123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851 |
- /*************************************************************************/
- /* Copyright (c) 2011-2021 Ivan Fratric and contributors. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /*************************************************************************/
- #include "polypartition.h"
- #include <math.h>
- #include <string.h>
- #include <algorithm>
- TPPLPoly::TPPLPoly() {
- hole = false;
- numpoints = 0;
- points = NULL;
- }
- TPPLPoly::~TPPLPoly() {
- if (points) {
- delete[] points;
- }
- }
- void TPPLPoly::Clear() {
- if (points) {
- delete[] points;
- }
- hole = false;
- numpoints = 0;
- points = NULL;
- }
- void TPPLPoly::Init(long numpoints) {
- Clear();
- this->numpoints = numpoints;
- points = new TPPLPoint[numpoints];
- }
- void TPPLPoly::Triangle(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
- Init(3);
- points[0] = p1;
- points[1] = p2;
- points[2] = p3;
- }
- TPPLPoly::TPPLPoly(const TPPLPoly &src) :
- TPPLPoly() {
- hole = src.hole;
- numpoints = src.numpoints;
- if (numpoints > 0) {
- points = new TPPLPoint[numpoints];
- memcpy(points, src.points, numpoints * sizeof(TPPLPoint));
- }
- }
- TPPLPoly &TPPLPoly::operator=(const TPPLPoly &src) {
- Clear();
- hole = src.hole;
- numpoints = src.numpoints;
- if (numpoints > 0) {
- points = new TPPLPoint[numpoints];
- memcpy(points, src.points, numpoints * sizeof(TPPLPoint));
- }
- return *this;
- }
- TPPLOrientation TPPLPoly::GetOrientation() const {
- long i1, i2;
- tppl_float area = 0;
- for (i1 = 0; i1 < numpoints; i1++) {
- i2 = i1 + 1;
- if (i2 == numpoints) {
- i2 = 0;
- }
- area += points[i1].x * points[i2].y - points[i1].y * points[i2].x;
- }
- if (area > 0) {
- return TPPL_ORIENTATION_CCW;
- }
- if (area < 0) {
- return TPPL_ORIENTATION_CW;
- }
- return TPPL_ORIENTATION_NONE;
- }
- void TPPLPoly::SetOrientation(TPPLOrientation orientation) {
- TPPLOrientation polyorientation = GetOrientation();
- if (polyorientation != TPPL_ORIENTATION_NONE && polyorientation != orientation) {
- Invert();
- }
- }
- void TPPLPoly::Invert() {
- std::reverse(points, points + numpoints);
- }
- TPPLPartition::PartitionVertex::PartitionVertex() :
- previous(NULL), next(NULL) {
- }
- TPPLPoint TPPLPartition::Normalize(const TPPLPoint &p) {
- TPPLPoint r;
- tppl_float n = sqrt(p.x * p.x + p.y * p.y);
- if (n != 0) {
- r = p / n;
- } else {
- r.x = 0;
- r.y = 0;
- }
- return r;
- }
- tppl_float TPPLPartition::Distance(const TPPLPoint &p1, const TPPLPoint &p2) {
- tppl_float dx, dy;
- dx = p2.x - p1.x;
- dy = p2.y - p1.y;
- return (sqrt(dx * dx + dy * dy));
- }
- // Checks if two lines intersect.
- int TPPLPartition::Intersects(TPPLPoint &p11, TPPLPoint &p12, TPPLPoint &p21, TPPLPoint &p22) {
- if ((p11.x == p21.x) && (p11.y == p21.y)) {
- return 0;
- }
- if ((p11.x == p22.x) && (p11.y == p22.y)) {
- return 0;
- }
- if ((p12.x == p21.x) && (p12.y == p21.y)) {
- return 0;
- }
- if ((p12.x == p22.x) && (p12.y == p22.y)) {
- return 0;
- }
- TPPLPoint v1ort, v2ort, v;
- tppl_float dot11, dot12, dot21, dot22;
- v1ort.x = p12.y - p11.y;
- v1ort.y = p11.x - p12.x;
- v2ort.x = p22.y - p21.y;
- v2ort.y = p21.x - p22.x;
- v = p21 - p11;
- dot21 = v.x * v1ort.x + v.y * v1ort.y;
- v = p22 - p11;
- dot22 = v.x * v1ort.x + v.y * v1ort.y;
- v = p11 - p21;
- dot11 = v.x * v2ort.x + v.y * v2ort.y;
- v = p12 - p21;
- dot12 = v.x * v2ort.x + v.y * v2ort.y;
- if (dot11 * dot12 > 0) {
- return 0;
- }
- if (dot21 * dot22 > 0) {
- return 0;
- }
- return 1;
- }
- // Removes holes from inpolys by merging them with non-holes.
- int TPPLPartition::RemoveHoles(TPPLPolyList *inpolys, TPPLPolyList *outpolys) {
- TPPLPolyList polys;
- TPPLPolyList::Element *holeiter, *polyiter, *iter, *iter2;
- long i, i2, holepointindex, polypointindex;
- TPPLPoint holepoint, polypoint, bestpolypoint;
- TPPLPoint linep1, linep2;
- TPPLPoint v1, v2;
- TPPLPoly newpoly;
- bool hasholes;
- bool pointvisible;
- bool pointfound;
- // Check for the trivial case of no holes.
- hasholes = false;
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- if (iter->get().IsHole()) {
- hasholes = true;
- break;
- }
- }
- if (!hasholes) {
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- outpolys->push_back(iter->get());
- }
- return 1;
- }
- polys = *inpolys;
- while (1) {
- // Find the hole point with the largest x.
- hasholes = false;
- for (iter = polys.front(); iter; iter = iter->next()) {
- if (!iter->get().IsHole()) {
- continue;
- }
- if (!hasholes) {
- hasholes = true;
- holeiter = iter;
- holepointindex = 0;
- }
- for (i = 0; i < iter->get().GetNumPoints(); i++) {
- if (iter->get().GetPoint(i).x > holeiter->get().GetPoint(holepointindex).x) {
- holeiter = iter;
- holepointindex = i;
- }
- }
- }
- if (!hasholes) {
- break;
- }
- holepoint = holeiter->get().GetPoint(holepointindex);
- pointfound = false;
- for (iter = polys.front(); iter; iter = iter->next()) {
- if (iter->get().IsHole()) {
- continue;
- }
- for (i = 0; i < iter->get().GetNumPoints(); i++) {
- if (iter->get().GetPoint(i).x <= holepoint.x) {
- continue;
- }
- if (!InCone(iter->get().GetPoint((i + iter->get().GetNumPoints() - 1) % (iter->get().GetNumPoints())),
- iter->get().GetPoint(i),
- iter->get().GetPoint((i + 1) % (iter->get().GetNumPoints())),
- holepoint)) {
- continue;
- }
- polypoint = iter->get().GetPoint(i);
- if (pointfound) {
- v1 = Normalize(polypoint - holepoint);
- v2 = Normalize(bestpolypoint - holepoint);
- if (v2.x > v1.x) {
- continue;
- }
- }
- pointvisible = true;
- for (iter2 = polys.front(); iter2; iter2 = iter2->next()) {
- if (iter2->get().IsHole()) {
- continue;
- }
- for (i2 = 0; i2 < iter2->get().GetNumPoints(); i2++) {
- linep1 = iter2->get().GetPoint(i2);
- linep2 = iter2->get().GetPoint((i2 + 1) % (iter2->get().GetNumPoints()));
- if (Intersects(holepoint, polypoint, linep1, linep2)) {
- pointvisible = false;
- break;
- }
- }
- if (!pointvisible) {
- break;
- }
- }
- if (pointvisible) {
- pointfound = true;
- bestpolypoint = polypoint;
- polyiter = iter;
- polypointindex = i;
- }
- }
- }
- if (!pointfound) {
- return 0;
- }
- newpoly.Init(holeiter->get().GetNumPoints() + polyiter->get().GetNumPoints() + 2);
- i2 = 0;
- for (i = 0; i <= polypointindex; i++) {
- newpoly[i2] = polyiter->get().GetPoint(i);
- i2++;
- }
- for (i = 0; i <= holeiter->get().GetNumPoints(); i++) {
- newpoly[i2] = holeiter->get().GetPoint((i + holepointindex) % holeiter->get().GetNumPoints());
- i2++;
- }
- for (i = polypointindex; i < polyiter->get().GetNumPoints(); i++) {
- newpoly[i2] = polyiter->get().GetPoint(i);
- i2++;
- }
- polys.erase(holeiter);
- polys.erase(polyiter);
- polys.push_back(newpoly);
- }
- for (iter = polys.front(); iter; iter = iter->next()) {
- outpolys->push_back(iter->get());
- }
- return 1;
- }
- bool TPPLPartition::IsConvex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
- tppl_float tmp;
- tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
- if (tmp > 0) {
- return 1;
- } else {
- return 0;
- }
- }
- bool TPPLPartition::IsReflex(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3) {
- tppl_float tmp;
- tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
- if (tmp < 0) {
- return 1;
- } else {
- return 0;
- }
- }
- bool TPPLPartition::IsInside(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) {
- if (IsConvex(p1, p, p2)) {
- return false;
- }
- if (IsConvex(p2, p, p3)) {
- return false;
- }
- if (IsConvex(p3, p, p1)) {
- return false;
- }
- return true;
- }
- bool TPPLPartition::InCone(TPPLPoint &p1, TPPLPoint &p2, TPPLPoint &p3, TPPLPoint &p) {
- bool convex;
- convex = IsConvex(p1, p2, p3);
- if (convex) {
- if (!IsConvex(p1, p2, p)) {
- return false;
- }
- if (!IsConvex(p2, p3, p)) {
- return false;
- }
- return true;
- } else {
- if (IsConvex(p1, p2, p)) {
- return true;
- }
- if (IsConvex(p2, p3, p)) {
- return true;
- }
- return false;
- }
- }
- bool TPPLPartition::InCone(PartitionVertex *v, TPPLPoint &p) {
- TPPLPoint p1, p2, p3;
- p1 = v->previous->p;
- p2 = v->p;
- p3 = v->next->p;
- return InCone(p1, p2, p3, p);
- }
- void TPPLPartition::UpdateVertexReflexity(PartitionVertex *v) {
- PartitionVertex *v1 = NULL, *v3 = NULL;
- v1 = v->previous;
- v3 = v->next;
- v->isConvex = !IsReflex(v1->p, v->p, v3->p);
- }
- void TPPLPartition::UpdateVertex(PartitionVertex *v, PartitionVertex *vertices, long numvertices) {
- long i;
- PartitionVertex *v1 = NULL, *v3 = NULL;
- TPPLPoint vec1, vec3;
- v1 = v->previous;
- v3 = v->next;
- v->isConvex = IsConvex(v1->p, v->p, v3->p);
- vec1 = Normalize(v1->p - v->p);
- vec3 = Normalize(v3->p - v->p);
- v->angle = vec1.x * vec3.x + vec1.y * vec3.y;
- if (v->isConvex) {
- v->isEar = true;
- for (i = 0; i < numvertices; i++) {
- if ((vertices[i].p.x == v->p.x) && (vertices[i].p.y == v->p.y)) {
- continue;
- }
- if ((vertices[i].p.x == v1->p.x) && (vertices[i].p.y == v1->p.y)) {
- continue;
- }
- if ((vertices[i].p.x == v3->p.x) && (vertices[i].p.y == v3->p.y)) {
- continue;
- }
- if (IsInside(v1->p, v->p, v3->p, vertices[i].p)) {
- v->isEar = false;
- break;
- }
- }
- } else {
- v->isEar = false;
- }
- }
- // Triangulation by ear removal.
- int TPPLPartition::Triangulate_EC(TPPLPoly *poly, TPPLPolyList *triangles) {
- if (!poly->Valid()) {
- return 0;
- }
- long numvertices;
- PartitionVertex *vertices = NULL;
- PartitionVertex *ear = NULL;
- TPPLPoly triangle;
- long i, j;
- bool earfound;
- if (poly->GetNumPoints() < 3) {
- return 0;
- }
- if (poly->GetNumPoints() == 3) {
- triangles->push_back(*poly);
- return 1;
- }
- numvertices = poly->GetNumPoints();
- vertices = new PartitionVertex[numvertices];
- for (i = 0; i < numvertices; i++) {
- vertices[i].isActive = true;
- vertices[i].p = poly->GetPoint(i);
- if (i == (numvertices - 1)) {
- vertices[i].next = &(vertices[0]);
- } else {
- vertices[i].next = &(vertices[i + 1]);
- }
- if (i == 0) {
- vertices[i].previous = &(vertices[numvertices - 1]);
- } else {
- vertices[i].previous = &(vertices[i - 1]);
- }
- }
- for (i = 0; i < numvertices; i++) {
- UpdateVertex(&vertices[i], vertices, numvertices);
- }
- for (i = 0; i < numvertices - 3; i++) {
- earfound = false;
- // Find the most extruded ear.
- for (j = 0; j < numvertices; j++) {
- if (!vertices[j].isActive) {
- continue;
- }
- if (!vertices[j].isEar) {
- continue;
- }
- if (!earfound) {
- earfound = true;
- ear = &(vertices[j]);
- } else {
- if (vertices[j].angle > ear->angle) {
- ear = &(vertices[j]);
- }
- }
- }
- if (!earfound) {
- delete[] vertices;
- return 0;
- }
- triangle.Triangle(ear->previous->p, ear->p, ear->next->p);
- triangles->push_back(triangle);
- ear->isActive = false;
- ear->previous->next = ear->next;
- ear->next->previous = ear->previous;
- if (i == numvertices - 4) {
- break;
- }
- UpdateVertex(ear->previous, vertices, numvertices);
- UpdateVertex(ear->next, vertices, numvertices);
- }
- for (i = 0; i < numvertices; i++) {
- if (vertices[i].isActive) {
- triangle.Triangle(vertices[i].previous->p, vertices[i].p, vertices[i].next->p);
- triangles->push_back(triangle);
- break;
- }
- }
- delete[] vertices;
- return 1;
- }
- int TPPLPartition::Triangulate_EC(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
- TPPLPolyList outpolys;
- TPPLPolyList::Element *iter;
- if (!RemoveHoles(inpolys, &outpolys)) {
- return 0;
- }
- for (iter = outpolys.front(); iter; iter = iter->next()) {
- if (!Triangulate_EC(&(iter->get()), triangles)) {
- return 0;
- }
- }
- return 1;
- }
- int TPPLPartition::ConvexPartition_HM(TPPLPoly *poly, TPPLPolyList *parts) {
- if (!poly->Valid()) {
- return 0;
- }
- TPPLPolyList triangles;
- TPPLPolyList::Element *iter1, *iter2;
- TPPLPoly *poly1 = NULL, *poly2 = NULL;
- TPPLPoly newpoly;
- TPPLPoint d1, d2, p1, p2, p3;
- long i11, i12, i21, i22, i13, i23, j, k;
- bool isdiagonal;
- long numreflex;
- // Check if the poly is already convex.
- numreflex = 0;
- for (i11 = 0; i11 < poly->GetNumPoints(); i11++) {
- if (i11 == 0) {
- i12 = poly->GetNumPoints() - 1;
- } else {
- i12 = i11 - 1;
- }
- if (i11 == (poly->GetNumPoints() - 1)) {
- i13 = 0;
- } else {
- i13 = i11 + 1;
- }
- if (IsReflex(poly->GetPoint(i12), poly->GetPoint(i11), poly->GetPoint(i13))) {
- numreflex = 1;
- break;
- }
- }
- if (numreflex == 0) {
- parts->push_back(*poly);
- return 1;
- }
- if (!Triangulate_EC(poly, &triangles)) {
- return 0;
- }
- for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) {
- poly1 = &(iter1->get());
- for (i11 = 0; i11 < poly1->GetNumPoints(); i11++) {
- d1 = poly1->GetPoint(i11);
- i12 = (i11 + 1) % (poly1->GetNumPoints());
- d2 = poly1->GetPoint(i12);
- isdiagonal = false;
- for (iter2 = iter1; iter2; iter2 = iter2->next()) {
- if (iter1 == iter2) {
- continue;
- }
- poly2 = &(iter2->get());
- for (i21 = 0; i21 < poly2->GetNumPoints(); i21++) {
- if ((d2.x != poly2->GetPoint(i21).x) || (d2.y != poly2->GetPoint(i21).y)) {
- continue;
- }
- i22 = (i21 + 1) % (poly2->GetNumPoints());
- if ((d1.x != poly2->GetPoint(i22).x) || (d1.y != poly2->GetPoint(i22).y)) {
- continue;
- }
- isdiagonal = true;
- break;
- }
- if (isdiagonal) {
- break;
- }
- }
- if (!isdiagonal) {
- continue;
- }
- p2 = poly1->GetPoint(i11);
- if (i11 == 0) {
- i13 = poly1->GetNumPoints() - 1;
- } else {
- i13 = i11 - 1;
- }
- p1 = poly1->GetPoint(i13);
- if (i22 == (poly2->GetNumPoints() - 1)) {
- i23 = 0;
- } else {
- i23 = i22 + 1;
- }
- p3 = poly2->GetPoint(i23);
- if (!IsConvex(p1, p2, p3)) {
- continue;
- }
- p2 = poly1->GetPoint(i12);
- if (i12 == (poly1->GetNumPoints() - 1)) {
- i13 = 0;
- } else {
- i13 = i12 + 1;
- }
- p3 = poly1->GetPoint(i13);
- if (i21 == 0) {
- i23 = poly2->GetNumPoints() - 1;
- } else {
- i23 = i21 - 1;
- }
- p1 = poly2->GetPoint(i23);
- if (!IsConvex(p1, p2, p3)) {
- continue;
- }
- newpoly.Init(poly1->GetNumPoints() + poly2->GetNumPoints() - 2);
- k = 0;
- for (j = i12; j != i11; j = (j + 1) % (poly1->GetNumPoints())) {
- newpoly[k] = poly1->GetPoint(j);
- k++;
- }
- for (j = i22; j != i21; j = (j + 1) % (poly2->GetNumPoints())) {
- newpoly[k] = poly2->GetPoint(j);
- k++;
- }
- triangles.erase(iter2);
- iter1->get() = newpoly;
- poly1 = &(iter1->get());
- i11 = -1;
- continue;
- }
- }
- for (iter1 = triangles.front(); iter1; iter1 = iter1->next()) {
- parts->push_back(iter1->get());
- }
- return 1;
- }
- int TPPLPartition::ConvexPartition_HM(TPPLPolyList *inpolys, TPPLPolyList *parts) {
- TPPLPolyList outpolys;
- TPPLPolyList::Element *iter;
- if (!RemoveHoles(inpolys, &outpolys)) {
- return 0;
- }
- for (iter = outpolys.front(); iter; iter = iter->next()) {
- if (!ConvexPartition_HM(&(iter->get()), parts)) {
- return 0;
- }
- }
- return 1;
- }
- // Minimum-weight polygon triangulation by dynamic programming.
- // Time complexity: O(n^3)
- // Space complexity: O(n^2)
- int TPPLPartition::Triangulate_OPT(TPPLPoly *poly, TPPLPolyList *triangles) {
- if (!poly->Valid()) {
- return 0;
- }
- long i, j, k, gap, n;
- DPState **dpstates = NULL;
- TPPLPoint p1, p2, p3, p4;
- long bestvertex;
- tppl_float weight, minweight, d1, d2;
- Diagonal diagonal, newdiagonal;
- DiagonalList diagonals;
- TPPLPoly triangle;
- int ret = 1;
- n = poly->GetNumPoints();
- dpstates = new DPState *[n];
- for (i = 1; i < n; i++) {
- dpstates[i] = new DPState[i];
- }
- // Initialize states and visibility.
- for (i = 0; i < (n - 1); i++) {
- p1 = poly->GetPoint(i);
- for (j = i + 1; j < n; j++) {
- dpstates[j][i].visible = true;
- dpstates[j][i].weight = 0;
- dpstates[j][i].bestvertex = -1;
- if (j != (i + 1)) {
- p2 = poly->GetPoint(j);
- // Visibility check.
- if (i == 0) {
- p3 = poly->GetPoint(n - 1);
- } else {
- p3 = poly->GetPoint(i - 1);
- }
- if (i == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(i + 1);
- }
- if (!InCone(p3, p1, p4, p2)) {
- dpstates[j][i].visible = false;
- continue;
- }
- if (j == 0) {
- p3 = poly->GetPoint(n - 1);
- } else {
- p3 = poly->GetPoint(j - 1);
- }
- if (j == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(j + 1);
- }
- if (!InCone(p3, p2, p4, p1)) {
- dpstates[j][i].visible = false;
- continue;
- }
- for (k = 0; k < n; k++) {
- p3 = poly->GetPoint(k);
- if (k == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(k + 1);
- }
- if (Intersects(p1, p2, p3, p4)) {
- dpstates[j][i].visible = false;
- break;
- }
- }
- }
- }
- }
- dpstates[n - 1][0].visible = true;
- dpstates[n - 1][0].weight = 0;
- dpstates[n - 1][0].bestvertex = -1;
- for (gap = 2; gap < n; gap++) {
- for (i = 0; i < (n - gap); i++) {
- j = i + gap;
- if (!dpstates[j][i].visible) {
- continue;
- }
- bestvertex = -1;
- for (k = (i + 1); k < j; k++) {
- if (!dpstates[k][i].visible) {
- continue;
- }
- if (!dpstates[j][k].visible) {
- continue;
- }
- if (k <= (i + 1)) {
- d1 = 0;
- } else {
- d1 = Distance(poly->GetPoint(i), poly->GetPoint(k));
- }
- if (j <= (k + 1)) {
- d2 = 0;
- } else {
- d2 = Distance(poly->GetPoint(k), poly->GetPoint(j));
- }
- weight = dpstates[k][i].weight + dpstates[j][k].weight + d1 + d2;
- if ((bestvertex == -1) || (weight < minweight)) {
- bestvertex = k;
- minweight = weight;
- }
- }
- if (bestvertex == -1) {
- for (i = 1; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- return 0;
- }
- dpstates[j][i].bestvertex = bestvertex;
- dpstates[j][i].weight = minweight;
- }
- }
- newdiagonal.index1 = 0;
- newdiagonal.index2 = n - 1;
- diagonals.push_back(newdiagonal);
- while (!diagonals.is_empty()) {
- diagonal = diagonals.front()->get();
- diagonals.pop_front();
- bestvertex = dpstates[diagonal.index2][diagonal.index1].bestvertex;
- if (bestvertex == -1) {
- ret = 0;
- break;
- }
- triangle.Triangle(poly->GetPoint(diagonal.index1), poly->GetPoint(bestvertex), poly->GetPoint(diagonal.index2));
- triangles->push_back(triangle);
- if (bestvertex > (diagonal.index1 + 1)) {
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = bestvertex;
- diagonals.push_back(newdiagonal);
- }
- if (diagonal.index2 > (bestvertex + 1)) {
- newdiagonal.index1 = bestvertex;
- newdiagonal.index2 = diagonal.index2;
- diagonals.push_back(newdiagonal);
- }
- }
- for (i = 1; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- return ret;
- }
- void TPPLPartition::UpdateState(long a, long b, long w, long i, long j, DPState2 **dpstates) {
- Diagonal newdiagonal;
- DiagonalList *pairs = NULL;
- long w2;
- w2 = dpstates[a][b].weight;
- if (w > w2) {
- return;
- }
- pairs = &(dpstates[a][b].pairs);
- newdiagonal.index1 = i;
- newdiagonal.index2 = j;
- if (w < w2) {
- pairs->clear();
- pairs->push_front(newdiagonal);
- dpstates[a][b].weight = w;
- } else {
- if ((!pairs->is_empty()) && (i <= pairs->front()->get().index1)) {
- return;
- }
- while ((!pairs->is_empty()) && (pairs->front()->get().index2 >= j)) {
- pairs->pop_front();
- }
- pairs->push_front(newdiagonal);
- }
- }
- void TPPLPartition::TypeA(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
- DiagonalList *pairs = NULL;
- DiagonalList::Element *iter, *lastiter;
- long top;
- long w;
- if (!dpstates[i][j].visible) {
- return;
- }
- top = j;
- w = dpstates[i][j].weight;
- if (k - j > 1) {
- if (!dpstates[j][k].visible) {
- return;
- }
- w += dpstates[j][k].weight + 1;
- }
- if (j - i > 1) {
- pairs = &(dpstates[i][j].pairs);
- iter = pairs->back();
- lastiter = pairs->back();
- while (iter != pairs->front()) {
- iter--;
- if (!IsReflex(vertices[iter->get().index2].p, vertices[j].p, vertices[k].p)) {
- lastiter = iter;
- } else {
- break;
- }
- }
- if (lastiter == pairs->back()) {
- w++;
- } else {
- if (IsReflex(vertices[k].p, vertices[i].p, vertices[lastiter->get().index1].p)) {
- w++;
- } else {
- top = lastiter->get().index1;
- }
- }
- }
- UpdateState(i, k, w, top, j, dpstates);
- }
- void TPPLPartition::TypeB(long i, long j, long k, PartitionVertex *vertices, DPState2 **dpstates) {
- DiagonalList *pairs = NULL;
- DiagonalList::Element *iter, *lastiter;
- long top;
- long w;
- if (!dpstates[j][k].visible) {
- return;
- }
- top = j;
- w = dpstates[j][k].weight;
- if (j - i > 1) {
- if (!dpstates[i][j].visible) {
- return;
- }
- w += dpstates[i][j].weight + 1;
- }
- if (k - j > 1) {
- pairs = &(dpstates[j][k].pairs);
- iter = pairs->front();
- if ((!pairs->is_empty()) && (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p))) {
- lastiter = iter;
- while (iter) {
- if (!IsReflex(vertices[i].p, vertices[j].p, vertices[iter->get().index1].p)) {
- lastiter = iter;
- iter = iter->next();
- } else {
- break;
- }
- }
- if (IsReflex(vertices[lastiter->get().index2].p, vertices[k].p, vertices[i].p)) {
- w++;
- } else {
- top = lastiter->get().index2;
- }
- } else {
- w++;
- }
- }
- UpdateState(i, k, w, j, top, dpstates);
- }
- int TPPLPartition::ConvexPartition_OPT(TPPLPoly *poly, TPPLPolyList *parts) {
- if (!poly->Valid()) {
- return 0;
- }
- TPPLPoint p1, p2, p3, p4;
- PartitionVertex *vertices = NULL;
- DPState2 **dpstates = NULL;
- long i, j, k, n, gap;
- DiagonalList diagonals, diagonals2;
- Diagonal diagonal, newdiagonal;
- DiagonalList *pairs = NULL, *pairs2 = NULL;
- DiagonalList::Element *iter, *iter2;
- int ret;
- TPPLPoly newpoly;
- List<long> indices;
- List<long>::Element *iiter;
- bool ijreal, jkreal;
- n = poly->GetNumPoints();
- vertices = new PartitionVertex[n];
- dpstates = new DPState2 *[n];
- for (i = 0; i < n; i++) {
- dpstates[i] = new DPState2[n];
- }
- // Initialize vertex information.
- for (i = 0; i < n; i++) {
- vertices[i].p = poly->GetPoint(i);
- vertices[i].isActive = true;
- if (i == 0) {
- vertices[i].previous = &(vertices[n - 1]);
- } else {
- vertices[i].previous = &(vertices[i - 1]);
- }
- if (i == (poly->GetNumPoints() - 1)) {
- vertices[i].next = &(vertices[0]);
- } else {
- vertices[i].next = &(vertices[i + 1]);
- }
- }
- for (i = 1; i < n; i++) {
- UpdateVertexReflexity(&(vertices[i]));
- }
- // Initialize states and visibility.
- for (i = 0; i < (n - 1); i++) {
- p1 = poly->GetPoint(i);
- for (j = i + 1; j < n; j++) {
- dpstates[i][j].visible = true;
- if (j == i + 1) {
- dpstates[i][j].weight = 0;
- } else {
- dpstates[i][j].weight = 2147483647;
- }
- if (j != (i + 1)) {
- p2 = poly->GetPoint(j);
- // Visibility check.
- if (!InCone(&vertices[i], p2)) {
- dpstates[i][j].visible = false;
- continue;
- }
- if (!InCone(&vertices[j], p1)) {
- dpstates[i][j].visible = false;
- continue;
- }
- for (k = 0; k < n; k++) {
- p3 = poly->GetPoint(k);
- if (k == (n - 1)) {
- p4 = poly->GetPoint(0);
- } else {
- p4 = poly->GetPoint(k + 1);
- }
- if (Intersects(p1, p2, p3, p4)) {
- dpstates[i][j].visible = false;
- break;
- }
- }
- }
- }
- }
- for (i = 0; i < (n - 2); i++) {
- j = i + 2;
- if (dpstates[i][j].visible) {
- dpstates[i][j].weight = 0;
- newdiagonal.index1 = i + 1;
- newdiagonal.index2 = i + 1;
- dpstates[i][j].pairs.push_back(newdiagonal);
- }
- }
- dpstates[0][n - 1].visible = true;
- vertices[0].isConvex = false; // By convention.
- for (gap = 3; gap < n; gap++) {
- for (i = 0; i < n - gap; i++) {
- if (vertices[i].isConvex) {
- continue;
- }
- k = i + gap;
- if (dpstates[i][k].visible) {
- if (!vertices[k].isConvex) {
- for (j = i + 1; j < k; j++) {
- TypeA(i, j, k, vertices, dpstates);
- }
- } else {
- for (j = i + 1; j < (k - 1); j++) {
- if (vertices[j].isConvex) {
- continue;
- }
- TypeA(i, j, k, vertices, dpstates);
- }
- TypeA(i, k - 1, k, vertices, dpstates);
- }
- }
- }
- for (k = gap; k < n; k++) {
- if (vertices[k].isConvex) {
- continue;
- }
- i = k - gap;
- if ((vertices[i].isConvex) && (dpstates[i][k].visible)) {
- TypeB(i, i + 1, k, vertices, dpstates);
- for (j = i + 2; j < k; j++) {
- if (vertices[j].isConvex) {
- continue;
- }
- TypeB(i, j, k, vertices, dpstates);
- }
- }
- }
- }
- // Recover solution.
- ret = 1;
- newdiagonal.index1 = 0;
- newdiagonal.index2 = n - 1;
- diagonals.push_front(newdiagonal);
- while (!diagonals.is_empty()) {
- diagonal = diagonals.front()->get();
- diagonals.pop_front();
- if ((diagonal.index2 - diagonal.index1) <= 1) {
- continue;
- }
- pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
- if (pairs->is_empty()) {
- ret = 0;
- break;
- }
- if (!vertices[diagonal.index1].isConvex) {
- iter = pairs->back();
- iter--;
- j = iter->get().index2;
- newdiagonal.index1 = j;
- newdiagonal.index2 = diagonal.index2;
- diagonals.push_front(newdiagonal);
- if ((j - diagonal.index1) > 1) {
- if (iter->get().index1 != iter->get().index2) {
- pairs2 = &(dpstates[diagonal.index1][j].pairs);
- while (1) {
- if (pairs2->is_empty()) {
- ret = 0;
- break;
- }
- iter2 = pairs2->back();
- iter2--;
- if (iter->get().index1 != iter2->get().index1) {
- pairs2->pop_back();
- } else {
- break;
- }
- }
- if (ret == 0) {
- break;
- }
- }
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = j;
- diagonals.push_front(newdiagonal);
- }
- } else {
- iter = pairs->front();
- j = iter->get().index1;
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = j;
- diagonals.push_front(newdiagonal);
- if ((diagonal.index2 - j) > 1) {
- if (iter->get().index1 != iter->get().index2) {
- pairs2 = &(dpstates[j][diagonal.index2].pairs);
- while (1) {
- if (pairs2->is_empty()) {
- ret = 0;
- break;
- }
- iter2 = pairs2->front();
- if (iter->get().index2 != iter2->get().index2) {
- pairs2->pop_front();
- } else {
- break;
- }
- }
- if (ret == 0) {
- break;
- }
- }
- newdiagonal.index1 = j;
- newdiagonal.index2 = diagonal.index2;
- diagonals.push_front(newdiagonal);
- }
- }
- }
- if (ret == 0) {
- for (i = 0; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- delete[] vertices;
- return ret;
- }
- newdiagonal.index1 = 0;
- newdiagonal.index2 = n - 1;
- diagonals.push_front(newdiagonal);
- while (!diagonals.is_empty()) {
- diagonal = diagonals.front()->get();
- diagonals.pop_front();
- if ((diagonal.index2 - diagonal.index1) <= 1) {
- continue;
- }
- indices.clear();
- diagonals2.clear();
- indices.push_back(diagonal.index1);
- indices.push_back(diagonal.index2);
- diagonals2.push_front(diagonal);
- while (!diagonals2.is_empty()) {
- diagonal = diagonals2.front()->get();
- diagonals2.pop_front();
- if ((diagonal.index2 - diagonal.index1) <= 1) {
- continue;
- }
- ijreal = true;
- jkreal = true;
- pairs = &(dpstates[diagonal.index1][diagonal.index2].pairs);
- if (!vertices[diagonal.index1].isConvex) {
- iter = pairs->back();
- iter--;
- j = iter->get().index2;
- if (iter->get().index1 != iter->get().index2) {
- ijreal = false;
- }
- } else {
- iter = pairs->front();
- j = iter->get().index1;
- if (iter->get().index1 != iter->get().index2) {
- jkreal = false;
- }
- }
- newdiagonal.index1 = diagonal.index1;
- newdiagonal.index2 = j;
- if (ijreal) {
- diagonals.push_back(newdiagonal);
- } else {
- diagonals2.push_back(newdiagonal);
- }
- newdiagonal.index1 = j;
- newdiagonal.index2 = diagonal.index2;
- if (jkreal) {
- diagonals.push_back(newdiagonal);
- } else {
- diagonals2.push_back(newdiagonal);
- }
- indices.push_back(j);
- }
- //std::sort(indices.begin(), indices.end());
- indices.sort();
- newpoly.Init((long)indices.size());
- k = 0;
- for (iiter = indices.front(); iiter != indices.back(); iiter = iiter->next()) {
- newpoly[k] = vertices[iiter->get()].p;
- k++;
- }
- parts->push_back(newpoly);
- }
- for (i = 0; i < n; i++) {
- delete[] dpstates[i];
- }
- delete[] dpstates;
- delete[] vertices;
- return ret;
- }
- // Creates a monotone partition of a list of polygons that
- // can contain holes. Triangulates a set of polygons by
- // first partitioning them into monotone polygons.
- // Time complexity: O(n*log(n)), n is the number of vertices.
- // Space complexity: O(n)
- // The algorithm used here is outlined in the book
- // "Computational Geometry: Algorithms and Applications"
- // by Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
- int TPPLPartition::MonotonePartition(TPPLPolyList *inpolys, TPPLPolyList *monotonePolys) {
- TPPLPolyList::Element *iter;
- MonotoneVertex *vertices = NULL;
- long i, numvertices, vindex, vindex2, newnumvertices, maxnumvertices;
- long polystartindex, polyendindex;
- TPPLPoly *poly = NULL;
- MonotoneVertex *v = NULL, *v2 = NULL, *vprev = NULL, *vnext = NULL;
- ScanLineEdge newedge;
- bool error = false;
- numvertices = 0;
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- numvertices += iter->get().GetNumPoints();
- }
- maxnumvertices = numvertices * 3;
- vertices = new MonotoneVertex[maxnumvertices];
- newnumvertices = numvertices;
- polystartindex = 0;
- for (iter = inpolys->front(); iter; iter = iter->next()) {
- poly = &(iter->get());
- polyendindex = polystartindex + poly->GetNumPoints() - 1;
- for (i = 0; i < poly->GetNumPoints(); i++) {
- vertices[i + polystartindex].p = poly->GetPoint(i);
- if (i == 0) {
- vertices[i + polystartindex].previous = polyendindex;
- } else {
- vertices[i + polystartindex].previous = i + polystartindex - 1;
- }
- if (i == (poly->GetNumPoints() - 1)) {
- vertices[i + polystartindex].next = polystartindex;
- } else {
- vertices[i + polystartindex].next = i + polystartindex + 1;
- }
- }
- polystartindex = polyendindex + 1;
- }
- // Construct the priority queue.
- long *priority = new long[numvertices];
- for (i = 0; i < numvertices; i++) {
- priority[i] = i;
- }
- std::sort(priority, &(priority[numvertices]), VertexSorter(vertices));
- // Determine vertex types.
- TPPLVertexType *vertextypes = new TPPLVertexType[maxnumvertices];
- for (i = 0; i < numvertices; i++) {
- v = &(vertices[i]);
- vprev = &(vertices[v->previous]);
- vnext = &(vertices[v->next]);
- if (Below(vprev->p, v->p) && Below(vnext->p, v->p)) {
- if (IsConvex(vnext->p, vprev->p, v->p)) {
- vertextypes[i] = TPPL_VERTEXTYPE_START;
- } else {
- vertextypes[i] = TPPL_VERTEXTYPE_SPLIT;
- }
- } else if (Below(v->p, vprev->p) && Below(v->p, vnext->p)) {
- if (IsConvex(vnext->p, vprev->p, v->p)) {
- vertextypes[i] = TPPL_VERTEXTYPE_END;
- } else {
- vertextypes[i] = TPPL_VERTEXTYPE_MERGE;
- }
- } else {
- vertextypes[i] = TPPL_VERTEXTYPE_REGULAR;
- }
- }
- // Helpers.
- long *helpers = new long[maxnumvertices];
- // Binary search tree that holds edges intersecting the scanline.
- // Note that while set doesn't actually have to be implemented as
- // a tree, complexity requirements for operations are the same as
- // for the balanced binary search tree.
- RBSet<ScanLineEdge> edgeTree;
- // Store iterators to the edge tree elements.
- // This makes deleting existing edges much faster.
- RBSet<ScanLineEdge>::Element **edgeTreeIterators, *edgeIter;
- edgeTreeIterators = new RBSet<ScanLineEdge>::Element *[maxnumvertices];
- //Pair<RBSet<ScanLineEdge>::iterator, bool> edgeTreeRet;
- for (i = 0; i < numvertices; i++) {
- edgeTreeIterators[i] = nullptr;
- }
- // For each vertex.
- for (i = 0; i < numvertices; i++) {
- vindex = priority[i];
- v = &(vertices[vindex]);
- vindex2 = vindex;
- v2 = v;
- // Depending on the vertex type, do the appropriate action.
- // Comments in the following sections are copied from
- // "Computational Geometry: Algorithms and Applications".
- // Notation: e_i = e subscript i, v_i = v subscript i, etc.
- switch (vertextypes[vindex]) {
- case TPPL_VERTEXTYPE_START:
- // Insert e_i in T and set helper(e_i) to v_i.
- newedge.p1 = v->p;
- newedge.p2 = vertices[v->next].p;
- newedge.index = vindex;
- //edgeTreeRet = edgeTree.insert(newedge);
- //edgeTreeIterators[vindex] = edgeTreeRet.first;
- edgeTreeIterators[vindex] = edgeTree.insert(newedge);
- helpers[vindex] = vindex;
- break;
- case TPPL_VERTEXTYPE_END:
- if (edgeTreeIterators[v->previous] == edgeTree.back()) {
- error = true;
- break;
- }
- // If helper(e_i - 1) is a merge vertex
- if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting vi to helper(e_i - 1) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- }
- // Delete e_i - 1 from T
- edgeTree.erase(edgeTreeIterators[v->previous]);
- break;
- case TPPL_VERTEXTYPE_SPLIT:
- // Search in T to find the edge e_j directly left of v_i.
- newedge.p1 = v->p;
- newedge.p2 = v->p;
- edgeIter = edgeTree.lower_bound(newedge);
- if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
- error = true;
- break;
- }
- edgeIter--;
- // Insert the diagonal connecting vi to helper(e_j) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- vindex2 = newnumvertices - 2;
- v2 = &(vertices[vindex2]);
- // helper(e_j) in v_i.
- helpers[edgeIter->get().index] = vindex;
- // Insert e_i in T and set helper(e_i) to v_i.
- newedge.p1 = v2->p;
- newedge.p2 = vertices[v2->next].p;
- newedge.index = vindex2;
- //edgeTreeRet = edgeTree.insert(newedge);
- //edgeTreeIterators[vindex2] = edgeTreeRet.first;
- edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
- helpers[vindex2] = vindex2;
- break;
- case TPPL_VERTEXTYPE_MERGE:
- if (edgeTreeIterators[v->previous] == edgeTree.back()) {
- error = true;
- break;
- }
- // if helper(e_i - 1) is a merge vertex
- if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting vi to helper(e_i - 1) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- vindex2 = newnumvertices - 2;
- v2 = &(vertices[vindex2]);
- }
- // Delete e_i - 1 from T.
- edgeTree.erase(edgeTreeIterators[v->previous]);
- // Search in T to find the edge e_j directly left of v_i.
- newedge.p1 = v->p;
- newedge.p2 = v->p;
- edgeIter = edgeTree.lower_bound(newedge);
- if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
- error = true;
- break;
- }
- edgeIter--;
- // If helper(e_j) is a merge vertex.
- if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting v_i to helper(e_j) in D.
- AddDiagonal(vertices, &newnumvertices, vindex2, helpers[edgeIter->get().index],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- }
- // helper(e_j) <- v_i
- helpers[edgeIter->get().index] = vindex2;
- break;
- case TPPL_VERTEXTYPE_REGULAR:
- // If the interior of P lies to the right of v_i.
- if (Below(v->p, vertices[v->previous].p)) {
- if (edgeTreeIterators[v->previous] == edgeTree.back()) {
- error = true;
- break;
- }
- // If helper(e_i - 1) is a merge vertex.
- if (vertextypes[helpers[v->previous]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting v_i to helper(e_i - 1) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[v->previous],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- vindex2 = newnumvertices - 2;
- v2 = &(vertices[vindex2]);
- }
- // Delete e_i - 1 from T.
- edgeTree.erase(edgeTreeIterators[v->previous]);
- // Insert e_i in T and set helper(e_i) to v_i.
- newedge.p1 = v2->p;
- newedge.p2 = vertices[v2->next].p;
- newedge.index = vindex2;
- //edgeTreeRet = edgeTree.insert(newedge);
- //edgeTreeIterators[vindex2] = edgeTreeRet.first;
- edgeTreeIterators[vindex2] = edgeTree.insert(newedge);
- helpers[vindex2] = vindex;
- } else {
- // Search in T to find the edge e_j directly left of v_i.
- newedge.p1 = v->p;
- newedge.p2 = v->p;
- edgeIter = edgeTree.lower_bound(newedge);
- if (edgeIter == nullptr || edgeIter == edgeTree.front()) {
- error = true;
- break;
- }
- edgeIter = edgeIter->prev();
- // If helper(e_j) is a merge vertex.
- if (vertextypes[helpers[edgeIter->get().index]] == TPPL_VERTEXTYPE_MERGE) {
- // Insert the diagonal connecting v_i to helper(e_j) in D.
- AddDiagonal(vertices, &newnumvertices, vindex, helpers[edgeIter->get().index],
- vertextypes, edgeTreeIterators, &edgeTree, helpers);
- }
- // helper(e_j) <- v_i.
- helpers[edgeIter->get().index] = vindex;
- }
- break;
- }
- if (error)
- break;
- }
- char *used = new char[newnumvertices];
- memset(used, 0, newnumvertices * sizeof(char));
- if (!error) {
- // Return result.
- long size;
- TPPLPoly mpoly;
- for (i = 0; i < newnumvertices; i++) {
- if (used[i]) {
- continue;
- }
- v = &(vertices[i]);
- vnext = &(vertices[v->next]);
- size = 1;
- while (vnext != v) {
- vnext = &(vertices[vnext->next]);
- size++;
- }
- mpoly.Init(size);
- v = &(vertices[i]);
- mpoly[0] = v->p;
- vnext = &(vertices[v->next]);
- size = 1;
- used[i] = 1;
- used[v->next] = 1;
- while (vnext != v) {
- mpoly[size] = vnext->p;
- used[vnext->next] = 1;
- vnext = &(vertices[vnext->next]);
- size++;
- }
- monotonePolys->push_back(mpoly);
- }
- }
- // Cleanup.
- delete[] vertices;
- delete[] priority;
- delete[] vertextypes;
- delete[] edgeTreeIterators;
- delete[] helpers;
- delete[] used;
- if (error) {
- return 0;
- } else {
- return 1;
- }
- }
- // Adds a diagonal to the doubly-connected list of vertices.
- void TPPLPartition::AddDiagonal(MonotoneVertex *vertices, long *numvertices, long index1, long index2,
- TPPLVertexType *vertextypes, RBSet<ScanLineEdge>::Element **edgeTreeIterators,
- RBSet<ScanLineEdge> *edgeTree, long *helpers) {
- long newindex1, newindex2;
- newindex1 = *numvertices;
- (*numvertices)++;
- newindex2 = *numvertices;
- (*numvertices)++;
- vertices[newindex1].p = vertices[index1].p;
- vertices[newindex2].p = vertices[index2].p;
- vertices[newindex2].next = vertices[index2].next;
- vertices[newindex1].next = vertices[index1].next;
- vertices[vertices[index2].next].previous = newindex2;
- vertices[vertices[index1].next].previous = newindex1;
- vertices[index1].next = newindex2;
- vertices[newindex2].previous = index1;
- vertices[index2].next = newindex1;
- vertices[newindex1].previous = index2;
- // Update all relevant structures.
- vertextypes[newindex1] = vertextypes[index1];
- edgeTreeIterators[newindex1] = edgeTreeIterators[index1];
- helpers[newindex1] = helpers[index1];
- if (edgeTreeIterators[newindex1] != edgeTree->back()) {
- edgeTreeIterators[newindex1]->get().index = newindex1;
- }
- vertextypes[newindex2] = vertextypes[index2];
- edgeTreeIterators[newindex2] = edgeTreeIterators[index2];
- helpers[newindex2] = helpers[index2];
- if (edgeTreeIterators[newindex2] != edgeTree->back()) {
- edgeTreeIterators[newindex2]->get().index = newindex2;
- }
- }
- bool TPPLPartition::Below(TPPLPoint &p1, TPPLPoint &p2) {
- if (p1.y < p2.y) {
- return true;
- } else if (p1.y == p2.y) {
- if (p1.x < p2.x) {
- return true;
- }
- }
- return false;
- }
- // Sorts in the falling order of y values, if y is equal, x is used instead.
- bool TPPLPartition::VertexSorter::operator()(long index1, long index2) {
- if (vertices[index1].p.y > vertices[index2].p.y) {
- return true;
- } else if (vertices[index1].p.y == vertices[index2].p.y) {
- if (vertices[index1].p.x > vertices[index2].p.x) {
- return true;
- }
- }
- return false;
- }
- bool TPPLPartition::ScanLineEdge::IsConvex(const TPPLPoint &p1, const TPPLPoint &p2, const TPPLPoint &p3) const {
- tppl_float tmp;
- tmp = (p3.y - p1.y) * (p2.x - p1.x) - (p3.x - p1.x) * (p2.y - p1.y);
- if (tmp > 0) {
- return 1;
- }
- return 0;
- }
- bool TPPLPartition::ScanLineEdge::operator<(const ScanLineEdge &other) const {
- if (other.p1.y == other.p2.y) {
- if (p1.y == p2.y) {
- return (p1.y < other.p1.y);
- }
- return IsConvex(p1, p2, other.p1);
- } else if (p1.y == p2.y) {
- return !IsConvex(other.p1, other.p2, p1);
- } else if (p1.y < other.p1.y) {
- return !IsConvex(other.p1, other.p2, p1);
- } else {
- return IsConvex(p1, p2, other.p1);
- }
- }
- // Triangulates monotone polygon.
- // Time complexity: O(n)
- // Space complexity: O(n)
- int TPPLPartition::TriangulateMonotone(TPPLPoly *inPoly, TPPLPolyList *triangles) {
- if (!inPoly->Valid()) {
- return 0;
- }
- long i, i2, j, topindex, bottomindex, leftindex, rightindex, vindex;
- TPPLPoint *points = NULL;
- long numpoints;
- TPPLPoly triangle;
- numpoints = inPoly->GetNumPoints();
- points = inPoly->GetPoints();
- // Trivial case.
- if (numpoints == 3) {
- triangles->push_back(*inPoly);
- return 1;
- }
- topindex = 0;
- bottomindex = 0;
- for (i = 1; i < numpoints; i++) {
- if (Below(points[i], points[bottomindex])) {
- bottomindex = i;
- }
- if (Below(points[topindex], points[i])) {
- topindex = i;
- }
- }
- // Check if the poly is really monotone.
- i = topindex;
- while (i != bottomindex) {
- i2 = i + 1;
- if (i2 >= numpoints) {
- i2 = 0;
- }
- if (!Below(points[i2], points[i])) {
- return 0;
- }
- i = i2;
- }
- i = bottomindex;
- while (i != topindex) {
- i2 = i + 1;
- if (i2 >= numpoints) {
- i2 = 0;
- }
- if (!Below(points[i], points[i2])) {
- return 0;
- }
- i = i2;
- }
- char *vertextypes = new char[numpoints];
- long *priority = new long[numpoints];
- // Merge left and right vertex chains.
- priority[0] = topindex;
- vertextypes[topindex] = 0;
- leftindex = topindex + 1;
- if (leftindex >= numpoints) {
- leftindex = 0;
- }
- rightindex = topindex - 1;
- if (rightindex < 0) {
- rightindex = numpoints - 1;
- }
- for (i = 1; i < (numpoints - 1); i++) {
- if (leftindex == bottomindex) {
- priority[i] = rightindex;
- rightindex--;
- if (rightindex < 0) {
- rightindex = numpoints - 1;
- }
- vertextypes[priority[i]] = -1;
- } else if (rightindex == bottomindex) {
- priority[i] = leftindex;
- leftindex++;
- if (leftindex >= numpoints) {
- leftindex = 0;
- }
- vertextypes[priority[i]] = 1;
- } else {
- if (Below(points[leftindex], points[rightindex])) {
- priority[i] = rightindex;
- rightindex--;
- if (rightindex < 0) {
- rightindex = numpoints - 1;
- }
- vertextypes[priority[i]] = -1;
- } else {
- priority[i] = leftindex;
- leftindex++;
- if (leftindex >= numpoints) {
- leftindex = 0;
- }
- vertextypes[priority[i]] = 1;
- }
- }
- }
- priority[i] = bottomindex;
- vertextypes[bottomindex] = 0;
- long *stack = new long[numpoints];
- long stackptr = 0;
- stack[0] = priority[0];
- stack[1] = priority[1];
- stackptr = 2;
- // For each vertex from top to bottom trim as many triangles as possible.
- for (i = 2; i < (numpoints - 1); i++) {
- vindex = priority[i];
- if (vertextypes[vindex] != vertextypes[stack[stackptr - 1]]) {
- for (j = 0; j < (stackptr - 1); j++) {
- if (vertextypes[vindex] == 1) {
- triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]);
- } else {
- triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]);
- }
- triangles->push_back(triangle);
- }
- stack[0] = priority[i - 1];
- stack[1] = priority[i];
- stackptr = 2;
- } else {
- stackptr--;
- while (stackptr > 0) {
- if (vertextypes[vindex] == 1) {
- if (IsConvex(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]])) {
- triangle.Triangle(points[vindex], points[stack[stackptr - 1]], points[stack[stackptr]]);
- triangles->push_back(triangle);
- stackptr--;
- } else {
- break;
- }
- } else {
- if (IsConvex(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]])) {
- triangle.Triangle(points[vindex], points[stack[stackptr]], points[stack[stackptr - 1]]);
- triangles->push_back(triangle);
- stackptr--;
- } else {
- break;
- }
- }
- }
- stackptr++;
- stack[stackptr] = vindex;
- stackptr++;
- }
- }
- vindex = priority[i];
- for (j = 0; j < (stackptr - 1); j++) {
- if (vertextypes[stack[j + 1]] == 1) {
- triangle.Triangle(points[stack[j]], points[stack[j + 1]], points[vindex]);
- } else {
- triangle.Triangle(points[stack[j + 1]], points[stack[j]], points[vindex]);
- }
- triangles->push_back(triangle);
- }
- delete[] priority;
- delete[] vertextypes;
- delete[] stack;
- return 1;
- }
- int TPPLPartition::Triangulate_MONO(TPPLPolyList *inpolys, TPPLPolyList *triangles) {
- TPPLPolyList monotone;
- TPPLPolyList::Element *iter;
- if (!MonotonePartition(inpolys, &monotone)) {
- return 0;
- }
- for (iter = monotone.front(); iter; iter = iter->next()) {
- if (!TriangulateMonotone(&(iter->get()), triangles)) {
- return 0;
- }
- }
- return 1;
- }
- int TPPLPartition::Triangulate_MONO(TPPLPoly *poly, TPPLPolyList *triangles) {
- TPPLPolyList polys;
- polys.push_back(*poly);
- return Triangulate_MONO(&polys, triangles);
- }
|