123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742 |
- /*
- Copyright (c) 2023, Dominic Szablewski - https://phoboslab.org
- SPDX-License-Identifier: MIT
- QOA - The "Quite OK Audio" format for fast, lossy audio compression
- -- Data Format
- QOA encodes pulse-code modulated (PCM) audio data with up to 255 channels,
- sample rates from 1 up to 16777215 hertz and a bit depth of 16 bits.
- The compression method employed in QOA is lossy; it discards some information
- from the uncompressed PCM data. For many types of audio signals this compression
- is "transparent", i.e. the difference from the original file is often not
- audible.
- QOA encodes 20 samples of 16 bit PCM data into slices of 64 bits. A single
- sample therefore requires 3.2 bits of storage space, resulting in a 5x
- compression (16 / 3.2).
- A QOA file consists of an 8 byte file header, followed by a number of frames.
- Each frame contains an 8 byte frame header, the current 16 byte en-/decoder
- state per channel and 256 slices per channel. Each slice is 8 bytes wide and
- encodes 20 samples of audio data.
- All values, including the slices, are big endian. The file layout is as follows:
- struct {
- struct {
- char magic[4]; // magic bytes "qoaf"
- uint32_t samples; // samples per channel in this file
- } file_header;
- struct {
- struct {
- uint8_t num_channels; // no. of channels
- uint24_t samplerate; // samplerate in hz
- uint16_t fsamples; // samples per channel in this frame
- uint16_t fsize; // frame size (includes this header)
- } frame_header;
- struct {
- int16_t history[4]; // most recent last
- int16_t weights[4]; // most recent last
- } lms_state[num_channels];
- qoa_slice_t slices[256][num_channels];
- } frames[ceil(samples / (256 * 20))];
- } qoa_file_t;
- Each `qoa_slice_t` contains a quantized scalefactor `sf_quant` and 20 quantized
- residuals `qrNN`:
- .- QOA_SLICE -- 64 bits, 20 samples --------------------------/ /------------.
- | Byte[0] | Byte[1] | Byte[2] \ \ Byte[7] |
- | 7 6 5 4 3 2 1 0 | 7 6 5 4 3 2 1 0 | 7 6 5 / / 2 1 0 |
- |------------+--------+--------+--------+---------+---------+-\ \--+---------|
- | sf_quant | qr00 | qr01 | qr02 | qr03 | qr04 | / / | qr19 |
- `-------------------------------------------------------------\ \------------`
- Each frame except the last must contain exactly 256 slices per channel. The last
- frame may contain between 1 .. 256 (inclusive) slices per channel. The last
- slice (for each channel) in the last frame may contain less than 20 samples; the
- slice still must be 8 bytes wide, with the unused samples zeroed out.
- Channels are interleaved per slice. E.g. for 2 channel stereo:
- slice[0] = L, slice[1] = R, slice[2] = L, slice[3] = R ...
- A valid QOA file or stream must have at least one frame. Each frame must contain
- at least one channel and one sample with a samplerate between 1 .. 16777215
- (inclusive).
- If the total number of samples is not known by the encoder, the samples in the
- file header may be set to 0x00000000 to indicate that the encoder is
- "streaming". In a streaming context, the samplerate and number of channels may
- differ from frame to frame. For static files (those with samples set to a
- non-zero value), each frame must have the same number of channels and same
- samplerate.
- Note that this implementation of QOA only handles files with a known total
- number of samples.
- A decoder should support at least 8 channels. The channel layout for channel
- counts 1 .. 8 is:
- 1. Mono
- 2. L, R
- 3. L, R, C
- 4. FL, FR, B/SL, B/SR
- 5. FL, FR, C, B/SL, B/SR
- 6. FL, FR, C, LFE, B/SL, B/SR
- 7. FL, FR, C, LFE, B, SL, SR
- 8. FL, FR, C, LFE, BL, BR, SL, SR
- QOA predicts each audio sample based on the previously decoded ones using a
- "Sign-Sign Least Mean Squares Filter" (LMS). This prediction plus the
- dequantized residual forms the final output sample.
- */
- /* -----------------------------------------------------------------------------
- Header - Public functions */
- #ifndef QOA_H
- #define QOA_H
- #ifdef __cplusplus
- extern "C" {
- #endif
- #define QOA_MIN_FILESIZE 16
- #define QOA_MAX_CHANNELS 8
- #define QOA_SLICE_LEN 20
- #define QOA_SLICES_PER_FRAME 256
- #define QOA_FRAME_LEN (QOA_SLICES_PER_FRAME * QOA_SLICE_LEN)
- #define QOA_LMS_LEN 4
- #define QOA_MAGIC 0x716f6166 /* 'qoaf' */
- #define QOA_FRAME_SIZE(channels, slices) \
- (8 + QOA_LMS_LEN * 4 * channels + 8 * slices * channels)
- typedef struct {
- int history[QOA_LMS_LEN];
- int weights[QOA_LMS_LEN];
- } qoa_lms_t;
- typedef struct {
- unsigned int channels;
- unsigned int samplerate;
- unsigned int samples;
- qoa_lms_t lms[QOA_MAX_CHANNELS];
- #ifdef QOA_RECORD_TOTAL_ERROR
- double error;
- #endif
- } qoa_desc;
- unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes);
- unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes);
- void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len);
- unsigned int qoa_max_frame_size(qoa_desc *qoa);
- unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa);
- unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len);
- short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *file);
- #ifndef QOA_NO_STDIO
- int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa);
- void *qoa_read(const char *filename, qoa_desc *qoa);
- #endif /* QOA_NO_STDIO */
- #ifdef __cplusplus
- }
- #endif
- #endif /* QOA_H */
- /* -----------------------------------------------------------------------------
- Implementation */
- #ifdef QOA_IMPLEMENTATION
- #include <stdlib.h>
- #ifndef QOA_MALLOC
- #define QOA_MALLOC(sz) malloc(sz)
- #define QOA_FREE(p) free(p)
- #endif
- typedef unsigned long long qoa_uint64_t;
- /* The quant_tab provides an index into the dequant_tab for residuals in the
- range of -8 .. 8. It maps this range to just 3bits and becomes less accurate at
- the higher end. Note that the residual zero is identical to the lowest positive
- value. This is mostly fine, since the qoa_div() function always rounds away
- from zero. */
- static const int qoa_quant_tab[17] = {
- 7, 7, 7, 5, 5, 3, 3, 1, /* -8..-1 */
- 0, /* 0 */
- 0, 2, 2, 4, 4, 6, 6, 6 /* 1.. 8 */
- };
- /* We have 16 different scalefactors. Like the quantized residuals these become
- less accurate at the higher end. In theory, the highest scalefactor that we
- would need to encode the highest 16bit residual is (2**16)/8 = 8192. However we
- rely on the LMS filter to predict samples accurately enough that a maximum
- residual of one quarter of the 16 bit range is sufficient. I.e. with the
- scalefactor 2048 times the quant range of 8 we can encode residuals up to 2**14.
- The scalefactor values are computed as:
- scalefactor_tab[s] <- round(pow(s + 1, 2.75)) */
- static const int qoa_scalefactor_tab[16] = {
- 1, 7, 21, 45, 84, 138, 211, 304, 421, 562, 731, 928, 1157, 1419, 1715, 2048
- };
- /* The reciprocal_tab maps each of the 16 scalefactors to their rounded
- reciprocals 1/scalefactor. This allows us to calculate the scaled residuals in
- the encoder with just one multiplication instead of an expensive division. We
- do this in .16 fixed point with integers, instead of floats.
- The reciprocal_tab is computed as:
- reciprocal_tab[s] <- ((1<<16) + scalefactor_tab[s] - 1) / scalefactor_tab[s] */
- static const int qoa_reciprocal_tab[16] = {
- 65536, 9363, 3121, 1457, 781, 475, 311, 216, 156, 117, 90, 71, 57, 47, 39, 32
- };
- /* The dequant_tab maps each of the scalefactors and quantized residuals to
- their unscaled & dequantized version.
- Since qoa_div rounds away from the zero, the smallest entries are mapped to 3/4
- instead of 1. The dequant_tab assumes the following dequantized values for each
- of the quant_tab indices and is computed as:
- float dqt[8] = {0.75, -0.75, 2.5, -2.5, 4.5, -4.5, 7, -7};
- dequant_tab[s][q] <- round_ties_away_from_zero(scalefactor_tab[s] * dqt[q])
- The rounding employed here is "to nearest, ties away from zero", i.e. positive
- and negative values are treated symmetrically.
- */
- static const int qoa_dequant_tab[16][8] = {
- { 1, -1, 3, -3, 5, -5, 7, -7},
- { 5, -5, 18, -18, 32, -32, 49, -49},
- { 16, -16, 53, -53, 95, -95, 147, -147},
- { 34, -34, 113, -113, 203, -203, 315, -315},
- { 63, -63, 210, -210, 378, -378, 588, -588},
- { 104, -104, 345, -345, 621, -621, 966, -966},
- { 158, -158, 528, -528, 950, -950, 1477, -1477},
- { 228, -228, 760, -760, 1368, -1368, 2128, -2128},
- { 316, -316, 1053, -1053, 1895, -1895, 2947, -2947},
- { 422, -422, 1405, -1405, 2529, -2529, 3934, -3934},
- { 548, -548, 1828, -1828, 3290, -3290, 5117, -5117},
- { 696, -696, 2320, -2320, 4176, -4176, 6496, -6496},
- { 868, -868, 2893, -2893, 5207, -5207, 8099, -8099},
- {1064, -1064, 3548, -3548, 6386, -6386, 9933, -9933},
- {1286, -1286, 4288, -4288, 7718, -7718, 12005, -12005},
- {1536, -1536, 5120, -5120, 9216, -9216, 14336, -14336},
- };
- /* The Least Mean Squares Filter is the heart of QOA. It predicts the next
- sample based on the previous 4 reconstructed samples. It does so by continuously
- adjusting 4 weights based on the residual of the previous prediction.
- The next sample is predicted as the sum of (weight[i] * history[i]).
- The adjustment of the weights is done with a "Sign-Sign-LMS" that adds or
- subtracts the residual to each weight, based on the corresponding sample from
- the history. This, surprisingly, is sufficient to get worthwhile predictions.
- This is all done with fixed point integers. Hence the right-shifts when updating
- the weights and calculating the prediction. */
- static int qoa_lms_predict(qoa_lms_t *lms) {
- int prediction = 0;
- for (int i = 0; i < QOA_LMS_LEN; i++) {
- prediction += lms->weights[i] * lms->history[i];
- }
- return prediction >> 13;
- }
- static void qoa_lms_update(qoa_lms_t *lms, int sample, int residual) {
- int delta = residual >> 4;
- for (int i = 0; i < QOA_LMS_LEN; i++) {
- lms->weights[i] += lms->history[i] < 0 ? -delta : delta;
- }
- for (int i = 0; i < QOA_LMS_LEN-1; i++) {
- lms->history[i] = lms->history[i+1];
- }
- lms->history[QOA_LMS_LEN-1] = sample;
- }
- /* qoa_div() implements a rounding division, but avoids rounding to zero for
- small numbers. E.g. 0.1 will be rounded to 1. Note that 0 itself still
- returns as 0, which is handled in the qoa_quant_tab[].
- qoa_div() takes an index into the .16 fixed point qoa_reciprocal_tab as an
- argument, so it can do the division with a cheaper integer multiplication. */
- static inline int qoa_div(int v, int scalefactor) {
- int reciprocal = qoa_reciprocal_tab[scalefactor];
- int n = (v * reciprocal + (1 << 15)) >> 16;
- n = n + ((v > 0) - (v < 0)) - ((n > 0) - (n < 0)); /* round away from 0 */
- return n;
- }
- static inline int qoa_clamp(int v, int min, int max) {
- if (v < min) { return min; }
- if (v > max) { return max; }
- return v;
- }
- /* This specialized clamp function for the signed 16 bit range improves decode
- performance quite a bit. The extra if() statement works nicely with the CPUs
- branch prediction as this branch is rarely taken. */
- static inline int qoa_clamp_s16(int v) {
- if ((unsigned int)(v + 32768) > 65535) {
- if (v < -32768) { return -32768; }
- if (v > 32767) { return 32767; }
- }
- return v;
- }
- static inline qoa_uint64_t qoa_read_u64(const unsigned char *bytes, unsigned int *p) {
- bytes += *p;
- *p += 8;
- return
- ((qoa_uint64_t)(bytes[0]) << 56) | ((qoa_uint64_t)(bytes[1]) << 48) |
- ((qoa_uint64_t)(bytes[2]) << 40) | ((qoa_uint64_t)(bytes[3]) << 32) |
- ((qoa_uint64_t)(bytes[4]) << 24) | ((qoa_uint64_t)(bytes[5]) << 16) |
- ((qoa_uint64_t)(bytes[6]) << 8) | ((qoa_uint64_t)(bytes[7]) << 0);
- }
- static inline void qoa_write_u64(qoa_uint64_t v, unsigned char *bytes, unsigned int *p) {
- bytes += *p;
- *p += 8;
- bytes[0] = (v >> 56) & 0xff;
- bytes[1] = (v >> 48) & 0xff;
- bytes[2] = (v >> 40) & 0xff;
- bytes[3] = (v >> 32) & 0xff;
- bytes[4] = (v >> 24) & 0xff;
- bytes[5] = (v >> 16) & 0xff;
- bytes[6] = (v >> 8) & 0xff;
- bytes[7] = (v >> 0) & 0xff;
- }
- /* -----------------------------------------------------------------------------
- Encoder */
- unsigned int qoa_encode_header(qoa_desc *qoa, unsigned char *bytes) {
- unsigned int p = 0;
- qoa_write_u64(((qoa_uint64_t)QOA_MAGIC << 32) | qoa->samples, bytes, &p);
- return p;
- }
- unsigned int qoa_encode_frame(const short *sample_data, qoa_desc *qoa, unsigned int frame_len, unsigned char *bytes) {
- unsigned int channels = qoa->channels;
- unsigned int p = 0;
- unsigned int slices = (frame_len + QOA_SLICE_LEN - 1) / QOA_SLICE_LEN;
- unsigned int frame_size = QOA_FRAME_SIZE(channels, slices);
- int prev_scalefactor[QOA_MAX_CHANNELS] = {0};
- /* Write the frame header */
- qoa_write_u64((
- (qoa_uint64_t)qoa->channels << 56 |
- (qoa_uint64_t)qoa->samplerate << 32 |
- (qoa_uint64_t)frame_len << 16 |
- (qoa_uint64_t)frame_size
- ), bytes, &p);
-
- for (unsigned int c = 0; c < channels; c++) {
- /* Write the current LMS state */
- qoa_uint64_t weights = 0;
- qoa_uint64_t history = 0;
- for (int i = 0; i < QOA_LMS_LEN; i++) {
- history = (history << 16) | (qoa->lms[c].history[i] & 0xffff);
- weights = (weights << 16) | (qoa->lms[c].weights[i] & 0xffff);
- }
- qoa_write_u64(history, bytes, &p);
- qoa_write_u64(weights, bytes, &p);
- }
- /* We encode all samples with the channels interleaved on a slice level.
- E.g. for stereo: (ch-0, slice 0), (ch 1, slice 0), (ch 0, slice 1), ...*/
- for (unsigned int sample_index = 0; sample_index < frame_len; sample_index += QOA_SLICE_LEN) {
- for (unsigned int c = 0; c < channels; c++) {
- int slice_len = qoa_clamp(QOA_SLICE_LEN, 0, frame_len - sample_index);
- int slice_start = sample_index * channels + c;
- int slice_end = (sample_index + slice_len) * channels + c;
- /* Brute force search for the best scalefactor. Just go through all
- 16 scalefactors, encode all samples for the current slice and
- meassure the total squared error. */
- qoa_uint64_t best_rank = -1;
- #ifdef QOA_RECORD_TOTAL_ERROR
- qoa_uint64_t best_error = -1;
- #endif
- qoa_uint64_t best_slice = 0;
- qoa_lms_t best_lms;
- int best_scalefactor = 0;
- for (int sfi = 0; sfi < 16; sfi++) {
- /* There is a strong correlation between the scalefactors of
- neighboring slices. As an optimization, start testing
- the best scalefactor of the previous slice first. */
- int scalefactor = (sfi + prev_scalefactor[c]) & (16 - 1);
- /* We have to reset the LMS state to the last known good one
- before trying each scalefactor, as each pass updates the LMS
- state when encoding. */
- qoa_lms_t lms = qoa->lms[c];
- qoa_uint64_t slice = scalefactor;
- qoa_uint64_t current_rank = 0;
- #ifdef QOA_RECORD_TOTAL_ERROR
- qoa_uint64_t current_error = 0;
- #endif
- for (int si = slice_start; si < slice_end; si += channels) {
- int sample = sample_data[si];
- int predicted = qoa_lms_predict(&lms);
- int residual = sample - predicted;
- int scaled = qoa_div(residual, scalefactor);
- int clamped = qoa_clamp(scaled, -8, 8);
- int quantized = qoa_quant_tab[clamped + 8];
- int dequantized = qoa_dequant_tab[scalefactor][quantized];
- int reconstructed = qoa_clamp_s16(predicted + dequantized);
- /* If the weights have grown too large, we introduce a penalty
- here. This prevents pops/clicks in certain problem cases */
- int weights_penalty = ((
- lms.weights[0] * lms.weights[0] +
- lms.weights[1] * lms.weights[1] +
- lms.weights[2] * lms.weights[2] +
- lms.weights[3] * lms.weights[3]
- ) >> 18) - 0x8ff;
- if (weights_penalty < 0) {
- weights_penalty = 0;
- }
- long long error = (sample - reconstructed);
- qoa_uint64_t error_sq = error * error;
- current_rank += error_sq + weights_penalty * weights_penalty;
- #ifdef QOA_RECORD_TOTAL_ERROR
- current_error += error_sq;
- #endif
- if (current_rank > best_rank) {
- break;
- }
- qoa_lms_update(&lms, reconstructed, dequantized);
- slice = (slice << 3) | quantized;
- }
- if (current_rank < best_rank) {
- best_rank = current_rank;
- #ifdef QOA_RECORD_TOTAL_ERROR
- best_error = current_error;
- #endif
- best_slice = slice;
- best_lms = lms;
- best_scalefactor = scalefactor;
- }
- }
- prev_scalefactor[c] = best_scalefactor;
- qoa->lms[c] = best_lms;
- #ifdef QOA_RECORD_TOTAL_ERROR
- qoa->error += best_error;
- #endif
- /* If this slice was shorter than QOA_SLICE_LEN, we have to left-
- shift all encoded data, to ensure the rightmost bits are the empty
- ones. This should only happen in the last frame of a file as all
- slices are completely filled otherwise. */
- best_slice <<= (QOA_SLICE_LEN - slice_len) * 3;
- qoa_write_u64(best_slice, bytes, &p);
- }
- }
-
- return p;
- }
- void *qoa_encode(const short *sample_data, qoa_desc *qoa, unsigned int *out_len) {
- if (
- qoa->samples == 0 ||
- qoa->samplerate == 0 || qoa->samplerate > 0xffffff ||
- qoa->channels == 0 || qoa->channels > QOA_MAX_CHANNELS
- ) {
- return NULL;
- }
- /* Calculate the encoded size and allocate */
- unsigned int num_frames = (qoa->samples + QOA_FRAME_LEN-1) / QOA_FRAME_LEN;
- unsigned int num_slices = (qoa->samples + QOA_SLICE_LEN-1) / QOA_SLICE_LEN;
- unsigned int encoded_size = 8 + /* 8 byte file header */
- num_frames * 8 + /* 8 byte frame headers */
- num_frames * QOA_LMS_LEN * 4 * qoa->channels + /* 4 * 4 bytes lms state per channel */
- num_slices * 8 * qoa->channels; /* 8 byte slices */
- unsigned char *bytes = QOA_MALLOC(encoded_size);
- for (unsigned int c = 0; c < qoa->channels; c++) {
- /* Set the initial LMS weights to {0, 0, -1, 2}. This helps with the
- prediction of the first few ms of a file. */
- qoa->lms[c].weights[0] = 0;
- qoa->lms[c].weights[1] = 0;
- qoa->lms[c].weights[2] = -(1<<13);
- qoa->lms[c].weights[3] = (1<<14);
- /* Explicitly set the history samples to 0, as we might have some
- garbage in there. */
- for (int i = 0; i < QOA_LMS_LEN; i++) {
- qoa->lms[c].history[i] = 0;
- }
- }
- /* Encode the header and go through all frames */
- unsigned int p = qoa_encode_header(qoa, bytes);
- #ifdef QOA_RECORD_TOTAL_ERROR
- qoa->error = 0;
- #endif
- int frame_len = QOA_FRAME_LEN;
- for (unsigned int sample_index = 0; sample_index < qoa->samples; sample_index += frame_len) {
- frame_len = qoa_clamp(QOA_FRAME_LEN, 0, qoa->samples - sample_index);
- const short *frame_samples = sample_data + sample_index * qoa->channels;
- unsigned int frame_size = qoa_encode_frame(frame_samples, qoa, frame_len, bytes + p);
- p += frame_size;
- }
- *out_len = p;
- return bytes;
- }
- /* -----------------------------------------------------------------------------
- Decoder */
- unsigned int qoa_max_frame_size(qoa_desc *qoa) {
- return QOA_FRAME_SIZE(qoa->channels, QOA_SLICES_PER_FRAME);
- }
- unsigned int qoa_decode_header(const unsigned char *bytes, int size, qoa_desc *qoa) {
- unsigned int p = 0;
- if (size < QOA_MIN_FILESIZE) {
- return 0;
- }
- /* Read the file header, verify the magic number ('qoaf') and read the
- total number of samples. */
- qoa_uint64_t file_header = qoa_read_u64(bytes, &p);
- if ((file_header >> 32) != QOA_MAGIC) {
- return 0;
- }
- qoa->samples = file_header & 0xffffffff;
- if (!qoa->samples) {
- return 0;
- }
- /* Peek into the first frame header to get the number of channels and
- the samplerate. */
- qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
- qoa->channels = (frame_header >> 56) & 0x0000ff;
- qoa->samplerate = (frame_header >> 32) & 0xffffff;
- if (qoa->channels == 0 || qoa->samples == 0 || qoa->samplerate == 0) {
- return 0;
- }
- return 8;
- }
- unsigned int qoa_decode_frame(const unsigned char *bytes, unsigned int size, qoa_desc *qoa, short *sample_data, unsigned int *frame_len) {
- unsigned int p = 0;
- *frame_len = 0;
- if (size < 8 + QOA_LMS_LEN * 4 * qoa->channels) {
- return 0;
- }
- /* Read and verify the frame header */
- qoa_uint64_t frame_header = qoa_read_u64(bytes, &p);
- unsigned int channels = (frame_header >> 56) & 0x0000ff;
- unsigned int samplerate = (frame_header >> 32) & 0xffffff;
- unsigned int samples = (frame_header >> 16) & 0x00ffff;
- unsigned int frame_size = (frame_header ) & 0x00ffff;
- unsigned int data_size = frame_size - 8 - QOA_LMS_LEN * 4 * channels;
- unsigned int num_slices = data_size / 8;
- unsigned int max_total_samples = num_slices * QOA_SLICE_LEN;
- if (
- channels != qoa->channels ||
- samplerate != qoa->samplerate ||
- frame_size > size ||
- samples * channels > max_total_samples
- ) {
- return 0;
- }
- /* Read the LMS state: 4 x 2 bytes history, 4 x 2 bytes weights per channel */
- for (unsigned int c = 0; c < channels; c++) {
- qoa_uint64_t history = qoa_read_u64(bytes, &p);
- qoa_uint64_t weights = qoa_read_u64(bytes, &p);
- for (int i = 0; i < QOA_LMS_LEN; i++) {
- qoa->lms[c].history[i] = ((signed short)(history >> 48));
- history <<= 16;
- qoa->lms[c].weights[i] = ((signed short)(weights >> 48));
- weights <<= 16;
- }
- }
- /* Decode all slices for all channels in this frame */
- for (unsigned int sample_index = 0; sample_index < samples; sample_index += QOA_SLICE_LEN) {
- for (unsigned int c = 0; c < channels; c++) {
- qoa_uint64_t slice = qoa_read_u64(bytes, &p);
- int scalefactor = (slice >> 60) & 0xf;
- slice <<= 4;
- int slice_start = sample_index * channels + c;
- int slice_end = qoa_clamp(sample_index + QOA_SLICE_LEN, 0, samples) * channels + c;
- for (int si = slice_start; si < slice_end; si += channels) {
- int predicted = qoa_lms_predict(&qoa->lms[c]);
- int quantized = (slice >> 61) & 0x7;
- int dequantized = qoa_dequant_tab[scalefactor][quantized];
- int reconstructed = qoa_clamp_s16(predicted + dequantized);
-
- sample_data[si] = reconstructed;
- slice <<= 3;
- qoa_lms_update(&qoa->lms[c], reconstructed, dequantized);
- }
- }
- }
- *frame_len = samples;
- return p;
- }
- short *qoa_decode(const unsigned char *bytes, int size, qoa_desc *qoa) {
- unsigned int p = qoa_decode_header(bytes, size, qoa);
- if (!p) {
- return NULL;
- }
- /* Calculate the required size of the sample buffer and allocate */
- int total_samples = qoa->samples * qoa->channels;
- short *sample_data = QOA_MALLOC(total_samples * sizeof(short));
- unsigned int sample_index = 0;
- unsigned int frame_len;
- unsigned int frame_size;
- /* Decode all frames */
- do {
- short *sample_ptr = sample_data + sample_index * qoa->channels;
- frame_size = qoa_decode_frame(bytes + p, size - p, qoa, sample_ptr, &frame_len);
- p += frame_size;
- sample_index += frame_len;
- } while (frame_size && sample_index < qoa->samples);
- qoa->samples = sample_index;
- return sample_data;
- }
- /* -----------------------------------------------------------------------------
- File read/write convenience functions */
- #ifndef QOA_NO_STDIO
- #include <stdio.h>
- int qoa_write(const char *filename, const short *sample_data, qoa_desc *qoa) {
- FILE *f = fopen(filename, "wb");
- unsigned int size;
- void *encoded;
- if (!f) {
- return 0;
- }
- encoded = qoa_encode(sample_data, qoa, &size);
- if (!encoded) {
- fclose(f);
- return 0;
- }
- fwrite(encoded, 1, size, f);
- fclose(f);
- QOA_FREE(encoded);
- return size;
- }
- void *qoa_read(const char *filename, qoa_desc *qoa) {
- FILE *f = fopen(filename, "rb");
- int size, bytes_read;
- void *data;
- short *sample_data;
- if (!f) {
- return NULL;
- }
- fseek(f, 0, SEEK_END);
- size = ftell(f);
- if (size <= 0) {
- fclose(f);
- return NULL;
- }
- fseek(f, 0, SEEK_SET);
- data = QOA_MALLOC(size);
- if (!data) {
- fclose(f);
- return NULL;
- }
- bytes_read = fread(data, 1, size, f);
- fclose(f);
- sample_data = qoa_decode(data, bytes_read, qoa);
- QOA_FREE(data);
- return sample_data;
- }
- #endif /* QOA_NO_STDIO */
- #endif /* QOA_IMPLEMENTATION */
|