test_array.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. /**************************************************************************/
  2. /* test_array.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #pragma once
  31. #include "core/variant/array.h"
  32. #include "tests/test_macros.h"
  33. #include "tests/test_tools.h"
  34. namespace TestArray {
  35. TEST_CASE("[Array] initializer list") {
  36. Array arr = { 0, 1, "test", true, { 0.0, 1.0 } };
  37. CHECK(arr.size() == 5);
  38. CHECK(arr[0] == Variant(0));
  39. CHECK(arr[1] == Variant(1));
  40. CHECK(arr[2] == Variant("test"));
  41. CHECK(arr[3] == Variant(true));
  42. CHECK(arr[4] == Variant({ 0.0, 1.0 }));
  43. arr = { "reassign" };
  44. CHECK(arr.size() == 1);
  45. CHECK(arr[0] == Variant("reassign"));
  46. TypedArray<int> typed_arr = { 0, 1, 2 };
  47. CHECK(typed_arr.size() == 3);
  48. CHECK(typed_arr[0] == Variant(0));
  49. CHECK(typed_arr[1] == Variant(1));
  50. CHECK(typed_arr[2] == Variant(2));
  51. }
  52. TEST_CASE("[Array] size(), clear(), and is_empty()") {
  53. Array arr;
  54. CHECK(arr.size() == 0);
  55. CHECK(arr.is_empty());
  56. arr.push_back(1);
  57. CHECK(arr.size() == 1);
  58. arr.clear();
  59. CHECK(arr.is_empty());
  60. CHECK(arr.size() == 0);
  61. }
  62. TEST_CASE("[Array] Assignment and comparison operators") {
  63. Array arr1;
  64. Array arr2;
  65. arr1.push_back(1);
  66. CHECK(arr1 != arr2);
  67. CHECK(arr1 > arr2);
  68. CHECK(arr1 >= arr2);
  69. arr2.push_back(2);
  70. CHECK(arr1 != arr2);
  71. CHECK(arr1 < arr2);
  72. CHECK(arr1 <= arr2);
  73. CHECK(arr2 > arr1);
  74. CHECK(arr2 >= arr1);
  75. Array arr3 = arr2;
  76. CHECK(arr3 == arr2);
  77. }
  78. TEST_CASE("[Array] append_array()") {
  79. Array arr1;
  80. Array arr2;
  81. arr1.push_back(1);
  82. arr1.append_array(arr2);
  83. CHECK(arr1.size() == 1);
  84. arr2.push_back(2);
  85. arr1.append_array(arr2);
  86. CHECK(arr1.size() == 2);
  87. CHECK(int(arr1[0]) == 1);
  88. CHECK(int(arr1[1]) == 2);
  89. }
  90. TEST_CASE("[Array] resize(), insert(), and erase()") {
  91. Array arr;
  92. arr.resize(2);
  93. CHECK(arr.size() == 2);
  94. arr.insert(0, 1);
  95. CHECK(int(arr[0]) == 1);
  96. arr.insert(0, 2);
  97. CHECK(int(arr[0]) == 2);
  98. arr.erase(2);
  99. CHECK(int(arr[0]) == 1);
  100. arr.resize(0);
  101. CHECK(arr.size() == 0);
  102. arr.insert(0, 8);
  103. CHECK(arr.size() == 1);
  104. arr.insert(1, 16);
  105. CHECK(int(arr[1]) == 16);
  106. arr.insert(-1, 3);
  107. CHECK(int(arr[1]) == 3);
  108. }
  109. TEST_CASE("[Array] front() and back()") {
  110. Array arr;
  111. arr.push_back(1);
  112. CHECK(int(arr.front()) == 1);
  113. CHECK(int(arr.back()) == 1);
  114. arr.push_back(3);
  115. CHECK(int(arr.front()) == 1);
  116. CHECK(int(arr.back()) == 3);
  117. }
  118. TEST_CASE("[Array] has() and count()") {
  119. Array arr = { 1, 1 };
  120. CHECK(arr.has(1));
  121. CHECK(!arr.has(2));
  122. CHECK(arr.count(1) == 2);
  123. CHECK(arr.count(2) == 0);
  124. }
  125. TEST_CASE("[Array] remove_at()") {
  126. Array arr = { 1, 2 };
  127. arr.remove_at(0);
  128. CHECK(arr.size() == 1);
  129. CHECK(int(arr[0]) == 2);
  130. arr.remove_at(0);
  131. CHECK(arr.size() == 0);
  132. // Negative index.
  133. arr.push_back(3);
  134. arr.push_back(4);
  135. arr.remove_at(-1);
  136. CHECK(arr.size() == 1);
  137. CHECK(int(arr[0]) == 3);
  138. arr.remove_at(-1);
  139. CHECK(arr.size() == 0);
  140. // The array is now empty; try to use `remove_at()` again.
  141. // Normally, this prints an error message so we silence it.
  142. ERR_PRINT_OFF;
  143. arr.remove_at(0);
  144. ERR_PRINT_ON;
  145. CHECK(arr.size() == 0);
  146. }
  147. TEST_CASE("[Array] get()") {
  148. Array arr = { 1 };
  149. CHECK(int(arr.get(0)) == 1);
  150. }
  151. TEST_CASE("[Array] sort()") {
  152. Array arr = { 3, 4, 2, 1 };
  153. arr.sort();
  154. int val = 1;
  155. for (int i = 0; i < arr.size(); i++) {
  156. CHECK(int(arr[i]) == val);
  157. val++;
  158. }
  159. }
  160. TEST_CASE("[Array] push_front(), pop_front(), pop_back()") {
  161. Array arr;
  162. arr.push_front(1);
  163. arr.push_front(2);
  164. CHECK(int(arr[0]) == 2);
  165. arr.pop_front();
  166. CHECK(int(arr[0]) == 1);
  167. CHECK(arr.size() == 1);
  168. arr.push_front(2);
  169. arr.push_front(3);
  170. arr.pop_back();
  171. CHECK(int(arr[1]) == 2);
  172. CHECK(arr.size() == 2);
  173. }
  174. TEST_CASE("[Array] pop_at()") {
  175. ErrorDetector ed;
  176. Array arr = { 2, 4, 6, 8, 10 };
  177. REQUIRE(int(arr.pop_at(2)) == 6);
  178. REQUIRE(arr.size() == 4);
  179. CHECK(int(arr[0]) == 2);
  180. CHECK(int(arr[1]) == 4);
  181. CHECK(int(arr[2]) == 8);
  182. CHECK(int(arr[3]) == 10);
  183. REQUIRE(int(arr.pop_at(2)) == 8);
  184. REQUIRE(arr.size() == 3);
  185. CHECK(int(arr[0]) == 2);
  186. CHECK(int(arr[1]) == 4);
  187. CHECK(int(arr[2]) == 10);
  188. // Negative index.
  189. REQUIRE(int(arr.pop_at(-1)) == 10);
  190. REQUIRE(arr.size() == 2);
  191. CHECK(int(arr[0]) == 2);
  192. CHECK(int(arr[1]) == 4);
  193. // Invalid pop.
  194. ed.clear();
  195. ERR_PRINT_OFF;
  196. const Variant ret = arr.pop_at(-15);
  197. ERR_PRINT_ON;
  198. REQUIRE(ret.is_null());
  199. CHECK(ed.has_error);
  200. REQUIRE(int(arr.pop_at(0)) == 2);
  201. REQUIRE(arr.size() == 1);
  202. CHECK(int(arr[0]) == 4);
  203. REQUIRE(int(arr.pop_at(0)) == 4);
  204. REQUIRE(arr.is_empty());
  205. // Pop from empty array.
  206. ed.clear();
  207. REQUIRE(arr.pop_at(24).is_null());
  208. CHECK_FALSE(ed.has_error);
  209. }
  210. TEST_CASE("[Array] max() and min()") {
  211. Array arr;
  212. arr.push_back(3);
  213. arr.push_front(4);
  214. arr.push_back(5);
  215. arr.push_back(2);
  216. int max = int(arr.max());
  217. int min = int(arr.min());
  218. CHECK(max == 5);
  219. CHECK(min == 2);
  220. }
  221. TEST_CASE("[Array] slice()") {
  222. Array array = { 0, 1, 2, 3, 4, 5 };
  223. Array slice0 = array.slice(0, 0);
  224. CHECK(slice0.size() == 0);
  225. Array slice1 = array.slice(1, 3);
  226. CHECK(slice1.size() == 2);
  227. CHECK(slice1[0] == Variant(1));
  228. CHECK(slice1[1] == Variant(2));
  229. Array slice2 = array.slice(1, -1);
  230. CHECK(slice2.size() == 4);
  231. CHECK(slice2[0] == Variant(1));
  232. CHECK(slice2[1] == Variant(2));
  233. CHECK(slice2[2] == Variant(3));
  234. CHECK(slice2[3] == Variant(4));
  235. Array slice3 = array.slice(3);
  236. CHECK(slice3.size() == 3);
  237. CHECK(slice3[0] == Variant(3));
  238. CHECK(slice3[1] == Variant(4));
  239. CHECK(slice3[2] == Variant(5));
  240. Array slice4 = array.slice(2, -2);
  241. CHECK(slice4.size() == 2);
  242. CHECK(slice4[0] == Variant(2));
  243. CHECK(slice4[1] == Variant(3));
  244. Array slice5 = array.slice(-2);
  245. CHECK(slice5.size() == 2);
  246. CHECK(slice5[0] == Variant(4));
  247. CHECK(slice5[1] == Variant(5));
  248. Array slice6 = array.slice(2, 42);
  249. CHECK(slice6.size() == 4);
  250. CHECK(slice6[0] == Variant(2));
  251. CHECK(slice6[1] == Variant(3));
  252. CHECK(slice6[2] == Variant(4));
  253. CHECK(slice6[3] == Variant(5));
  254. Array slice7 = array.slice(4, 0, -2);
  255. CHECK(slice7.size() == 2);
  256. CHECK(slice7[0] == Variant(4));
  257. CHECK(slice7[1] == Variant(2));
  258. Array slice8 = array.slice(5, 0, -2);
  259. CHECK(slice8.size() == 3);
  260. CHECK(slice8[0] == Variant(5));
  261. CHECK(slice8[1] == Variant(3));
  262. CHECK(slice8[2] == Variant(1));
  263. Array slice9 = array.slice(10, 0, -2);
  264. CHECK(slice9.size() == 3);
  265. CHECK(slice9[0] == Variant(5));
  266. CHECK(slice9[1] == Variant(3));
  267. CHECK(slice9[2] == Variant(1));
  268. Array slice10 = array.slice(2, -10, -1);
  269. CHECK(slice10.size() == 3);
  270. CHECK(slice10[0] == Variant(2));
  271. CHECK(slice10[1] == Variant(1));
  272. CHECK(slice10[2] == Variant(0));
  273. ERR_PRINT_OFF;
  274. Array slice11 = array.slice(4, 1);
  275. CHECK(slice11.size() == 0);
  276. Array slice12 = array.slice(3, -4);
  277. CHECK(slice12.size() == 0);
  278. ERR_PRINT_ON;
  279. Array slice13 = Array().slice(1);
  280. CHECK(slice13.size() == 0);
  281. Array slice14 = array.slice(6);
  282. CHECK(slice14.size() == 0);
  283. }
  284. TEST_CASE("[Array] Duplicate array") {
  285. // a = [1, [2, 2], {3: 3}]
  286. Array a = { 1, { 2, 2 }, Dictionary({ { 3, 3 } }) };
  287. // Deep copy
  288. Array deep_a = a.duplicate(true);
  289. CHECK_MESSAGE(deep_a.id() != a.id(), "Should create a new array");
  290. CHECK_MESSAGE(Array(deep_a[1]).id() != Array(a[1]).id(), "Should clone nested array");
  291. CHECK_MESSAGE(Dictionary(deep_a[2]).id() != Dictionary(a[2]).id(), "Should clone nested dictionary");
  292. CHECK_EQ(deep_a, a);
  293. deep_a.push_back(1);
  294. CHECK_NE(deep_a, a);
  295. deep_a.pop_back();
  296. Array(deep_a[1]).push_back(1);
  297. CHECK_NE(deep_a, a);
  298. Array(deep_a[1]).pop_back();
  299. CHECK_EQ(deep_a, a);
  300. // Shallow copy
  301. Array shallow_a = a.duplicate(false);
  302. CHECK_MESSAGE(shallow_a.id() != a.id(), "Should create a new array");
  303. CHECK_MESSAGE(Array(shallow_a[1]).id() == Array(a[1]).id(), "Should keep nested array");
  304. CHECK_MESSAGE(Dictionary(shallow_a[2]).id() == Dictionary(a[2]).id(), "Should keep nested dictionary");
  305. CHECK_EQ(shallow_a, a);
  306. Array(shallow_a).push_back(1);
  307. CHECK_NE(shallow_a, a);
  308. }
  309. TEST_CASE("[Array] Duplicate recursive array") {
  310. // Self recursive
  311. Array a;
  312. a.push_back(a);
  313. Array a_shallow = a.duplicate(false);
  314. CHECK_EQ(a, a_shallow);
  315. // Deep copy of recursive array ends up with recursion limit and return
  316. // an invalid result (multiple nested arrays), the point is we should
  317. // not end up with a segfault and an error log should be printed
  318. ERR_PRINT_OFF;
  319. a.duplicate(true);
  320. ERR_PRINT_ON;
  321. // Nested recursive
  322. Array a1;
  323. Array a2;
  324. a2.push_back(a1);
  325. a1.push_back(a2);
  326. Array a1_shallow = a1.duplicate(false);
  327. CHECK_EQ(a1, a1_shallow);
  328. // Same deep copy issue as above
  329. ERR_PRINT_OFF;
  330. a1.duplicate(true);
  331. ERR_PRINT_ON;
  332. // Break the recursivity otherwise Array teardown will leak memory
  333. a.clear();
  334. a1.clear();
  335. a2.clear();
  336. }
  337. TEST_CASE("[Array] Hash array") {
  338. // a = [1, [2, 2], {3: 3}]
  339. Array a = { 1, { 2, 2 }, Dictionary({ { 3, 3 } }) };
  340. uint32_t original_hash = a.hash();
  341. a.push_back(1);
  342. CHECK_NE(a.hash(), original_hash);
  343. a.pop_back();
  344. CHECK_EQ(a.hash(), original_hash);
  345. Array(a[1]).push_back(1);
  346. CHECK_NE(a.hash(), original_hash);
  347. Array(a[1]).pop_back();
  348. CHECK_EQ(a.hash(), original_hash);
  349. (Dictionary(a[2]))[1] = 1;
  350. CHECK_NE(a.hash(), original_hash);
  351. Dictionary(a[2]).erase(1);
  352. CHECK_EQ(a.hash(), original_hash);
  353. Array a2 = a.duplicate(true);
  354. CHECK_EQ(a2.hash(), a.hash());
  355. }
  356. TEST_CASE("[Array] Hash recursive array") {
  357. Array a1;
  358. a1.push_back(a1);
  359. Array a2;
  360. a2.push_back(a2);
  361. // Hash should reach recursion limit
  362. ERR_PRINT_OFF;
  363. CHECK_EQ(a1.hash(), a2.hash());
  364. ERR_PRINT_ON;
  365. // Break the recursivity otherwise Array teardown will leak memory
  366. a1.clear();
  367. a2.clear();
  368. }
  369. TEST_CASE("[Array] Empty comparison") {
  370. Array a1;
  371. Array a2;
  372. // test both operator== and operator!=
  373. CHECK_EQ(a1, a2);
  374. CHECK_FALSE(a1 != a2);
  375. }
  376. TEST_CASE("[Array] Flat comparison") {
  377. Array a1 = { 1 };
  378. Array a2 = { 1 };
  379. Array other_a = { 2 };
  380. // test both operator== and operator!=
  381. CHECK_EQ(a1, a1); // compare self
  382. CHECK_FALSE(a1 != a1);
  383. CHECK_EQ(a1, a2); // different equivalent arrays
  384. CHECK_FALSE(a1 != a2);
  385. CHECK_NE(a1, other_a); // different arrays with different content
  386. CHECK_FALSE(a1 == other_a);
  387. }
  388. TEST_CASE("[Array] Nested array comparison") {
  389. // a1 = [[[1], 2], 3]
  390. Array a1 = { { { 1 }, 2 }, 3 };
  391. Array a2 = a1.duplicate(true);
  392. // other_a = [[[1, 0], 2], 3]
  393. Array other_a = { { { 1, 0 }, 2 }, 3 };
  394. // test both operator== and operator!=
  395. CHECK_EQ(a1, a1); // compare self
  396. CHECK_FALSE(a1 != a1);
  397. CHECK_EQ(a1, a2); // different equivalent arrays
  398. CHECK_FALSE(a1 != a2);
  399. CHECK_NE(a1, other_a); // different arrays with different content
  400. CHECK_FALSE(a1 == other_a);
  401. }
  402. TEST_CASE("[Array] Nested dictionary comparison") {
  403. // a1 = [{1: 2}, 3]
  404. Array a1 = { Dictionary({ { 1, 2 } }), 3 };
  405. Array a2 = a1.duplicate(true);
  406. // other_a = [{1: 0}, 3]
  407. Array other_a = { Dictionary({ { 1, 0 } }), 3 };
  408. // test both operator== and operator!=
  409. CHECK_EQ(a1, a1); // compare self
  410. CHECK_FALSE(a1 != a1);
  411. CHECK_EQ(a1, a2); // different equivalent arrays
  412. CHECK_FALSE(a1 != a2);
  413. CHECK_NE(a1, other_a); // different arrays with different content
  414. CHECK_FALSE(a1 == other_a);
  415. }
  416. TEST_CASE("[Array] Recursive comparison") {
  417. Array a1;
  418. a1.push_back(a1);
  419. Array a2;
  420. a2.push_back(a2);
  421. // Comparison should reach recursion limit
  422. ERR_PRINT_OFF;
  423. CHECK_EQ(a1, a2);
  424. CHECK_FALSE(a1 != a2);
  425. ERR_PRINT_ON;
  426. a1.push_back(1);
  427. a2.push_back(1);
  428. // Comparison should reach recursion limit
  429. ERR_PRINT_OFF;
  430. CHECK_EQ(a1, a2);
  431. CHECK_FALSE(a1 != a2);
  432. ERR_PRINT_ON;
  433. a1.push_back(1);
  434. a2.push_back(2);
  435. // Comparison should reach recursion limit
  436. ERR_PRINT_OFF;
  437. CHECK_NE(a1, a2);
  438. CHECK_FALSE(a1 == a2);
  439. ERR_PRINT_ON;
  440. // Break the recursivity otherwise Array tearndown will leak memory
  441. a1.clear();
  442. a2.clear();
  443. }
  444. TEST_CASE("[Array] Recursive self comparison") {
  445. Array a1;
  446. Array a2;
  447. a2.push_back(a1);
  448. a1.push_back(a2);
  449. CHECK_EQ(a1, a1);
  450. CHECK_FALSE(a1 != a1);
  451. // Break the recursivity otherwise Array tearndown will leak memory
  452. a1.clear();
  453. a2.clear();
  454. }
  455. TEST_CASE("[Array] Iteration") {
  456. Array a1 = { 1, 2, 3 };
  457. Array a2 = { 1, 2, 3 };
  458. int idx = 0;
  459. for (Variant &E : a1) {
  460. CHECK_EQ(int(a2[idx]), int(E));
  461. idx++;
  462. }
  463. CHECK_EQ(idx, a1.size());
  464. idx = 0;
  465. for (const Variant &E : (const Array &)a1) {
  466. CHECK_EQ(int(a2[idx]), int(E));
  467. idx++;
  468. }
  469. CHECK_EQ(idx, a1.size());
  470. a1.clear();
  471. }
  472. TEST_CASE("[Array] Iteration and modification") {
  473. Array a1 = { 1, 2, 3 };
  474. Array a2 = { 2, 3, 4 };
  475. Array a3 = { 1, 2, 3 };
  476. Array a4 = { 1, 2, 3 };
  477. a3.make_read_only();
  478. int idx = 0;
  479. for (Variant &E : a1) {
  480. E = a2[idx];
  481. idx++;
  482. }
  483. CHECK_EQ(a1, a2);
  484. // Ensure read-only is respected.
  485. idx = 0;
  486. for (Variant &E : a3) {
  487. E = a2[idx];
  488. }
  489. CHECK_EQ(a3, a4);
  490. a1.clear();
  491. a2.clear();
  492. a4.clear();
  493. }
  494. TEST_CASE("[Array] Typed copying") {
  495. TypedArray<int> a1 = { 1 };
  496. TypedArray<double> a2 = { 1.0 };
  497. Array a3 = a1;
  498. TypedArray<int> a4 = a3;
  499. Array a5 = a2;
  500. TypedArray<int> a6 = a5;
  501. a3[0] = 2;
  502. a4[0] = 3;
  503. // Same typed TypedArray should be shared.
  504. CHECK_EQ(a1[0], Variant(3));
  505. CHECK_EQ(a3[0], Variant(3));
  506. CHECK_EQ(a4[0], Variant(3));
  507. a5[0] = 2.0;
  508. a6[0] = 3.0;
  509. // Different typed TypedArray should not be shared.
  510. CHECK_EQ(a2[0], Variant(2.0));
  511. CHECK_EQ(a5[0], Variant(2.0));
  512. CHECK_EQ(a6[0], Variant(3.0));
  513. a1.clear();
  514. a2.clear();
  515. a3.clear();
  516. a4.clear();
  517. a5.clear();
  518. a6.clear();
  519. }
  520. static bool _find_custom_callable(const Variant &p_val) {
  521. return (int)p_val % 2 == 0;
  522. }
  523. TEST_CASE("[Array] Test find_custom") {
  524. Array a1 = { 1, 3, 4, 5, 8, 9 };
  525. // Find first even number.
  526. int index = a1.find_custom(callable_mp_static(_find_custom_callable));
  527. CHECK_EQ(index, 2);
  528. }
  529. TEST_CASE("[Array] Test rfind_custom") {
  530. Array a1 = { 1, 3, 4, 5, 8, 9 };
  531. // Find last even number.
  532. int index = a1.rfind_custom(callable_mp_static(_find_custom_callable));
  533. CHECK_EQ(index, 4);
  534. }
  535. } // namespace TestArray