test_dictionary.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620
  1. /**************************************************************************/
  2. /* test_dictionary.h */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #pragma once
  31. #include "core/variant/typed_dictionary.h"
  32. #include "tests/test_macros.h"
  33. namespace TestDictionary {
  34. TEST_CASE("[Dictionary] Assignment using bracket notation ([])") {
  35. Dictionary map;
  36. map["Hello"] = 0;
  37. CHECK(int(map["Hello"]) == 0);
  38. map["Hello"] = 3;
  39. CHECK(int(map["Hello"]) == 3);
  40. map["World!"] = 4;
  41. CHECK(int(map["World!"]) == 4);
  42. map[StringName("HelloName")] = 6;
  43. CHECK(int(map[StringName("HelloName")]) == 6);
  44. CHECK(int(map.find_key(6).get_type()) == Variant::STRING_NAME);
  45. map[StringName("HelloName")] = 7;
  46. CHECK(int(map[StringName("HelloName")]) == 7);
  47. // Test String and StringName are equivalent.
  48. map[StringName("Hello")] = 8;
  49. CHECK(int(map["Hello"]) == 8);
  50. map["Hello"] = 9;
  51. CHECK(int(map[StringName("Hello")]) == 9);
  52. // Test non-string keys, since keys can be of any Variant type.
  53. map[12345] = -5;
  54. CHECK(int(map[12345]) == -5);
  55. map[false] = 128;
  56. CHECK(int(map[false]) == 128);
  57. map[Vector2(10, 20)] = 30;
  58. CHECK(int(map[Vector2(10, 20)]) == 30);
  59. map[0] = 400;
  60. CHECK(int(map[0]) == 400);
  61. // Check that assigning 0 doesn't overwrite the value for `false`.
  62. CHECK(int(map[false]) == 128);
  63. // Ensure read-only maps aren't modified by non-existing keys.
  64. const int length = map.size();
  65. map.make_read_only();
  66. CHECK(int(map["This key does not exist"].get_type()) == Variant::NIL);
  67. CHECK(map.size() == length);
  68. }
  69. TEST_CASE("[Dictionary] List init") {
  70. Dictionary dict{
  71. { 0, "int" },
  72. { "packed_string_array", PackedStringArray({ "array", "of", "values" }) },
  73. { "key", Dictionary({ { "nested", 200 } }) },
  74. { Vector2(), "v2" },
  75. };
  76. CHECK(dict.size() == 4);
  77. CHECK(dict[0] == "int");
  78. CHECK(PackedStringArray(dict["packed_string_array"])[2] == "values");
  79. CHECK(Dictionary(dict["key"])["nested"] == Variant(200));
  80. CHECK(dict[Vector2()] == "v2");
  81. TypedDictionary<double, double> tdict{
  82. { 0.0, 1.0 },
  83. { 5.0, 2.0 },
  84. };
  85. CHECK_EQ(tdict[0.0], Variant(1.0));
  86. CHECK_EQ(tdict[5.0], Variant(2.0));
  87. }
  88. TEST_CASE("[Dictionary] get_key_list()") {
  89. Dictionary map;
  90. LocalVector<Variant> keys;
  91. keys = map.get_key_list();
  92. CHECK(keys.is_empty());
  93. map[1] = 3;
  94. keys = map.get_key_list();
  95. CHECK(keys.size() == 1);
  96. CHECK(int(keys[0]) == 1);
  97. map[2] = 4;
  98. keys = map.get_key_list();
  99. CHECK(keys.size() == 2);
  100. }
  101. TEST_CASE("[Dictionary] get_key_at_index()") {
  102. Dictionary map;
  103. map[4] = 3;
  104. Variant val = map.get_key_at_index(0);
  105. CHECK(int(val) == 4);
  106. map[3] = 1;
  107. val = map.get_key_at_index(0);
  108. CHECK(int(val) == 4);
  109. val = map.get_key_at_index(1);
  110. CHECK(int(val) == 3);
  111. }
  112. TEST_CASE("[Dictionary] getptr()") {
  113. Dictionary map;
  114. map[1] = 3;
  115. Variant *key = map.getptr(1);
  116. CHECK(int(*key) == 3);
  117. key = map.getptr(2);
  118. CHECK(key == nullptr);
  119. }
  120. TEST_CASE("[Dictionary] get_valid()") {
  121. Dictionary map;
  122. map[1] = 3;
  123. Variant val = map.get_valid(1);
  124. CHECK(int(val) == 3);
  125. }
  126. TEST_CASE("[Dictionary] get()") {
  127. Dictionary map;
  128. map[1] = 3;
  129. Variant val = map.get(1, -1);
  130. CHECK(int(val) == 3);
  131. }
  132. TEST_CASE("[Dictionary] size(), empty() and clear()") {
  133. Dictionary map;
  134. CHECK(map.size() == 0);
  135. CHECK(map.is_empty());
  136. map[1] = 3;
  137. CHECK(map.size() == 1);
  138. CHECK(!map.is_empty());
  139. map.clear();
  140. CHECK(map.size() == 0);
  141. CHECK(map.is_empty());
  142. }
  143. TEST_CASE("[Dictionary] has() and has_all()") {
  144. Dictionary map;
  145. CHECK(map.has(1) == false);
  146. map[1] = 3;
  147. CHECK(map.has(1));
  148. Array keys;
  149. keys.push_back(1);
  150. CHECK(map.has_all(keys));
  151. keys.push_back(2);
  152. CHECK(map.has_all(keys) == false);
  153. }
  154. TEST_CASE("[Dictionary] keys() and values()") {
  155. Dictionary map;
  156. Array keys = map.keys();
  157. Array values = map.values();
  158. CHECK(keys.is_empty());
  159. CHECK(values.is_empty());
  160. map[1] = 3;
  161. keys = map.keys();
  162. values = map.values();
  163. CHECK(int(keys[0]) == 1);
  164. CHECK(int(values[0]) == 3);
  165. }
  166. TEST_CASE("[Dictionary] Duplicate dictionary") {
  167. // d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
  168. Dictionary k2 = { { 2, 2 } };
  169. Array k3 = { 3 };
  170. Dictionary d = {
  171. { 1, Dictionary({ { 1, 1 } }) },
  172. { k2, Array({ 2 }) },
  173. { k3, 3 }
  174. };
  175. // Deep copy
  176. Dictionary deep_d = d.duplicate(true);
  177. CHECK_MESSAGE(deep_d.id() != d.id(), "Should create a new dictionary");
  178. CHECK_MESSAGE(Dictionary(deep_d[1]).id() != Dictionary(d[1]).id(), "Should clone nested dictionary");
  179. CHECK_MESSAGE(Array(deep_d[k2]).id() != Array(d[k2]).id(), "Should clone nested array");
  180. CHECK_EQ(deep_d, d);
  181. deep_d[0] = 0;
  182. CHECK_NE(deep_d, d);
  183. deep_d.erase(0);
  184. Dictionary(deep_d[1]).operator[](0) = 0;
  185. CHECK_NE(deep_d, d);
  186. Dictionary(deep_d[1]).erase(0);
  187. CHECK_EQ(deep_d, d);
  188. // Keys should also be copied
  189. k2[0] = 0;
  190. CHECK_NE(deep_d, d);
  191. k2.erase(0);
  192. CHECK_EQ(deep_d, d);
  193. k3.push_back(0);
  194. CHECK_NE(deep_d, d);
  195. k3.pop_back();
  196. CHECK_EQ(deep_d, d);
  197. // Shallow copy
  198. Dictionary shallow_d = d.duplicate(false);
  199. CHECK_MESSAGE(shallow_d.id() != d.id(), "Should create a new array");
  200. CHECK_MESSAGE(Dictionary(shallow_d[1]).id() == Dictionary(d[1]).id(), "Should keep nested dictionary");
  201. CHECK_MESSAGE(Array(shallow_d[k2]).id() == Array(d[k2]).id(), "Should keep nested array");
  202. CHECK_EQ(shallow_d, d);
  203. shallow_d[0] = 0;
  204. CHECK_NE(shallow_d, d);
  205. shallow_d.erase(0);
  206. #if 0 // TODO: recursion in dict key currently is buggy
  207. // Keys should also be shallowed
  208. k2[0] = 0;
  209. CHECK_EQ(shallow_d, d);
  210. k2.erase(0);
  211. k3.push_back(0);
  212. CHECK_EQ(shallow_d, d);
  213. #endif
  214. }
  215. TEST_CASE("[Dictionary] Duplicate recursive dictionary") {
  216. // Self recursive
  217. Dictionary d;
  218. d[1] = d;
  219. Dictionary d_shallow = d.duplicate(false);
  220. CHECK_EQ(d, d_shallow);
  221. // Deep copy of recursive dictionary endup with recursion limit and return
  222. // an invalid result (multiple nested dictionaries), the point is we should
  223. // not end up with a segfault and an error log should be printed
  224. ERR_PRINT_OFF;
  225. d.duplicate(true);
  226. ERR_PRINT_ON;
  227. // Nested recursive
  228. Dictionary d1;
  229. Dictionary d2;
  230. d1[2] = d2;
  231. d2[1] = d1;
  232. Dictionary d1_shallow = d1.duplicate(false);
  233. CHECK_EQ(d1, d1_shallow);
  234. // Same deep copy issue as above
  235. ERR_PRINT_OFF;
  236. d1.duplicate(true);
  237. ERR_PRINT_ON;
  238. // Break the recursivity otherwise Dictionary teardown will leak memory
  239. d.clear();
  240. d1.clear();
  241. d2.clear();
  242. }
  243. #if 0 // TODO: duplicate recursion in dict key is currently buggy
  244. TEST_CASE("[Dictionary] Duplicate recursive dictionary on keys") {
  245. // Self recursive
  246. Dictionary d;
  247. d[d] = d;
  248. Dictionary d_shallow = d.duplicate(false);
  249. CHECK_EQ(d, d_shallow);
  250. // Deep copy of recursive dictionary endup with recursion limit and return
  251. // an invalid result (multiple nested dictionaries), the point is we should
  252. // not end up with a segfault and an error log should be printed
  253. ERR_PRINT_OFF;
  254. d.duplicate(true);
  255. ERR_PRINT_ON;
  256. // Nested recursive
  257. Dictionary d1;
  258. Dictionary d2;
  259. d1[d2] = d2;
  260. d2[d1] = d1;
  261. Dictionary d1_shallow = d1.duplicate(false);
  262. CHECK_EQ(d1, d1_shallow);
  263. // Same deep copy issue as above
  264. ERR_PRINT_OFF;
  265. d1.duplicate(true);
  266. ERR_PRINT_ON;
  267. // Break the recursivity otherwise Dictionary teardown will leak memory
  268. d.clear();
  269. d1.clear();
  270. d2.clear();
  271. }
  272. #endif
  273. TEST_CASE("[Dictionary] Hash dictionary") {
  274. // d = {1: {1: 1}, {2: 2}: [2], [3]: 3}
  275. Dictionary k2 = { { 2, 2 } };
  276. Array k3 = { 3 };
  277. Dictionary d = {
  278. { 1, Dictionary({ { 1, 1 } }) },
  279. { k2, Array({ 2 }) },
  280. { k3, 3 }
  281. };
  282. uint32_t original_hash = d.hash();
  283. // Modify dict change the hash
  284. d[0] = 0;
  285. CHECK_NE(d.hash(), original_hash);
  286. d.erase(0);
  287. CHECK_EQ(d.hash(), original_hash);
  288. // Modify nested item change the hash
  289. Dictionary(d[1]).operator[](0) = 0;
  290. CHECK_NE(d.hash(), original_hash);
  291. Dictionary(d[1]).erase(0);
  292. Array(d[k2]).push_back(0);
  293. CHECK_NE(d.hash(), original_hash);
  294. Array(d[k2]).pop_back();
  295. // Modify a key change the hash
  296. k2[0] = 0;
  297. CHECK_NE(d.hash(), original_hash);
  298. k2.erase(0);
  299. CHECK_EQ(d.hash(), original_hash);
  300. k3.push_back(0);
  301. CHECK_NE(d.hash(), original_hash);
  302. k3.pop_back();
  303. CHECK_EQ(d.hash(), original_hash);
  304. // Duplication doesn't change the hash
  305. Dictionary d2 = d.duplicate(true);
  306. CHECK_EQ(d2.hash(), original_hash);
  307. }
  308. TEST_CASE("[Dictionary] Hash recursive dictionary") {
  309. Dictionary d;
  310. d[1] = d;
  311. // Hash should reach recursion limit, we just make sure this doesn't blow up
  312. ERR_PRINT_OFF;
  313. d.hash();
  314. ERR_PRINT_ON;
  315. // Break the recursivity otherwise Dictionary teardown will leak memory
  316. d.clear();
  317. }
  318. #if 0 // TODO: recursion in dict key is currently buggy
  319. TEST_CASE("[Dictionary] Hash recursive dictionary on keys") {
  320. Dictionary d;
  321. d[d] = 1;
  322. // Hash should reach recursion limit, we just make sure this doesn't blow up
  323. ERR_PRINT_OFF;
  324. d.hash();
  325. ERR_PRINT_ON;
  326. // Break the recursivity otherwise Dictionary teardown will leak memory
  327. d.clear();
  328. }
  329. #endif
  330. TEST_CASE("[Dictionary] Empty comparison") {
  331. Dictionary d1;
  332. Dictionary d2;
  333. // test both operator== and operator!=
  334. CHECK_EQ(d1, d2);
  335. CHECK_FALSE(d1 != d2);
  336. }
  337. TEST_CASE("[Dictionary] Flat comparison") {
  338. Dictionary d1 = { { 1, 1 } };
  339. Dictionary d2 = { { 1, 1 } };
  340. Dictionary other_d = { { 2, 1 } };
  341. // test both operator== and operator!=
  342. CHECK_EQ(d1, d1); // compare self
  343. CHECK_FALSE(d1 != d1);
  344. CHECK_EQ(d1, d2); // different equivalent arrays
  345. CHECK_FALSE(d1 != d2);
  346. CHECK_NE(d1, other_d); // different arrays with different content
  347. CHECK_FALSE(d1 == other_d);
  348. }
  349. TEST_CASE("[Dictionary] Nested dictionary comparison") {
  350. // d1 = {1: {2: {3: 4}}}
  351. Dictionary d1 = { { 1, Dictionary({ { 2, Dictionary({ { 3, 4 } }) } }) } };
  352. Dictionary d2 = d1.duplicate(true);
  353. // other_d = {1: {2: {3: 0}}}
  354. Dictionary other_d = { { 1, Dictionary({ { 2, Dictionary({ { 3, 0 } }) } }) } };
  355. // test both operator== and operator!=
  356. CHECK_EQ(d1, d1); // compare self
  357. CHECK_FALSE(d1 != d1);
  358. CHECK_EQ(d1, d2); // different equivalent arrays
  359. CHECK_FALSE(d1 != d2);
  360. CHECK_NE(d1, other_d); // different arrays with different content
  361. CHECK_FALSE(d1 == other_d);
  362. }
  363. TEST_CASE("[Dictionary] Nested array comparison") {
  364. // d1 = {1: [2, 3]}
  365. Dictionary d1 = { { 1, { 2, 3 } } };
  366. Dictionary d2 = d1.duplicate(true);
  367. // other_d = {1: [2, 0]}
  368. Dictionary other_d = { { 1, { 2, 0 } } };
  369. // test both operator== and operator!=
  370. CHECK_EQ(d1, d1); // compare self
  371. CHECK_FALSE(d1 != d1);
  372. CHECK_EQ(d1, d2); // different equivalent arrays
  373. CHECK_FALSE(d1 != d2);
  374. CHECK_NE(d1, other_d); // different arrays with different content
  375. CHECK_FALSE(d1 == other_d);
  376. }
  377. TEST_CASE("[Dictionary] Recursive comparison") {
  378. Dictionary d1;
  379. d1[1] = d1;
  380. Dictionary d2;
  381. d2[1] = d2;
  382. // Comparison should reach recursion limit
  383. ERR_PRINT_OFF;
  384. CHECK_EQ(d1, d2);
  385. CHECK_FALSE(d1 != d2);
  386. ERR_PRINT_ON;
  387. d1[2] = 2;
  388. d2[2] = 2;
  389. // Comparison should reach recursion limit
  390. ERR_PRINT_OFF;
  391. CHECK_EQ(d1, d2);
  392. CHECK_FALSE(d1 != d2);
  393. ERR_PRINT_ON;
  394. d1[3] = 3;
  395. d2[3] = 0;
  396. // Comparison should reach recursion limit
  397. ERR_PRINT_OFF;
  398. CHECK_NE(d1, d2);
  399. CHECK_FALSE(d1 == d2);
  400. ERR_PRINT_ON;
  401. // Break the recursivity otherwise Dictionary teardown will leak memory
  402. d1.clear();
  403. d2.clear();
  404. }
  405. #if 0 // TODO: recursion in dict key is currently buggy
  406. TEST_CASE("[Dictionary] Recursive comparison on keys") {
  407. Dictionary d1;
  408. // Hash computation should reach recursion limit
  409. ERR_PRINT_OFF;
  410. d1[d1] = 1;
  411. ERR_PRINT_ON;
  412. Dictionary d2;
  413. // Hash computation should reach recursion limit
  414. ERR_PRINT_OFF;
  415. d2[d2] = 1;
  416. ERR_PRINT_ON;
  417. // Comparison should reach recursion limit
  418. ERR_PRINT_OFF;
  419. CHECK_EQ(d1, d2);
  420. CHECK_FALSE(d1 != d2);
  421. ERR_PRINT_ON;
  422. d1[2] = 2;
  423. d2[2] = 2;
  424. // Comparison should reach recursion limit
  425. ERR_PRINT_OFF;
  426. CHECK_EQ(d1, d2);
  427. CHECK_FALSE(d1 != d2);
  428. ERR_PRINT_ON;
  429. d1[3] = 3;
  430. d2[3] = 0;
  431. // Comparison should reach recursion limit
  432. ERR_PRINT_OFF;
  433. CHECK_NE(d1, d2);
  434. CHECK_FALSE(d1 == d2);
  435. ERR_PRINT_ON;
  436. // Break the recursivity otherwise Dictionary teardown will leak memory
  437. d1.clear();
  438. d2.clear();
  439. }
  440. #endif
  441. TEST_CASE("[Dictionary] Recursive self comparison") {
  442. Dictionary d1;
  443. Dictionary d2;
  444. d1[1] = d2;
  445. d2[1] = d1;
  446. CHECK_EQ(d1, d1);
  447. CHECK_FALSE(d1 != d1);
  448. // Break the recursivity otherwise Dictionary teardown will leak memory
  449. d1.clear();
  450. d2.clear();
  451. }
  452. TEST_CASE("[Dictionary] Order and find") {
  453. Dictionary d;
  454. d[4] = "four";
  455. d[8] = "eight";
  456. d[12] = "twelve";
  457. d["4"] = "four";
  458. Array keys = { 4, 8, 12, "4" };
  459. CHECK_EQ(d.keys(), keys);
  460. CHECK_EQ(d.find_key("four"), Variant(4));
  461. CHECK_EQ(d.find_key("does not exist"), Variant());
  462. }
  463. TEST_CASE("[Dictionary] Typed copying") {
  464. TypedDictionary<int, int> d1;
  465. d1[0] = 1;
  466. TypedDictionary<double, double> d2;
  467. d2[0] = 1.0;
  468. Dictionary d3 = d1;
  469. TypedDictionary<int, int> d4 = d3;
  470. Dictionary d5 = d2;
  471. TypedDictionary<int, int> d6 = d5;
  472. d3[0] = 2;
  473. d4[0] = 3;
  474. // Same typed TypedDictionary should be shared.
  475. CHECK_EQ(d1[0], Variant(3));
  476. CHECK_EQ(d3[0], Variant(3));
  477. CHECK_EQ(d4[0], Variant(3));
  478. d5[0] = 2.0;
  479. d6[0] = 3.0;
  480. // Different typed TypedDictionary should not be shared.
  481. CHECK_EQ(d2[0], Variant(2.0));
  482. CHECK_EQ(d5[0], Variant(2.0));
  483. CHECK_EQ(d6[0], Variant(3.0));
  484. d1.clear();
  485. d2.clear();
  486. d3.clear();
  487. d4.clear();
  488. d5.clear();
  489. d6.clear();
  490. }
  491. TEST_CASE("[Dictionary] Iteration") {
  492. Dictionary a1 = { { 1, 2 }, { 3, 4 }, { 5, 6 } };
  493. Dictionary a2 = { { 1, 2 }, { 3, 4 }, { 5, 6 } };
  494. int idx = 0;
  495. for (const KeyValue<Variant, Variant> &kv : (const Dictionary &)a1) {
  496. CHECK_EQ(int(a2[kv.key]), int(kv.value));
  497. idx++;
  498. }
  499. CHECK_EQ(idx, a1.size());
  500. a1.clear();
  501. a2.clear();
  502. }
  503. TEST_CASE("[Dictionary] Object value init") {
  504. Object *a = memnew(Object);
  505. Object *b = memnew(Object);
  506. TypedDictionary<double, Object *> tdict = {
  507. { 0.0, a },
  508. { 5.0, b },
  509. };
  510. CHECK_EQ(tdict[0.0], Variant(a));
  511. CHECK_EQ(tdict[5.0], Variant(b));
  512. memdelete(a);
  513. memdelete(b);
  514. }
  515. TEST_CASE("[Dictionary] RefCounted value init") {
  516. Ref<RefCounted> a = memnew(RefCounted);
  517. Ref<RefCounted> b = memnew(RefCounted);
  518. TypedDictionary<double, Ref<RefCounted>> tdict = {
  519. { 0.0, a },
  520. { 5.0, b },
  521. };
  522. CHECK_EQ(tdict[0.0], Variant(a));
  523. CHECK_EQ(tdict[5.0], Variant(b));
  524. }
  525. } // namespace TestDictionary