r_len += 4 + utf8.length() + 1;
  1690. while (r_len % 4) {
  1691. r_len++; // Pad.
  1692. if (buf) {
  1693. *(buf++) = 0;
  1694. }
  1695. }
  1696. }
  1697. } break;
  1698. case Variant::PACKED_VECTOR2_ARRAY: {
  1699. Vector<Vector2> data = p_variant;
  1700. int len = data.size();
  1701. if (buf) {
  1702. encode_uint32(len, buf);
  1703. buf += 4;
  1704. }
  1705. r_len += 4;
  1706. if (buf) {
  1707. for (int i = 0; i < len; i++) {
  1708. Vector2 v = data.get(i);
  1709. encode_real(v.x, &buf[0]);
  1710. encode_real(v.y, &buf[sizeof(real_t)]);
  1711. buf += sizeof(real_t) * 2;
  1712. }
  1713. }
  1714. r_len += sizeof(real_t) * 2 * len;
  1715. } break;
  1716. case Variant::PACKED_VECTOR3_ARRAY: {
  1717. Vector<Vector3> data = p_variant;
  1718. int len = data.size();
  1719. if (buf) {
  1720. encode_uint32(len, buf);
  1721. buf += 4;
  1722. }
  1723. r_len += 4;
  1724. if (buf) {
  1725. for (int i = 0; i < len; i++) {
  1726. Vector3 v = data.get(i);
  1727. encode_real(v.x, &buf[0]);
  1728. encode_real(v.y, &buf[sizeof(real_t)]);
  1729. encode_real(v.z, &buf[sizeof(real_t) * 2]);
  1730. buf += sizeof(real_t) * 3;
  1731. }
  1732. }
  1733. r_len += sizeof(real_t) * 3 * len;
  1734. } break;
  1735. case Variant::PACKED_COLOR_ARRAY: {
  1736. Vector<Color> data = p_variant;
  1737. int len = data.size();
  1738. if (buf) {
  1739. encode_uint32(len, buf);
  1740. buf += 4;
  1741. }
  1742. r_len += 4;
  1743. if (buf) {
  1744. for (int i = 0; i < len; i++) {
  1745. Color c = data.get(i);
  1746. encode_float(c.r, &buf[0]);
  1747. encode_float(c.g, &buf[4]);
  1748. encode_float(c.b, &buf[8]);
  1749. encode_float(c.a, &buf[12]);
  1750. buf += 4 * 4; // Colors should always be in single-precision.
  1751. }
  1752. }
  1753. r_len += 4 * 4 * len;
  1754. } break;
  1755. case Variant::PACKED_VECTOR4_ARRAY: {
  1756. Vector<Vector4> data = p_variant;
  1757. int len = data.size();
  1758. if (buf) {
  1759. encode_uint32(len, buf);
  1760. buf += 4;
  1761. }
  1762. r_len += 4;
  1763. if (buf) {
  1764. for (int i = 0; i < len; i++) {
  1765. Vector4 v = data.get(i);
  1766. encode_real(v.x, &buf[0]);
  1767. encode_real(v.y, &buf[sizeof(real_t)]);
  1768. encode_real(v.z, &buf[sizeof(real_t) * 2]);
  1769. encode_real(v.w, &buf[sizeof(real_t) * 3]);
  1770. buf += sizeof(real_t) * 4;
  1771. }
  1772. }
  1773. r_len += sizeof(real_t) * 4 * len;
  1774. } break;
  1775. default: {
  1776. ERR_FAIL_V(ERR_BUG);
  1777. }
  1778. }
  1779. return OK;
  1780. }
  1781. Vector<float> vector3_to_float32_array(const Vector3 *vecs, size_t count) {
  1782. // We always allocate a new array, and we don't `memcpy()`.
  1783. // We also don't consider returning a pointer to the passed vectors when `sizeof(real_t) == 4`.
  1784. // One reason is that we could decide to put a 4th component in `Vector3` for SIMD/mobile performance,
  1785. // which would cause trouble with these optimizations.
  1786. Vector<float> floats;
  1787. if (count == 0) {
  1788. return floats;
  1789. }
  1790. floats.resize(count * 3);
  1791. float *floats_w = floats.ptrw();
  1792. for (size_t i = 0; i < count; ++i) {
  1793. const Vector3 v = vecs[i];
  1794. floats_w[0] = v.x;
  1795. floats_w[1] = v.y;
  1796. floats_w[2] = v.z;
  1797. floats_w += 3;
  1798. }
  1799. return floats;
  1800. }