RayTracingFeatureProcessor.cpp 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601
  1. /*
  2. * Copyright (c) Contributors to the Open 3D Engine Project.
  3. * For complete copyright and license terms please see the LICENSE at the root of this distribution.
  4. *
  5. * SPDX-License-Identifier: Apache-2.0 OR MIT
  6. *
  7. */
  8. #include <Atom/Feature/RayTracing/RayTracingPass.h>
  9. #include <Atom/RHI/Factory.h>
  10. #include <Atom/RHI/RHISystemInterface.h>
  11. #include <Atom/RHI/RayTracingAccelerationStructure.h>
  12. #include <Atom/RHI/RayTracingCompactionQueryPool.h>
  13. #include <Atom/RPI.Public/Pass/PassFilter.h>
  14. #include <Atom/RPI.Public/Scene.h>
  15. #include <Atom/RPI.Public/Shader/ShaderResourceGroup.h>
  16. #include <Atom/RPI.Reflect/Asset/AssetUtils.h>
  17. #include <CoreLights/CapsuleLightFeatureProcessor.h>
  18. #include <CoreLights/DirectionalLightFeatureProcessor.h>
  19. #include <CoreLights/DiskLightFeatureProcessor.h>
  20. #include <CoreLights/PointLightFeatureProcessor.h>
  21. #include <CoreLights/QuadLightFeatureProcessor.h>
  22. #include <CoreLights/SimplePointLightFeatureProcessor.h>
  23. #include <CoreLights/SimpleSpotLightFeatureProcessor.h>
  24. #include <ImageBasedLights/ImageBasedLightFeatureProcessor.h>
  25. #include <RayTracing/RayTracingFeatureProcessor.h>
  26. namespace AZ
  27. {
  28. namespace Render
  29. {
  30. void RayTracingFeatureProcessor::Reflect(ReflectContext* context)
  31. {
  32. if (auto* serializeContext = azrtti_cast<SerializeContext*>(context))
  33. {
  34. serializeContext
  35. ->Class<RayTracingFeatureProcessor, FeatureProcessor>()
  36. ->Version(1);
  37. }
  38. }
  39. void RayTracingFeatureProcessor::Activate()
  40. {
  41. auto deviceMask{RHI::RHISystemInterface::Get()->GetRayTracingSupport()};
  42. m_rayTracingEnabled = (deviceMask != RHI::MultiDevice::NoDevices);
  43. if (!m_rayTracingEnabled)
  44. {
  45. return;
  46. }
  47. m_transformServiceFeatureProcessor = GetParentScene()->GetFeatureProcessor<TransformServiceFeatureProcessorInterface>();
  48. // initialize the ray tracing buffer pools
  49. m_bufferPools = aznew RHI::RayTracingBufferPools;
  50. m_bufferPools->Init(deviceMask);
  51. auto deviceCount = RHI::RHISystemInterface::Get()->GetDeviceCount();
  52. for (auto deviceIndex{0}; deviceIndex < deviceCount; ++deviceIndex)
  53. {
  54. if ((AZStd::to_underlying(deviceMask) >> deviceIndex) & 1)
  55. {
  56. m_meshBufferIndices[deviceIndex] = {};
  57. m_materialTextureIndices[deviceIndex] = {};
  58. m_meshInfos[deviceIndex] = {};
  59. m_materialInfos[deviceIndex] = {};
  60. m_proceduralGeometryMaterialInfos[deviceIndex] = {};
  61. }
  62. }
  63. // create TLAS attachmentId
  64. AZStd::string uuidString = AZ::Uuid::CreateRandom().ToString<AZStd::string>();
  65. m_tlasAttachmentId = RHI::AttachmentId(AZStd::string::format("RayTracingTlasAttachmentId_%s", uuidString.c_str()));
  66. // create the TLAS object
  67. m_tlas = aznew RHI::RayTracingTlas;
  68. // load the RayTracingSrg asset asset
  69. m_rayTracingSrgAsset = RPI::AssetUtils::LoadCriticalAsset<RPI::ShaderAsset>("shaderlib/atom/features/rayTracing/raytracingsrgs.azshader");
  70. if (!m_rayTracingSrgAsset.IsReady())
  71. {
  72. AZ_Assert(false, "Failed to load RayTracingSrg asset");
  73. return;
  74. }
  75. // create the RayTracingSceneSrg
  76. m_rayTracingSceneSrg = RPI::ShaderResourceGroup::Create(m_rayTracingSrgAsset, Name("RayTracingSceneSrg"));
  77. AZ_Assert(m_rayTracingSceneSrg, "Failed to create RayTracingSceneSrg");
  78. // create the RayTracingMaterialSrg
  79. const AZ::Name rayTracingMaterialSrgName("RayTracingMaterialSrg");
  80. m_rayTracingMaterialSrg = RPI::ShaderResourceGroup::Create(m_rayTracingSrgAsset, Name("RayTracingMaterialSrg"));
  81. AZ_Assert(m_rayTracingMaterialSrg, "Failed to create RayTracingMaterialSrg");
  82. // Setup RayTracingCompactionQueryPool
  83. {
  84. auto rpiDesc = RPI::RPISystemInterface::Get()->GetDescriptor();
  85. RHI::RayTracingCompactionQueryPoolDescriptor desc;
  86. desc.m_deviceMask = RHI::RHISystemInterface::Get()->GetRayTracingSupport();
  87. desc.m_budget = rpiDesc.m_rayTracingSystemDescriptor.m_rayTracingCompactionQueryPoolSize;
  88. desc.m_readbackBufferPool = AZ::RPI::BufferSystemInterface::Get()->GetCommonBufferPool(RPI::CommonBufferPoolType::ReadBack);
  89. desc.m_copyBufferPool = AZ::RPI::BufferSystemInterface::Get()->GetCommonBufferPool(RPI::CommonBufferPoolType::ReadWrite);
  90. m_compactionQueryPool = aznew RHI::RayTracingCompactionQueryPool;
  91. m_compactionQueryPool->Init(desc);
  92. }
  93. EnableSceneNotification();
  94. }
  95. void RayTracingFeatureProcessor::Deactivate()
  96. {
  97. DisableSceneNotification();
  98. }
  99. RayTracingFeatureProcessor::ProceduralGeometryTypeHandle RayTracingFeatureProcessor::RegisterProceduralGeometryType(
  100. const AZStd::string& name,
  101. const Data::Instance<RPI::Shader>& intersectionShader,
  102. const AZStd::string& intersectionShaderName,
  103. const AZStd::unordered_map<int, uint32_t>& bindlessBufferIndices)
  104. {
  105. ProceduralGeometryTypeHandle geometryTypeHandle;
  106. {
  107. ProceduralGeometryType proceduralGeometryType;
  108. proceduralGeometryType.m_name = AZ::Name(name);
  109. proceduralGeometryType.m_intersectionShader = intersectionShader;
  110. proceduralGeometryType.m_intersectionShaderName = AZ::Name(intersectionShaderName);
  111. proceduralGeometryType.m_bindlessBufferIndices = bindlessBufferIndices;
  112. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  113. geometryTypeHandle = m_proceduralGeometryTypes.insert(proceduralGeometryType);
  114. }
  115. m_proceduralGeometryTypeRevision++;
  116. return geometryTypeHandle;
  117. }
  118. void RayTracingFeatureProcessor::SetProceduralGeometryTypeBindlessBufferIndex(
  119. ProceduralGeometryTypeWeakHandle geometryTypeHandle, const AZStd::unordered_map<int, uint32_t>& bindlessBufferIndices)
  120. {
  121. if (!m_rayTracingEnabled)
  122. {
  123. return;
  124. }
  125. geometryTypeHandle->m_bindlessBufferIndices = bindlessBufferIndices;
  126. m_proceduralGeometryInfoBufferNeedsUpdate = true;
  127. }
  128. void RayTracingFeatureProcessor::AddProceduralGeometry(
  129. ProceduralGeometryTypeWeakHandle geometryTypeHandle,
  130. const Uuid& uuid,
  131. const Aabb& aabb,
  132. const SubMeshMaterial& material,
  133. RHI::RayTracingAccelerationStructureInstanceInclusionMask instanceMask,
  134. uint32_t localInstanceIndex)
  135. {
  136. if (!m_rayTracingEnabled)
  137. {
  138. return;
  139. }
  140. RHI::Ptr<AZ::RHI::RayTracingBlas> rayTracingBlas = aznew AZ::RHI::RayTracingBlas;
  141. RHI::RayTracingBlasDescriptor blasDescriptor;
  142. blasDescriptor.m_aabb = aabb;
  143. rayTracingBlas->CreateBuffers(m_deviceMask, &blasDescriptor, *m_bufferPools);
  144. ProceduralGeometry proceduralGeometry;
  145. proceduralGeometry.m_uuid = uuid;
  146. proceduralGeometry.m_typeHandle = geometryTypeHandle;
  147. proceduralGeometry.m_aabb = aabb;
  148. proceduralGeometry.m_instanceMask = static_cast<uint32_t>(instanceMask);
  149. proceduralGeometry.m_blas = rayTracingBlas;
  150. proceduralGeometry.m_localInstanceIndex = localInstanceIndex;
  151. MeshBlasInstance meshBlasInstance;
  152. meshBlasInstance.m_count = 1;
  153. SubMeshBlasInstance subMeshBlasInstance;
  154. subMeshBlasInstance.m_blas = rayTracingBlas;
  155. meshBlasInstance.m_subMeshes.push_back(AZStd::move(subMeshBlasInstance));
  156. MaterialInfo materialInfo;
  157. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  158. m_proceduralGeometryLookup.emplace(uuid, m_proceduralGeometry.size());
  159. m_proceduralGeometry.push_back(proceduralGeometry);
  160. auto deviceCount = RHI::RHISystemInterface::Get()->GetDeviceCount();
  161. for (auto deviceIndex{0}; deviceIndex < deviceCount; ++deviceIndex)
  162. {
  163. m_proceduralGeometryMaterialInfos[deviceIndex].emplace_back();
  164. ConvertMaterial(m_proceduralGeometryMaterialInfos[deviceIndex].back(), material, deviceIndex);
  165. }
  166. m_blasInstanceMap.emplace(Data::AssetId(uuid), meshBlasInstance);
  167. RHI::MultiDeviceObject::IterateDevices(
  168. m_deviceMask,
  169. [&](int deviceIndex)
  170. {
  171. m_blasToBuild[deviceIndex].insert(Data::AssetId(uuid));
  172. return true;
  173. });
  174. geometryTypeHandle->m_instanceCount++;
  175. m_revision++;
  176. m_proceduralGeometryInfoBufferNeedsUpdate = true;
  177. m_materialInfoBufferNeedsUpdate = true;
  178. m_indexListNeedsUpdate = true;
  179. }
  180. void RayTracingFeatureProcessor::SetProceduralGeometryTransform(
  181. const Uuid& uuid, const Transform& transform, const Vector3& nonUniformScale)
  182. {
  183. if (!m_rayTracingEnabled)
  184. {
  185. return;
  186. }
  187. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  188. if (auto it = m_proceduralGeometryLookup.find(uuid); it != m_proceduralGeometryLookup.end())
  189. {
  190. m_proceduralGeometry[it->second].m_transform = transform;
  191. m_proceduralGeometry[it->second].m_nonUniformScale = nonUniformScale;
  192. }
  193. m_revision++;
  194. }
  195. void RayTracingFeatureProcessor::SetProceduralGeometryLocalInstanceIndex(const Uuid& uuid, uint32_t localInstanceIndex)
  196. {
  197. if (!m_rayTracingEnabled)
  198. {
  199. return;
  200. }
  201. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  202. if (auto it = m_proceduralGeometryLookup.find(uuid); it != m_proceduralGeometryLookup.end())
  203. {
  204. m_proceduralGeometry[it->second].m_localInstanceIndex = localInstanceIndex;
  205. }
  206. m_proceduralGeometryInfoBufferNeedsUpdate = true;
  207. }
  208. void RayTracingFeatureProcessor::SetProceduralGeometryMaterial(
  209. const Uuid& uuid, const RayTracingFeatureProcessor::SubMeshMaterial& material)
  210. {
  211. if (!m_rayTracingEnabled)
  212. {
  213. return;
  214. }
  215. auto deviceCount = RHI::RHISystemInterface::Get()->GetDeviceCount();
  216. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  217. for (auto deviceIndex{0}; deviceIndex < deviceCount; ++deviceIndex)
  218. {
  219. if (auto it = m_proceduralGeometryLookup.find(uuid); it != m_proceduralGeometryLookup.end())
  220. {
  221. ConvertMaterial(m_proceduralGeometryMaterialInfos[deviceIndex][it->second], material, deviceIndex);
  222. }
  223. }
  224. m_materialInfoBufferNeedsUpdate = true;
  225. }
  226. void RayTracingFeatureProcessor::RemoveProceduralGeometry(const Uuid& uuid)
  227. {
  228. if (!m_rayTracingEnabled)
  229. {
  230. return;
  231. }
  232. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  233. size_t materialInfoIndex = m_proceduralGeometryLookup[uuid];
  234. m_proceduralGeometry[materialInfoIndex].m_typeHandle->m_instanceCount--;
  235. if (materialInfoIndex < m_proceduralGeometry.size() - 1)
  236. {
  237. m_proceduralGeometryLookup[m_proceduralGeometry.back().m_uuid] = m_proceduralGeometryLookup[uuid];
  238. m_proceduralGeometry[materialInfoIndex] = m_proceduralGeometry.back();
  239. for (auto& [deviceIndex, materialInfos] : m_proceduralGeometryMaterialInfos)
  240. {
  241. materialInfos[materialInfoIndex] = materialInfos.back();
  242. }
  243. }
  244. m_proceduralGeometry.pop_back();
  245. for (auto& [deviceIndex, materialInfos] : m_proceduralGeometryMaterialInfos)
  246. {
  247. materialInfos.pop_back();
  248. }
  249. m_proceduralGeometryLookup.erase(uuid);
  250. RemoveBlasInstance(uuid);
  251. m_revision++;
  252. m_proceduralGeometryInfoBufferNeedsUpdate = true;
  253. m_materialInfoBufferNeedsUpdate = true;
  254. m_indexListNeedsUpdate = true;
  255. }
  256. int RayTracingFeatureProcessor::GetProceduralGeometryCount(ProceduralGeometryTypeWeakHandle geometryTypeHandle) const
  257. {
  258. return geometryTypeHandle->m_instanceCount;
  259. }
  260. void RayTracingFeatureProcessor::AddMesh(const AZ::Uuid& uuid, const Mesh& rayTracingMesh, const SubMeshVector& subMeshes)
  261. {
  262. if (!m_rayTracingEnabled)
  263. {
  264. return;
  265. }
  266. // lock the mutex to protect the mesh and BLAS lists
  267. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  268. // check to see if we already have this mesh
  269. MeshMap::iterator itMesh = m_meshes.find(uuid);
  270. if (itMesh != m_meshes.end())
  271. {
  272. AZ_Assert(false, "AddMesh called on an existing Mesh, call RemoveMesh first");
  273. return;
  274. }
  275. // add the mesh
  276. m_meshes.insert(AZStd::make_pair(uuid, rayTracingMesh));
  277. Mesh& mesh = m_meshes[uuid];
  278. // add the subMeshes to the end of the global subMesh vector
  279. // Note 1: the MeshInfo and MaterialInfo vectors are parallel with the subMesh vector
  280. // Note 2: the list of indices for the subMeshes in the global vector are stored in the parent Mesh
  281. IndexVector subMeshIndices;
  282. uint32_t subMeshGlobalIndex = aznumeric_cast<uint32_t>(m_subMeshes.size());
  283. for (uint32_t subMeshIndex = 0; subMeshIndex < subMeshes.size(); ++subMeshIndex, ++subMeshGlobalIndex)
  284. {
  285. SubMesh& subMesh = m_subMeshes.emplace_back(subMeshes[subMeshIndex]);
  286. subMesh.m_mesh = &mesh;
  287. subMesh.m_subMeshIndex = subMeshIndex;
  288. subMesh.m_globalIndex = subMeshGlobalIndex;
  289. // add to the list of global subMeshIndices, which will be stored in the Mesh
  290. subMeshIndices.push_back(subMeshGlobalIndex);
  291. // add MeshInfo and MaterialInfo entries
  292. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  293. {
  294. meshInfos.emplace_back();
  295. }
  296. for (auto& [deviceIndex, materialInfos] : m_materialInfos)
  297. {
  298. materialInfos.emplace_back();
  299. }
  300. }
  301. mesh.m_subMeshIndices = subMeshIndices;
  302. // search for an existing BLAS instance entry for this mesh using the assetId
  303. BlasInstanceMap::iterator itMeshBlasInstance = m_blasInstanceMap.find(mesh.m_assetId);
  304. if (itMeshBlasInstance == m_blasInstanceMap.end())
  305. {
  306. // make a new BLAS map entry for this mesh
  307. MeshBlasInstance meshBlasInstance;
  308. meshBlasInstance.m_count = 1;
  309. meshBlasInstance.m_subMeshes.reserve(mesh.m_subMeshIndices.size());
  310. meshBlasInstance.m_isSkinnedMesh = mesh.m_isSkinnedMesh;
  311. itMeshBlasInstance = m_blasInstanceMap.insert({ mesh.m_assetId, meshBlasInstance }).first;
  312. // Note: the build flags are set to be the same for each BLAS created for the mesh
  313. RHI::RayTracingAccelerationStructureBuildFlags buildFlags =
  314. CreateRayTracingAccelerationStructureBuildFlags(mesh.m_isSkinnedMesh);
  315. auto rpiDesc = RPI::RPISystemInterface::Get()->GetDescriptor();
  316. if (mesh.m_subMeshIndices.size() > rpiDesc.m_rayTracingSystemDescriptor.m_rayTracingCompactionQueryPoolSize)
  317. {
  318. AZ_Warning(
  319. "RaytracingFeatureProcessor",
  320. false,
  321. "CompactionQueryPool is not large enough for model %s.\n"
  322. "Pool size: %d\n"
  323. "Num meshes in model: %d\n"
  324. "Raytracing Acceleration Structure Compaction will be disabled for this model\n"
  325. "Consider increasing the size of the pool through the registry setting "
  326. "O3DE/Atom/RPI/Initialization/RayTracingSystemDescriptor/RayTracingCompactionQueryPoolSize",
  327. mesh.m_assetId.ToFixedString().c_str(),
  328. rpiDesc.m_rayTracingSystemDescriptor.m_rayTracingCompactionQueryPoolSize,
  329. mesh.m_subMeshIndices.size());
  330. buildFlags = buildFlags & ~RHI::RayTracingAccelerationStructureBuildFlags::ENABLE_COMPACTION;
  331. }
  332. for (uint32_t subMeshIndex = 0; subMeshIndex < mesh.m_subMeshIndices.size(); ++subMeshIndex)
  333. {
  334. const SubMesh& subMesh = m_subMeshes[mesh.m_subMeshIndices[subMeshIndex]];
  335. SubMeshBlasInstance subMeshBlasInstance;
  336. RHI::RayTracingBlasDescriptor& blasDescriptor = subMeshBlasInstance.m_blasDescriptor;
  337. blasDescriptor.m_buildFlags = buildFlags;
  338. RHI::RayTracingGeometry& blasGeometry = blasDescriptor.m_geometries.emplace_back();
  339. blasGeometry.m_vertexFormat = subMesh.m_positionFormat;
  340. blasGeometry.m_vertexBuffer = subMesh.m_positionVertexBufferView;
  341. blasGeometry.m_indexBuffer = subMesh.m_indexBufferView;
  342. itMeshBlasInstance->second.m_subMeshes.push_back(subMeshBlasInstance);
  343. }
  344. m_blasToCreate.insert(mesh.m_assetId);
  345. }
  346. else
  347. {
  348. itMeshBlasInstance->second.m_count++;
  349. }
  350. AZ_Error(
  351. "RaytracingFeatureProcessor",
  352. itMeshBlasInstance->second.m_subMeshes.size() == mesh.m_subMeshIndices.size(),
  353. "AddMesh: The number of submeshes given does match the number of submeshes in the mesh (%d vs %d)",
  354. itMeshBlasInstance->second.m_subMeshes.size(),
  355. mesh.m_subMeshIndices.size());
  356. for (uint32_t subMeshIndex = 0; subMeshIndex < mesh.m_subMeshIndices.size(); ++subMeshIndex)
  357. {
  358. m_subMeshes[mesh.m_subMeshIndices[subMeshIndex]].m_blasInstanceId = { mesh.m_assetId, subMeshIndex };
  359. }
  360. AZ::Transform noScaleTransform = mesh.m_transform;
  361. noScaleTransform.ExtractUniformScale();
  362. AZ::Matrix3x3 rotationMatrix = Matrix3x3::CreateFromTransform(noScaleTransform);
  363. rotationMatrix = rotationMatrix.GetInverseFull().GetTranspose();
  364. Matrix3x4 worldInvTranspose3x4 = Matrix3x4::CreateFromMatrix3x3(rotationMatrix);
  365. Matrix3x4 reflectionProbeModelToWorld3x4 = Matrix3x4::CreateFromTransform(mesh.m_reflectionProbe.m_modelToWorld);
  366. // store the mesh buffers and material textures in the resource lists
  367. for (uint32_t subMeshIndex : mesh.m_subMeshIndices)
  368. {
  369. SubMesh& subMesh = m_subMeshes[subMeshIndex];
  370. AZ_Assert(subMesh.m_indexShaderBufferView.get(), "RayTracing Mesh IndexBuffer cannot be null");
  371. AZ_Assert(subMesh.m_positionShaderBufferView.get(), "RayTracing Mesh PositionBuffer cannot be null");
  372. AZ_Assert(subMesh.m_normalShaderBufferView.get(), "RayTracing Mesh NormalBuffer cannot be null");
  373. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  374. {
  375. MeshInfo& meshInfo = meshInfos[subMesh.m_globalIndex];
  376. worldInvTranspose3x4.StoreToRowMajorFloat12(meshInfo.m_worldInvTranspose.data());
  377. meshInfo.m_bufferFlags = subMesh.m_bufferFlags;
  378. meshInfo.m_indexByteOffset = subMesh.m_indexBufferView.GetByteOffset();
  379. meshInfo.m_positionByteOffset = subMesh.m_positionVertexBufferView.GetByteOffset();
  380. meshInfo.m_normalByteOffset = subMesh.m_normalVertexBufferView.GetByteOffset();
  381. meshInfo.m_tangentByteOffset =
  382. subMesh.m_tangentShaderBufferView ? subMesh.m_tangentVertexBufferView.GetByteOffset() : 0;
  383. meshInfo.m_bitangentByteOffset =
  384. subMesh.m_bitangentShaderBufferView ? subMesh.m_bitangentVertexBufferView.GetByteOffset() : 0;
  385. meshInfo.m_uvByteOffset = subMesh.m_uvShaderBufferView ? subMesh.m_uvVertexBufferView.GetByteOffset() : 0;
  386. meshInfo.m_positionFormat = subMesh.m_positionFormat;
  387. meshInfo.m_normalFormat = subMesh.m_normalFormat;
  388. meshInfo.m_uvFormat = subMesh.m_uvFormat;
  389. meshInfo.m_tangentFormat = subMesh.m_tangentFormat;
  390. meshInfo.m_bitangentFormat = subMesh.m_bitangentFormat;
  391. auto& materialInfos{ m_materialInfos[deviceIndex] };
  392. MaterialInfo& materialInfo = materialInfos[subMesh.m_globalIndex];
  393. ConvertMaterial(materialInfo, subMesh.m_material, deviceIndex);
  394. auto& meshBufferIndices = m_meshBufferIndices[deviceIndex];
  395. // add mesh buffers
  396. meshInfo.m_bufferStartIndex = meshBufferIndices.AddEntry(
  397. {
  398. #if USE_BINDLESS_SRG
  399. subMesh.m_indexShaderBufferView.get() ? subMesh.m_indexShaderBufferView->GetDeviceBufferView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  400. subMesh.m_positionShaderBufferView.get() ? subMesh.m_positionShaderBufferView->GetDeviceBufferView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  401. subMesh.m_normalShaderBufferView.get() ? subMesh.m_normalShaderBufferView->GetDeviceBufferView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  402. subMesh.m_tangentShaderBufferView.get() ? subMesh.m_tangentShaderBufferView->GetDeviceBufferView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  403. subMesh.m_bitangentShaderBufferView.get() ? subMesh.m_bitangentShaderBufferView->GetDeviceBufferView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  404. subMesh.m_uvShaderBufferView.get() ? subMesh.m_uvShaderBufferView->GetDeviceBufferView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex
  405. #else
  406. m_meshBuffers.AddResource(subMesh.m_indexShaderBufferView.get()),
  407. m_meshBuffers.AddResource(subMesh.m_positionShaderBufferView.get()),
  408. m_meshBuffers.AddResource(subMesh.m_normalShaderBufferView.get()),
  409. m_meshBuffers.AddResource(subMesh.m_tangentShaderBufferView.get()),
  410. m_meshBuffers.AddResource(subMesh.m_bitangentShaderBufferView.get()),
  411. m_meshBuffers.AddResource(subMesh.m_uvShaderBufferView.get())
  412. #endif
  413. });
  414. // add reflection probe data
  415. if (mesh.m_reflectionProbe.m_reflectionProbeCubeMap.get())
  416. {
  417. materialInfo.m_reflectionProbeCubeMapIndex = mesh.m_reflectionProbe.m_reflectionProbeCubeMap->GetImageView()->GetDeviceImageView(deviceIndex)->GetBindlessReadIndex();
  418. if (materialInfo.m_reflectionProbeCubeMapIndex != InvalidIndex)
  419. {
  420. reflectionProbeModelToWorld3x4.StoreToRowMajorFloat12(materialInfo.m_reflectionProbeData.m_modelToWorld.data());
  421. reflectionProbeModelToWorld3x4.GetInverseFull().StoreToRowMajorFloat12(materialInfo.m_reflectionProbeData.m_modelToWorldInverse.data());
  422. mesh.m_reflectionProbe.m_outerObbHalfLengths.StoreToFloat3(materialInfo.m_reflectionProbeData.m_outerObbHalfLengths.data());
  423. mesh.m_reflectionProbe.m_innerObbHalfLengths.StoreToFloat3(materialInfo.m_reflectionProbeData.m_innerObbHalfLengths.data());
  424. materialInfo.m_reflectionProbeData.m_useReflectionProbe = true;
  425. materialInfo.m_reflectionProbeData.m_useParallaxCorrection = mesh.m_reflectionProbe.m_useParallaxCorrection;
  426. materialInfo.m_reflectionProbeData.m_exposure = mesh.m_reflectionProbe.m_exposure;
  427. }
  428. }
  429. }
  430. }
  431. m_revision++;
  432. m_subMeshCount += aznumeric_cast<uint32_t>(subMeshes.size());
  433. m_meshInfoBufferNeedsUpdate = true;
  434. m_materialInfoBufferNeedsUpdate = true;
  435. m_indexListNeedsUpdate = true;
  436. }
  437. void RayTracingFeatureProcessor::RemoveMesh(const AZ::Uuid& uuid)
  438. {
  439. if (!m_rayTracingEnabled)
  440. {
  441. return;
  442. }
  443. // lock the mutex to protect the mesh and BLAS lists
  444. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  445. MeshMap::iterator itMesh = m_meshes.find(uuid);
  446. if (itMesh != m_meshes.end())
  447. {
  448. Mesh& mesh = itMesh->second;
  449. // decrement the count from the BLAS instances, and check to see if we can remove them
  450. BlasInstanceMap::iterator itBlas = m_blasInstanceMap.find(mesh.m_assetId);
  451. if (itBlas != m_blasInstanceMap.end())
  452. {
  453. itBlas->second.m_count--;
  454. if (itBlas->second.m_count == 0)
  455. {
  456. if (itBlas->second.m_isSkinnedMesh)
  457. {
  458. --m_skinnedMeshCount;
  459. }
  460. RemoveBlasInstance(mesh.m_assetId);
  461. }
  462. }
  463. // remove the SubMeshes
  464. for (auto& subMeshIndex : mesh.m_subMeshIndices)
  465. {
  466. SubMesh& subMesh = m_subMeshes[subMeshIndex];
  467. uint32_t globalIndex = subMesh.m_globalIndex;
  468. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  469. {
  470. MeshInfo& meshInfo = meshInfos[globalIndex];
  471. auto& meshBufferIndices = m_meshBufferIndices[deviceIndex];
  472. meshBufferIndices.RemoveEntry(meshInfo.m_bufferStartIndex);
  473. }
  474. for (auto& [deviceIndex, materialTextureIndices] : m_materialTextureIndices)
  475. {
  476. MaterialInfo& materialInfo = m_materialInfos[deviceIndex][globalIndex];
  477. materialTextureIndices.RemoveEntry(materialInfo.m_textureStartIndex);
  478. }
  479. #if !USE_BINDLESS_SRG
  480. m_meshBuffers.RemoveResource(subMesh.m_indexShaderBufferView.get());
  481. m_meshBuffers.RemoveResource(subMesh.m_positionShaderBufferView.get());
  482. m_meshBuffers.RemoveResource(subMesh.m_normalShaderBufferView.get());
  483. m_meshBuffers.RemoveResource(subMesh.m_tangentShaderBufferView.get());
  484. m_meshBuffers.RemoveResource(subMesh.m_bitangentShaderBufferView.get());
  485. m_meshBuffers.RemoveResource(subMesh.m_uvShaderBufferView.get());
  486. m_materialTextures.RemoveResource(subMesh.m_material.m_baseColorImageView.get());
  487. m_materialTextures.RemoveResource(subMesh.m_material.m_normalImageView.get());
  488. m_materialTextures.RemoveResource(subMesh.m_material.m_metallicImageView.get());
  489. m_materialTextures.RemoveResource(subMesh.m_material.m_roughnessImageView.get());
  490. m_materialTextures.RemoveResource(subMesh.m_material.m_emissiveImageView.get());
  491. #endif
  492. if (globalIndex < m_subMeshes.size() - 1)
  493. {
  494. // the subMesh we're removing is in the middle of the global lists, remove by swapping the last element to its position in the list
  495. m_subMeshes[globalIndex] = m_subMeshes.back();
  496. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  497. {
  498. auto& materialInfos{ m_materialInfos[deviceIndex] };
  499. meshInfos[globalIndex] = meshInfos.back();
  500. materialInfos[globalIndex] = materialInfos.back();
  501. }
  502. // update the global index for the swapped subMesh
  503. m_subMeshes[globalIndex].m_globalIndex = globalIndex;
  504. // update the global index in the parent Mesh' subMesh list
  505. Mesh* swappedSubMeshParent = m_subMeshes[globalIndex].m_mesh;
  506. uint32_t swappedSubMeshIndex = m_subMeshes[globalIndex].m_subMeshIndex;
  507. swappedSubMeshParent->m_subMeshIndices[swappedSubMeshIndex] = globalIndex;
  508. }
  509. m_subMeshes.pop_back();
  510. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  511. {
  512. auto& materialInfos{ m_materialInfos[deviceIndex] };
  513. meshInfos.pop_back();
  514. materialInfos.pop_back();
  515. }
  516. }
  517. // remove from the Mesh list
  518. m_subMeshCount -= aznumeric_cast<uint32_t>(mesh.m_subMeshIndices.size());
  519. m_meshes.erase(itMesh);
  520. m_revision++;
  521. // reset all data structures if all meshes were removed (i.e., empty scene)
  522. if (m_subMeshCount == 0)
  523. {
  524. m_meshes.clear();
  525. m_subMeshes.clear();
  526. m_blasInstanceMap.clear();
  527. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  528. {
  529. meshInfos.clear();
  530. }
  531. for (auto& [deviceIndex, materialInfos] : m_materialInfos)
  532. {
  533. materialInfos.clear();
  534. }
  535. for (auto& [deviceIndex, meshBufferIndices] : m_meshBufferIndices)
  536. {
  537. meshBufferIndices.Reset();
  538. }
  539. for (auto& [deviceIndex, materialTextureIndices] : m_materialTextureIndices)
  540. {
  541. materialTextureIndices.Reset();
  542. }
  543. #if !USE_BINDLESS_SRG
  544. m_meshBuffers.Reset();
  545. m_materialTextures.Reset();
  546. #endif
  547. }
  548. }
  549. m_meshInfoBufferNeedsUpdate = true;
  550. m_materialInfoBufferNeedsUpdate = true;
  551. m_indexListNeedsUpdate = true;
  552. }
  553. void RayTracingFeatureProcessor::SetMeshTransform(const AZ::Uuid& uuid, const AZ::Transform transform, const AZ::Vector3 nonUniformScale)
  554. {
  555. if (!m_rayTracingEnabled)
  556. {
  557. return;
  558. }
  559. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  560. MeshMap::iterator itMesh = m_meshes.find(uuid);
  561. if (itMesh != m_meshes.end())
  562. {
  563. Mesh& mesh = itMesh->second;
  564. mesh.m_transform = transform;
  565. mesh.m_nonUniformScale = nonUniformScale;
  566. m_revision++;
  567. // create a world inverse transpose 3x4 matrix
  568. AZ::Transform noScaleTransform = mesh.m_transform;
  569. noScaleTransform.ExtractUniformScale();
  570. AZ::Matrix3x3 rotationMatrix = Matrix3x3::CreateFromTransform(noScaleTransform);
  571. rotationMatrix = rotationMatrix.GetInverseFull().GetTranspose();
  572. Matrix3x4 worldInvTranspose3x4 = Matrix3x4::CreateFromMatrix3x3(rotationMatrix);
  573. // update all MeshInfos for this Mesh with the new transform
  574. for (const auto& subMeshIndex : mesh.m_subMeshIndices)
  575. {
  576. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  577. {
  578. MeshInfo& meshInfo = meshInfos[subMeshIndex];
  579. worldInvTranspose3x4.StoreToRowMajorFloat12(meshInfo.m_worldInvTranspose.data());
  580. }
  581. }
  582. m_meshInfoBufferNeedsUpdate = true;
  583. }
  584. }
  585. void RayTracingFeatureProcessor::SetMeshReflectionProbe(const AZ::Uuid& uuid, const Mesh::ReflectionProbe& reflectionProbe)
  586. {
  587. if (!m_rayTracingEnabled)
  588. {
  589. return;
  590. }
  591. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  592. MeshMap::iterator itMesh = m_meshes.find(uuid);
  593. if (itMesh != m_meshes.end())
  594. {
  595. Mesh& mesh = itMesh->second;
  596. // update the Mesh reflection probe data
  597. mesh.m_reflectionProbe = reflectionProbe;
  598. // update all of the subMeshes
  599. const Data::Instance<RPI::Image>& reflectionProbeCubeMap = reflectionProbe.m_reflectionProbeCubeMap;
  600. Matrix3x4 reflectionProbeModelToWorld3x4 = Matrix3x4::CreateFromTransform(mesh.m_reflectionProbe.m_modelToWorld);
  601. for (auto& subMeshIndex : mesh.m_subMeshIndices)
  602. {
  603. SubMesh& subMesh = m_subMeshes[subMeshIndex];
  604. uint32_t globalIndex = subMesh.m_globalIndex;
  605. for (auto& [deviceIndex, materialInfos] : m_materialInfos)
  606. {
  607. MaterialInfo& materialInfo = materialInfos[globalIndex];
  608. materialInfo.m_reflectionProbeCubeMapIndex = reflectionProbeCubeMap.get()
  609. ? reflectionProbeCubeMap->GetImageView()->GetDeviceImageView(deviceIndex)->GetBindlessReadIndex()
  610. : InvalidIndex;
  611. if (materialInfo.m_reflectionProbeCubeMapIndex != InvalidIndex)
  612. {
  613. reflectionProbeModelToWorld3x4.StoreToRowMajorFloat12(materialInfo.m_reflectionProbeData.m_modelToWorld.data());
  614. reflectionProbeModelToWorld3x4.GetInverseFull().StoreToRowMajorFloat12(materialInfo.m_reflectionProbeData.m_modelToWorldInverse.data());
  615. mesh.m_reflectionProbe.m_outerObbHalfLengths.StoreToFloat3(materialInfo.m_reflectionProbeData.m_outerObbHalfLengths.data());
  616. mesh.m_reflectionProbe.m_innerObbHalfLengths.StoreToFloat3(materialInfo.m_reflectionProbeData.m_innerObbHalfLengths.data());
  617. materialInfo.m_reflectionProbeData.m_useReflectionProbe = true;
  618. materialInfo.m_reflectionProbeData.m_useParallaxCorrection = mesh.m_reflectionProbe.m_useParallaxCorrection;
  619. materialInfo.m_reflectionProbeData.m_exposure = mesh.m_reflectionProbe.m_exposure;
  620. }
  621. else
  622. {
  623. materialInfo.m_reflectionProbeData.m_useReflectionProbe = false;
  624. }
  625. }
  626. }
  627. m_materialInfoBufferNeedsUpdate = true;
  628. }
  629. }
  630. void RayTracingFeatureProcessor::SetMeshMaterials(const AZ::Uuid& uuid, const SubMeshMaterialVector& subMeshMaterials)
  631. {
  632. if (!m_rayTracingEnabled)
  633. {
  634. return;
  635. }
  636. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  637. MeshMap::iterator itMesh = m_meshes.find(uuid);
  638. if (itMesh != m_meshes.end())
  639. {
  640. Mesh& mesh = itMesh->second;
  641. AZ_Assert(
  642. subMeshMaterials.size() == mesh.m_subMeshIndices.size(),
  643. "The size of subMeshes in SetMeshMaterial must be the same as in AddMesh");
  644. for (auto& subMeshIndex : mesh.m_subMeshIndices)
  645. {
  646. const SubMesh& subMesh = m_subMeshes[subMeshIndex];
  647. for (auto& [deviceIndex, materialInfos] : m_materialInfos)
  648. {
  649. ConvertMaterial(materialInfos[subMesh.m_globalIndex], subMeshMaterials[subMesh.m_subMeshIndex], deviceIndex);
  650. }
  651. }
  652. m_materialInfoBufferNeedsUpdate = true;
  653. m_indexListNeedsUpdate = true;
  654. }
  655. }
  656. void RayTracingFeatureProcessor::Render(const RenderPacket&)
  657. {
  658. m_frameIndex++;
  659. }
  660. void RayTracingFeatureProcessor::BeginFrame(int deviceIndex)
  661. {
  662. if (deviceIndex == RHI::MultiDevice::InvalidDeviceIndex)
  663. {
  664. deviceIndex = RHI::MultiDevice::DefaultDeviceIndex;
  665. }
  666. bool updatedDeviceMask = false;
  667. if (!RHI::CheckBit(m_deviceMask, deviceIndex))
  668. {
  669. for (auto& [assetId, blasInstance] : m_blasInstanceMap)
  670. {
  671. m_blasToCreate.insert(assetId);
  672. }
  673. m_deviceMask = RHI::SetBit(m_deviceMask, deviceIndex);
  674. updatedDeviceMask = true;
  675. m_revision++;
  676. // Make sure the map entries are present so we don't have a race condition in MarkBlasInstance*
  677. m_uncompactedBlasEnqueuedForDeletion.insert(deviceIndex);
  678. m_blasEnqueuedForCompact.insert(deviceIndex);
  679. }
  680. if (m_updatedFrameIndex == m_frameIndex)
  681. {
  682. if (!updatedDeviceMask)
  683. {
  684. // Make sure the update is only called once per frame
  685. // When multiple devices are present a RayTracingAccelerationStructurePass is created per device
  686. // Thus this function is called once for each device
  687. return;
  688. }
  689. }
  690. else
  691. {
  692. m_compactionQueryPool->BeginFrame(m_frameIndex);
  693. }
  694. m_updatedFrameIndex = m_frameIndex;
  695. UpdateBlasInstances();
  696. if (m_tlasRevision != m_revision)
  697. {
  698. m_tlasRevision = m_revision;
  699. // create the TLAS descriptor
  700. AZStd::unordered_map<int, RHI::DeviceRayTracingTlasDescriptor> tlasDescriptor;
  701. RHI::MultiDeviceObject::IterateDevices(
  702. m_deviceMask,
  703. [&](int deviceIndex)
  704. {
  705. // Create all device descriptors. This is needed if no Blas instances are present
  706. tlasDescriptor[deviceIndex];
  707. return true;
  708. });
  709. uint32_t instanceIndex = 0;
  710. for (auto& subMesh : m_subMeshes)
  711. {
  712. RHI::MultiDeviceObject::IterateDevices(
  713. m_deviceMask,
  714. [&](int deviceIndex)
  715. {
  716. auto meshIt = m_blasInstanceMap.find(subMesh.m_blasInstanceId.first);
  717. if (meshIt == m_blasInstanceMap.end())
  718. {
  719. return false;
  720. }
  721. if (subMesh.m_blasInstanceId.second >= meshIt->second.m_subMeshes.size())
  722. {
  723. return false;
  724. }
  725. const auto& blasInstance = meshIt->second.m_subMeshes[subMesh.m_blasInstanceId.second];
  726. RHI::RayTracingBlas* blas = blasInstance.m_compactBlas.get();
  727. if (blas == nullptr || !RHI::CheckBit(blas->GetDeviceMask(), deviceIndex))
  728. {
  729. blas = blasInstance.m_blas.get();
  730. if (blas && !RHI::CheckBit(blas->GetDeviceMask(), deviceIndex))
  731. {
  732. // This might happen if the number of BLAS created per frame is limited
  733. blas = nullptr;
  734. }
  735. }
  736. if (blas)
  737. {
  738. RHI::DeviceRayTracingTlasInstance& tlasInstance = tlasDescriptor[deviceIndex].m_instances.emplace_back();
  739. tlasInstance.m_instanceID = instanceIndex;
  740. tlasInstance.m_instanceMask = subMesh.m_mesh->m_instanceMask;
  741. tlasInstance.m_hitGroupIndex = 0;
  742. tlasInstance.m_blas = blas->GetDeviceRayTracingBlas(deviceIndex);
  743. tlasInstance.m_transform = subMesh.m_mesh->m_transform;
  744. tlasInstance.m_nonUniformScale = subMesh.m_mesh->m_nonUniformScale;
  745. tlasInstance.m_transparent = subMesh.m_material.m_irradianceColor.GetA() < 1.0f;
  746. }
  747. return true;
  748. });
  749. instanceIndex++;
  750. }
  751. unsigned proceduralHitGroupIndex = 1; // Hit group 0 is used for normal meshes
  752. AZStd::unordered_map<Name, unsigned> geometryTypeMap;
  753. geometryTypeMap.reserve(m_proceduralGeometryTypes.size());
  754. for (auto it = m_proceduralGeometryTypes.cbegin(); it != m_proceduralGeometryTypes.cend(); ++it)
  755. {
  756. geometryTypeMap[it->m_name] = proceduralHitGroupIndex++;
  757. }
  758. for (const auto& proceduralGeometry : m_proceduralGeometry)
  759. {
  760. RHI::MultiDeviceObject::IterateDevices(
  761. m_deviceMask,
  762. [&](int deviceIndex)
  763. {
  764. RHI::DeviceRayTracingTlasInstance& tlasInstance = tlasDescriptor[deviceIndex].m_instances.emplace_back();
  765. tlasInstance.m_instanceID = instanceIndex;
  766. tlasInstance.m_instanceMask = proceduralGeometry.m_instanceMask;
  767. tlasInstance.m_hitGroupIndex = geometryTypeMap[proceduralGeometry.m_typeHandle->m_name];
  768. tlasInstance.m_blas = proceduralGeometry.m_blas->GetDeviceRayTracingBlas(deviceIndex);
  769. tlasInstance.m_transform = proceduralGeometry.m_transform;
  770. tlasInstance.m_nonUniformScale = proceduralGeometry.m_nonUniformScale;
  771. return true;
  772. });
  773. instanceIndex++;
  774. }
  775. // create the TLAS buffers based on the descriptor
  776. RHI::Ptr<RHI::RayTracingTlas>& rayTracingTlas = m_tlas;
  777. rayTracingTlas->CreateBuffers(m_deviceMask, tlasDescriptor, *m_bufferPools);
  778. }
  779. // update and compile the RayTracingSceneSrg and RayTracingMaterialSrg
  780. // Note: the timing of this update is very important, it needs to be updated after the TLAS is allocated so it can
  781. // be set on the RayTracingSceneSrg for this frame, and the ray tracing mesh data in the RayTracingSceneSrg must
  782. // exactly match the TLAS. Any mismatch in this data may result in a TDR.
  783. UpdateRayTracingSrgs();
  784. }
  785. uint32_t RayTracingFeatureProcessor::GetBuiltRevision(int deviceIndex) const
  786. {
  787. auto it = m_builtRevisions.find(deviceIndex);
  788. if (it != m_builtRevisions.end())
  789. {
  790. return it->second;
  791. }
  792. else
  793. {
  794. return 0;
  795. }
  796. }
  797. void RayTracingFeatureProcessor::SetBuiltRevision(int deviceIndex, uint32_t revision)
  798. {
  799. m_builtRevisions[deviceIndex] = revision;
  800. }
  801. void RayTracingFeatureProcessor::UpdateRayTracingSrgs()
  802. {
  803. AZ_PROFILE_SCOPE(AzRender, "RayTracingFeatureProcessor::UpdateRayTracingSrgs");
  804. if (!m_tlas->GetTlasBuffer())
  805. {
  806. return;
  807. }
  808. if (m_rayTracingSceneSrg->IsQueuedForCompile() || m_rayTracingMaterialSrg->IsQueuedForCompile())
  809. {
  810. //[GFX TODO][ATOM-14792] AtomSampleViewer: Reset scene and feature processors before switching to sample
  811. return;
  812. }
  813. // lock the mutex to protect the mesh and BLAS lists
  814. AZStd::unique_lock<AZStd::mutex> lock(m_mutex);
  815. if (HasMeshGeometry())
  816. {
  817. UpdateMeshInfoBuffer();
  818. }
  819. if (HasProceduralGeometry())
  820. {
  821. UpdateProceduralGeometryInfoBuffer();
  822. }
  823. if (HasGeometry())
  824. {
  825. UpdateMaterialInfoBuffer();
  826. UpdateIndexLists();
  827. }
  828. UpdateRayTracingSceneSrg();
  829. UpdateRayTracingMaterialSrg();
  830. }
  831. const void RayTracingFeatureProcessor::MarkBlasInstanceForCompaction(int deviceIndex, Data::AssetId assetId)
  832. {
  833. auto it = m_blasInstanceMap.find(assetId);
  834. if (RHI::Validation::IsEnabled())
  835. {
  836. if (it != m_blasInstanceMap.end())
  837. {
  838. for ([[maybe_unused]] auto& subMeshInstance : it->second.m_subMeshes)
  839. {
  840. AZ_Assert(
  841. subMeshInstance.m_compactionSizeQuery, "Enqueuing a Blas without an compaction size query for compaction");
  842. }
  843. }
  844. }
  845. m_blasEnqueuedForCompact[deviceIndex][assetId].m_frameIndex =
  846. static_cast<int>(m_frameIndex + RHI::Limits::Device::FrameCountMax);
  847. }
  848. const void RayTracingFeatureProcessor::MarkBlasInstanceAsCompactionEnqueued(int deviceIndex, Data::AssetId assetId)
  849. {
  850. auto it = m_blasInstanceMap.find(assetId);
  851. if (RHI::Validation::IsEnabled())
  852. {
  853. if (it != m_blasInstanceMap.end())
  854. {
  855. for ([[maybe_unused]] auto& subMeshInstance : it->second.m_subMeshes)
  856. {
  857. AZ_Assert(subMeshInstance.m_compactBlas, "Marking a Blas without a compacted Blas as enqueued for compaction");
  858. }
  859. }
  860. }
  861. m_uncompactedBlasEnqueuedForDeletion[deviceIndex][assetId].m_frameIndex =
  862. static_cast<int>(m_frameIndex + RHI::Limits::Device::FrameCountMax);
  863. }
  864. void RayTracingFeatureProcessor::UpdateBlasInstances()
  865. {
  866. bool changed = false;
  867. auto rpiDesc = RPI::RPISystemInterface::Get()->GetDescriptor();
  868. {
  869. uint32_t numModelBlasCreated = 0;
  870. uint32_t numCompactionQueriesEnqueued = 0;
  871. AZStd::unordered_set<Data::AssetId> toRemoveFromCreateList;
  872. for (auto assetId : m_blasToCreate)
  873. {
  874. auto it = m_blasInstanceMap.find(assetId);
  875. if (it == m_blasInstanceMap.end())
  876. {
  877. toRemoveFromCreateList.insert(assetId);
  878. continue;
  879. }
  880. auto& instance = it->second;
  881. {
  882. int numSubmeshesWithCompactionQuery = 0;
  883. for (auto& subMeshInstance : instance.m_subMeshes)
  884. {
  885. // create the BLAS object and store it in the BLAS list
  886. if (RHI::CheckBitsAny(
  887. subMeshInstance.m_blasDescriptor.m_buildFlags,
  888. RHI::RayTracingAccelerationStructureBuildFlags::ENABLE_COMPACTION))
  889. {
  890. numSubmeshesWithCompactionQuery++;
  891. }
  892. }
  893. if (numCompactionQueriesEnqueued + numSubmeshesWithCompactionQuery >
  894. rpiDesc.m_rayTracingSystemDescriptor.m_rayTracingCompactionQueryPoolSize)
  895. {
  896. break;
  897. }
  898. }
  899. RHI::MultiDevice::DeviceMask createdOnDevices{};
  900. for (auto& subMeshInstance : instance.m_subMeshes)
  901. {
  902. // create the BLAS object and store it in the BLAS list
  903. if (RHI::CheckBitsAny(
  904. subMeshInstance.m_blasDescriptor.m_buildFlags,
  905. RHI::RayTracingAccelerationStructureBuildFlags::ENABLE_COMPACTION))
  906. {
  907. if (subMeshInstance.m_compactionSizeQuery)
  908. {
  909. RHI::MultiDeviceObject::IterateDevices(
  910. m_deviceMask & ~subMeshInstance.m_compactionSizeQuery->GetDeviceMask(),
  911. [&](int deviceIndex)
  912. {
  913. m_compactionQueryPool->AddDeviceToQuery(deviceIndex, subMeshInstance.m_compactionSizeQuery.get());
  914. return true;
  915. });
  916. }
  917. else
  918. {
  919. subMeshInstance.m_compactionSizeQuery = aznew RHI::RayTracingCompactionQuery;
  920. m_compactionQueryPool->InitQuery(m_deviceMask, subMeshInstance.m_compactionSizeQuery.get());
  921. }
  922. numCompactionQueriesEnqueued++;
  923. }
  924. if (subMeshInstance.m_blas)
  925. {
  926. createdOnDevices = m_deviceMask & ~subMeshInstance.m_blas->GetDeviceMask();
  927. RHI::MultiDeviceObject::IterateDevices(
  928. createdOnDevices,
  929. [&](int deviceIndex)
  930. {
  931. subMeshInstance.m_blas->AddDevice(deviceIndex, *m_bufferPools);
  932. return true;
  933. });
  934. }
  935. else
  936. {
  937. subMeshInstance.m_blas = aznew RHI::RayTracingBlas;
  938. subMeshInstance.m_blas->CreateBuffers(m_deviceMask, &subMeshInstance.m_blasDescriptor, *m_bufferPools);
  939. createdOnDevices = m_deviceMask;
  940. }
  941. }
  942. if (instance.m_isSkinnedMesh)
  943. {
  944. if (createdOnDevices ==
  945. m_deviceMask) // If it's not the full device mask, a new device was added, not a new blas instance
  946. {
  947. ++m_skinnedMeshCount;
  948. m_skinnedBlasIds.insert(assetId);
  949. }
  950. }
  951. else if (createdOnDevices != RHI::MultiDevice::NoDevices)
  952. {
  953. RHI::MultiDeviceObject::IterateDevices(
  954. createdOnDevices,
  955. [&](int deviceIndex)
  956. {
  957. m_blasToBuild[deviceIndex].insert(assetId);
  958. return true;
  959. });
  960. }
  961. toRemoveFromCreateList.insert(assetId);
  962. changed = true;
  963. numModelBlasCreated++;
  964. if (rpiDesc.m_rayTracingSystemDescriptor.m_maxBlasCreatedPerFrame > 0 &&
  965. numModelBlasCreated >= static_cast<uint32_t>(rpiDesc.m_rayTracingSystemDescriptor.m_maxBlasCreatedPerFrame))
  966. {
  967. break;
  968. }
  969. }
  970. for (auto& toRemove : toRemoveFromCreateList)
  971. {
  972. m_blasToCreate.erase(toRemove);
  973. }
  974. }
  975. // Check which Blas are ready for compaction and create compacted acceleration structures for them
  976. for (auto& [deviceIndex, blasEnqueuedForCompact] : m_blasEnqueuedForCompact)
  977. {
  978. AZStd::unordered_set<Data::AssetId> toDelete;
  979. for (const auto& [assetId, frameEvent] : blasEnqueuedForCompact)
  980. {
  981. if (frameEvent.m_frameIndex <= m_frameIndex)
  982. {
  983. auto it = m_blasInstanceMap.find(assetId);
  984. if (it != m_blasInstanceMap.end())
  985. {
  986. // Limit the number of blas we enqueue per frame to the size of the compaction query pool
  987. for (int subMeshIdx = 0; subMeshIdx < it->second.m_subMeshes.size(); subMeshIdx++)
  988. {
  989. auto& subMeshInstance = it->second.m_subMeshes[subMeshIdx];
  990. AZ_Assert(
  991. !subMeshInstance.m_compactBlas ||
  992. !RHI::CheckBit(subMeshInstance.m_compactBlas->GetDeviceMask(), deviceIndex),
  993. "Trying to compact a Blas twice");
  994. auto deviceMask = RHI::SetBit(RHI::MultiDevice::DeviceMask{}, deviceIndex);
  995. if (subMeshInstance.m_compactBlas)
  996. {
  997. auto size =
  998. subMeshInstance.m_compactionSizeQuery->GetDeviceRayTracingCompactionQuery(deviceIndex)->GetResult();
  999. subMeshInstance.m_compactBlas->AddDeviceCompacted(
  1000. deviceIndex, *subMeshInstance.m_blas, size, *m_bufferPools);
  1001. }
  1002. else
  1003. {
  1004. AZStd::unordered_map<int, uint64_t> sizes;
  1005. sizes[deviceIndex] =
  1006. subMeshInstance.m_compactionSizeQuery->GetDeviceRayTracingCompactionQuery(deviceIndex)->GetResult();
  1007. subMeshInstance.m_compactBlas = aznew RHI::RayTracingBlas;
  1008. subMeshInstance.m_compactBlas->CreateCompactedBuffers(
  1009. deviceMask, *subMeshInstance.m_blas, sizes, *m_bufferPools);
  1010. }
  1011. if (RHI::ResetBits(subMeshInstance.m_compactionSizeQuery->GetDeviceMask(), deviceMask) ==
  1012. RHI::MultiDevice::DeviceMask{})
  1013. {
  1014. subMeshInstance.m_compactionSizeQuery = {};
  1015. }
  1016. else
  1017. {
  1018. m_compactionQueryPool->RemoveDeviceFromQuery(deviceIndex, subMeshInstance.m_compactionSizeQuery.get());
  1019. }
  1020. changed = true;
  1021. }
  1022. m_blasToCompact[deviceIndex].insert(assetId);
  1023. }
  1024. toDelete.insert(assetId);
  1025. }
  1026. }
  1027. for (auto& assetId : toDelete)
  1028. {
  1029. blasEnqueuedForCompact.erase(assetId);
  1030. }
  1031. }
  1032. // Check which uncompacted Blas can be deleted, and delete them
  1033. for (auto& [deviceIndex, uncompactedBlasEnqueuedForDeletion] : m_uncompactedBlasEnqueuedForDeletion)
  1034. {
  1035. AZStd::unordered_set<Data::AssetId> toDelete;
  1036. for (const auto& [assetId, frameEvent] : uncompactedBlasEnqueuedForDeletion)
  1037. {
  1038. if (frameEvent.m_frameIndex <= m_frameIndex)
  1039. {
  1040. auto it = m_blasInstanceMap.find(assetId);
  1041. if (it != m_blasInstanceMap.end())
  1042. {
  1043. for (auto& subMeshInstance : it->second.m_subMeshes)
  1044. {
  1045. AZ_Assert(
  1046. subMeshInstance.m_compactBlas, "Deleting a uncompacted Blas from a submesh without a compacted one");
  1047. if (subMeshInstance.m_blas->GetDeviceMask() == RHI::SetBit(RHI::MultiDevice::NoDevices, deviceIndex))
  1048. {
  1049. subMeshInstance.m_blas = {};
  1050. }
  1051. else
  1052. {
  1053. subMeshInstance.m_blas->RemoveDevice(deviceIndex);
  1054. }
  1055. changed = true;
  1056. }
  1057. }
  1058. toDelete.insert(assetId);
  1059. }
  1060. }
  1061. for (auto& assetId : toDelete)
  1062. {
  1063. uncompactedBlasEnqueuedForDeletion.erase(assetId);
  1064. }
  1065. }
  1066. if (changed)
  1067. {
  1068. m_revision++;
  1069. }
  1070. }
  1071. void RayTracingFeatureProcessor::UpdateMeshInfoBuffer()
  1072. {
  1073. if (m_meshInfoBufferNeedsUpdate)
  1074. {
  1075. AZStd::unordered_map<int, const void*> rawMeshInfos;
  1076. for (auto& [deviceIndex, meshInfos] : m_meshInfos)
  1077. {
  1078. rawMeshInfos[deviceIndex] = meshInfos.data();
  1079. }
  1080. size_t meshInfoByteCount = m_meshInfos.begin()->second.size() * sizeof(MeshInfo);
  1081. m_meshInfoGpuBuffer.AdvanceCurrentBufferAndUpdateData(rawMeshInfos, meshInfoByteCount);
  1082. m_meshInfoBufferNeedsUpdate = false;
  1083. }
  1084. }
  1085. void RayTracingFeatureProcessor::UpdateProceduralGeometryInfoBuffer()
  1086. {
  1087. if (!m_proceduralGeometryInfoBufferNeedsUpdate)
  1088. {
  1089. return;
  1090. }
  1091. AZStd::unordered_map<int, AZStd::vector<uint32_t>> proceduralGeometryInfos;
  1092. for (const auto& proceduralGeometry : m_proceduralGeometry)
  1093. {
  1094. for (auto& [deviceIndex, bindlessBufferIndex] : proceduralGeometry.m_typeHandle->m_bindlessBufferIndices)
  1095. {
  1096. auto& proceduralGeometryInfo = proceduralGeometryInfos[deviceIndex];
  1097. if (proceduralGeometryInfo.empty())
  1098. {
  1099. proceduralGeometryInfo.reserve(m_proceduralGeometry.size() * 2);
  1100. }
  1101. proceduralGeometryInfo.push_back(bindlessBufferIndex);
  1102. proceduralGeometryInfo.push_back(proceduralGeometry.m_localInstanceIndex);
  1103. }
  1104. }
  1105. AZStd::unordered_map<int, const void*> rawProceduralGeometryInfos;
  1106. for (auto& [deviceIndex, proceduralGeometryInfo] : proceduralGeometryInfos)
  1107. {
  1108. rawProceduralGeometryInfos[deviceIndex] = proceduralGeometryInfo.data();
  1109. }
  1110. m_proceduralGeometryInfoGpuBuffer.AdvanceCurrentBufferAndUpdateData(
  1111. rawProceduralGeometryInfos, m_proceduralGeometry.size() * 2 * sizeof(uint32_t));
  1112. m_proceduralGeometryInfoBufferNeedsUpdate = false;
  1113. }
  1114. void RayTracingFeatureProcessor::UpdateMaterialInfoBuffer()
  1115. {
  1116. if (m_materialInfoBufferNeedsUpdate)
  1117. {
  1118. m_materialInfoGpuBuffer.AdvanceCurrentElement();
  1119. m_materialInfoGpuBuffer.CreateOrResizeCurrentBufferWithElementCount<MaterialInfo>(
  1120. m_subMeshCount + m_proceduralGeometryMaterialInfos.begin()->second.size());
  1121. m_materialInfoGpuBuffer.UpdateCurrentBufferData(m_materialInfos);
  1122. m_materialInfoGpuBuffer.UpdateCurrentBufferData(m_proceduralGeometryMaterialInfos, m_subMeshCount);
  1123. m_materialInfoBufferNeedsUpdate = false;
  1124. }
  1125. }
  1126. void RayTracingFeatureProcessor::UpdateIndexLists()
  1127. {
  1128. if (m_indexListNeedsUpdate)
  1129. {
  1130. #if !USE_BINDLESS_SRG
  1131. // resolve to the true indices using the indirection list
  1132. // Note: this is done on the CPU to avoid double-indirection in the shader
  1133. AZStd::unordered_map<int, IndexVector> resolvedMeshBufferIndicesMap;
  1134. for (const auto& [deviceIndex, meshBufferIndices] : m_meshBufferIndices)
  1135. {
  1136. IndexVector& resolvedMeshBufferIndices = resolvedMeshBufferIndicesMap[deviceIndex];
  1137. resolvedMeshBufferIndices.resize(meshBufferIndices.GetIndexList().size());
  1138. uint32_t resolvedMeshBufferIndex = 0;
  1139. for (auto& meshBufferIndex : meshBufferIndices.GetIndexList())
  1140. {
  1141. if (!meshBufferIndices.IsValidIndex(meshBufferIndex))
  1142. {
  1143. resolvedMeshBufferIndices[resolvedMeshBufferIndex++] = InvalidIndex;
  1144. }
  1145. else
  1146. {
  1147. resolvedMeshBufferIndices[resolvedMeshBufferIndex++] = m_meshBuffers.GetIndirectionList()[meshBufferIndex];
  1148. }
  1149. }
  1150. }
  1151. m_meshBufferIndicesGpuBuffer.AdvanceCurrentBufferAndUpdateData(resolvedMeshBufferIndicesMap);
  1152. #else
  1153. AZStd::unordered_map<int, const void*> rawMeshData;
  1154. for (auto& [deviceIndex, meshBufferIndices] : m_meshBufferIndices)
  1155. {
  1156. rawMeshData[deviceIndex] = meshBufferIndices.GetIndexList().data();
  1157. }
  1158. size_t newMeshBufferIndicesByteCount = m_meshBufferIndices.begin()->second.GetIndexList().size() * sizeof(uint32_t);
  1159. m_meshBufferIndicesGpuBuffer.AdvanceCurrentBufferAndUpdateData(rawMeshData, newMeshBufferIndicesByteCount);
  1160. #endif
  1161. #if !USE_BINDLESS_SRG
  1162. // resolve to the true indices using the indirection list
  1163. // Note: this is done on the CPU to avoid double-indirection in the shader
  1164. AZStd::unordered_map<int, IndexVector> resolvedMaterialTextureIndicesMap;
  1165. for (const auto& [deviceIndex, materialTextureIndices] : m_materialTextureIndices)
  1166. {
  1167. IndexVector& resolvedMaterialTextureIndices = resolvedMaterialTextureIndicesMap[deviceIndex];
  1168. resolvedMaterialTextureIndices.resize(materialTextureIndices.GetIndexList().size());
  1169. uint32_t resolvedMaterialTextureIndex = 0;
  1170. for (auto& materialTextureIndex : materialTextureIndices.GetIndexList())
  1171. {
  1172. if (!materialTextureIndices.IsValidIndex(materialTextureIndex))
  1173. {
  1174. resolvedMaterialTextureIndices[resolvedMaterialTextureIndex++] = InvalidIndex;
  1175. }
  1176. else
  1177. {
  1178. resolvedMaterialTextureIndices[resolvedMaterialTextureIndex++] = m_materialTextures.GetIndirectionList()[materialTextureIndex];
  1179. }
  1180. }
  1181. }
  1182. m_materialTextureIndicesGpuBuffer.AdvanceCurrentBufferAndUpdateData(resolvedMaterialTextureIndicesMap);
  1183. #else
  1184. AZStd::unordered_map<int, const void*> rawMaterialData;
  1185. for (auto& [deviceIndex, materialTextureIndices] : m_materialTextureIndices)
  1186. {
  1187. rawMaterialData[deviceIndex] = materialTextureIndices.GetIndexList().data();
  1188. }
  1189. size_t newMaterialTextureIndicesByteCount = m_materialTextureIndices.begin()->second.GetIndexList().size() * sizeof(uint32_t);
  1190. m_materialTextureIndicesGpuBuffer.AdvanceCurrentBufferAndUpdateData(rawMaterialData, newMaterialTextureIndicesByteCount);
  1191. #endif
  1192. m_indexListNeedsUpdate = false;
  1193. }
  1194. }
  1195. void RayTracingFeatureProcessor::UpdateRayTracingSceneSrg()
  1196. {
  1197. const RHI::ShaderResourceGroupLayout* srgLayout = m_rayTracingSceneSrg->GetLayout();
  1198. RHI::ShaderInputImageIndex imageIndex;
  1199. RHI::ShaderInputBufferIndex bufferIndex;
  1200. RHI::ShaderInputConstantIndex constantIndex;
  1201. // TLAS
  1202. uint32_t tlasBufferByteCount = aznumeric_cast<uint32_t>(m_tlas->GetTlasBuffer()->GetDescriptor().m_byteCount);
  1203. RHI::BufferViewDescriptor bufferViewDescriptor = RHI::BufferViewDescriptor::CreateRayTracingTLAS(tlasBufferByteCount);
  1204. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_scene"));
  1205. m_rayTracingSceneSrg->SetBufferView(bufferIndex, m_tlas->GetTlasBuffer()->GetBufferView(bufferViewDescriptor).get());
  1206. // directional lights
  1207. const auto directionalLightFP = GetParentScene()->GetFeatureProcessor<DirectionalLightFeatureProcessor>();
  1208. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_directionalLights"));
  1209. m_rayTracingSceneSrg->SetBufferView(
  1210. bufferIndex,
  1211. directionalLightFP->GetLightBuffer()->GetBufferView());
  1212. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_directionalLightCount"));
  1213. m_rayTracingSceneSrg->SetConstant(constantIndex, directionalLightFP->GetLightCount());
  1214. // simple point lights
  1215. const auto simplePointLightFP = GetParentScene()->GetFeatureProcessor<SimplePointLightFeatureProcessor>();
  1216. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_simplePointLights"));
  1217. m_rayTracingSceneSrg->SetBufferView(
  1218. bufferIndex,
  1219. simplePointLightFP->GetLightBuffer()->GetBufferView());
  1220. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_simplePointLightCount"));
  1221. m_rayTracingSceneSrg->SetConstant(constantIndex, simplePointLightFP->GetLightCount());
  1222. // simple spot lights
  1223. const auto simpleSpotLightFP = GetParentScene()->GetFeatureProcessor<SimpleSpotLightFeatureProcessor>();
  1224. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_simpleSpotLights"));
  1225. m_rayTracingSceneSrg->SetBufferView(
  1226. bufferIndex,
  1227. simpleSpotLightFP->GetLightBuffer()->GetBufferView());
  1228. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_simpleSpotLightCount"));
  1229. m_rayTracingSceneSrg->SetConstant(constantIndex, simpleSpotLightFP->GetLightCount());
  1230. // point lights (sphere)
  1231. const auto pointLightFP = GetParentScene()->GetFeatureProcessor<PointLightFeatureProcessor>();
  1232. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_pointLights"));
  1233. m_rayTracingSceneSrg->SetBufferView(
  1234. bufferIndex,
  1235. pointLightFP->GetLightBuffer()->GetBufferView());
  1236. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_pointLightCount"));
  1237. m_rayTracingSceneSrg->SetConstant(constantIndex, pointLightFP->GetLightCount());
  1238. // disk lights
  1239. const auto diskLightFP = GetParentScene()->GetFeatureProcessor<DiskLightFeatureProcessor>();
  1240. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_diskLights"));
  1241. m_rayTracingSceneSrg->SetBufferView(
  1242. bufferIndex,
  1243. diskLightFP->GetLightBuffer()->GetBufferView());
  1244. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_diskLightCount"));
  1245. m_rayTracingSceneSrg->SetConstant(constantIndex, diskLightFP->GetLightCount());
  1246. // capsule lights
  1247. const auto capsuleLightFP = GetParentScene()->GetFeatureProcessor<CapsuleLightFeatureProcessor>();
  1248. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_capsuleLights"));
  1249. m_rayTracingSceneSrg->SetBufferView(
  1250. bufferIndex,
  1251. capsuleLightFP->GetLightBuffer()->GetBufferView());
  1252. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_capsuleLightCount"));
  1253. m_rayTracingSceneSrg->SetConstant(constantIndex, capsuleLightFP->GetLightCount());
  1254. // quad lights
  1255. const auto quadLightFP = GetParentScene()->GetFeatureProcessor<QuadLightFeatureProcessor>();
  1256. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_quadLights"));
  1257. m_rayTracingSceneSrg->SetBufferView(
  1258. bufferIndex,
  1259. quadLightFP->GetLightBuffer()->GetBufferView());
  1260. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_quadLightCount"));
  1261. m_rayTracingSceneSrg->SetConstant(constantIndex, quadLightFP->GetLightCount());
  1262. // diffuse environment map for sky hits
  1263. ImageBasedLightFeatureProcessor* imageBasedLightFeatureProcessor = GetParentScene()->GetFeatureProcessor<ImageBasedLightFeatureProcessor>();
  1264. if (imageBasedLightFeatureProcessor)
  1265. {
  1266. imageIndex = srgLayout->FindShaderInputImageIndex(AZ::Name("m_diffuseEnvMap"));
  1267. m_rayTracingSceneSrg->SetImage(imageIndex, imageBasedLightFeatureProcessor->GetDiffuseImage());
  1268. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_iblOrientation"));
  1269. m_rayTracingSceneSrg->SetConstant(constantIndex, imageBasedLightFeatureProcessor->GetOrientation());
  1270. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_iblExposure"));
  1271. m_rayTracingSceneSrg->SetConstant(constantIndex, imageBasedLightFeatureProcessor->GetExposure());
  1272. }
  1273. if (m_meshInfoGpuBuffer.IsCurrentBufferValid())
  1274. {
  1275. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_meshInfo"));
  1276. m_rayTracingSceneSrg->SetBufferView(bufferIndex, m_meshInfoGpuBuffer.GetCurrentBufferView());
  1277. }
  1278. constantIndex = srgLayout->FindShaderInputConstantIndex(AZ::Name("m_meshInfoCount"));
  1279. m_rayTracingSceneSrg->SetConstant(constantIndex, m_subMeshCount);
  1280. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_meshBufferIndices"));
  1281. m_rayTracingSceneSrg->SetBufferView(bufferIndex, m_meshBufferIndicesGpuBuffer.GetCurrentBufferView());
  1282. if (m_proceduralGeometryInfoGpuBuffer.IsCurrentBufferValid())
  1283. {
  1284. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_proceduralGeometryInfo"));
  1285. m_rayTracingSceneSrg->SetBufferView(bufferIndex, m_proceduralGeometryInfoGpuBuffer.GetCurrentBufferView());
  1286. }
  1287. #if !USE_BINDLESS_SRG
  1288. RHI::ShaderInputBufferUnboundedArrayIndex bufferUnboundedArrayIndex = srgLayout->FindShaderInputBufferUnboundedArrayIndex(AZ::Name("m_meshBuffers"));
  1289. m_rayTracingSceneSrg->SetBufferViewUnboundedArray(bufferUnboundedArrayIndex, m_meshBuffers.GetResourceList());
  1290. #endif
  1291. m_rayTracingSceneSrg->Compile();
  1292. }
  1293. void RayTracingFeatureProcessor::UpdateRayTracingMaterialSrg()
  1294. {
  1295. const RHI::ShaderResourceGroupLayout* srgLayout = m_rayTracingMaterialSrg->GetLayout();
  1296. RHI::ShaderInputBufferIndex bufferIndex;
  1297. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_materialInfo"));
  1298. m_rayTracingMaterialSrg->SetBufferView(bufferIndex, m_materialInfoGpuBuffer.GetCurrentBufferView());
  1299. bufferIndex = srgLayout->FindShaderInputBufferIndex(AZ::Name("m_materialTextureIndices"));
  1300. m_rayTracingMaterialSrg->SetBufferView(bufferIndex, m_materialTextureIndicesGpuBuffer.GetCurrentBufferView());
  1301. #if !USE_BINDLESS_SRG
  1302. RHI::ShaderInputImageUnboundedArrayIndex textureUnboundedArrayIndex = srgLayout->FindShaderInputImageUnboundedArrayIndex(AZ::Name("m_materialTextures"));
  1303. m_rayTracingMaterialSrg->SetImageViewUnboundedArray(textureUnboundedArrayIndex, m_materialTextures.GetResourceList());
  1304. #endif
  1305. m_rayTracingMaterialSrg->Compile();
  1306. }
  1307. void RayTracingFeatureProcessor::RemoveBlasInstance(Data::AssetId id)
  1308. {
  1309. m_blasInstanceMap.erase(id);
  1310. m_blasToCreate.erase(id);
  1311. m_skinnedBlasIds.erase(id);
  1312. for (auto& [deviceIndex, entries] : m_blasToBuild)
  1313. {
  1314. entries.erase(id);
  1315. }
  1316. for (auto& [deviceIndex, entries] : m_blasToCompact)
  1317. {
  1318. entries.erase(id);
  1319. }
  1320. for (auto& [deviceIndex, blasEnqueuedForCompact] : m_blasEnqueuedForCompact)
  1321. {
  1322. blasEnqueuedForCompact.erase(id);
  1323. }
  1324. for (auto& [deviceIndex, uncompactedBlasEnqueuedForDeletion] : m_uncompactedBlasEnqueuedForDeletion)
  1325. {
  1326. uncompactedBlasEnqueuedForDeletion.erase(id);
  1327. }
  1328. }
  1329. AZ::RHI::RayTracingAccelerationStructureBuildFlags RayTracingFeatureProcessor::CreateRayTracingAccelerationStructureBuildFlags(bool isSkinnedMesh)
  1330. {
  1331. AZ::RHI::RayTracingAccelerationStructureBuildFlags buildFlags;
  1332. if (isSkinnedMesh)
  1333. {
  1334. buildFlags = AZ::RHI::RayTracingAccelerationStructureBuildFlags::ENABLE_UPDATE | AZ::RHI::RayTracingAccelerationStructureBuildFlags::FAST_BUILD;
  1335. }
  1336. else
  1337. {
  1338. buildFlags = AZ::RHI::RayTracingAccelerationStructureBuildFlags::FAST_TRACE;
  1339. auto rpiDesc = RPI::RPISystemInterface::Get()->GetDescriptor();
  1340. if (rpiDesc.m_rayTracingSystemDescriptor.m_enableBlasCompaction)
  1341. {
  1342. buildFlags = buildFlags | RHI::RayTracingAccelerationStructureBuildFlags::ENABLE_COMPACTION;
  1343. }
  1344. }
  1345. return buildFlags;
  1346. }
  1347. void RayTracingFeatureProcessor::ConvertMaterial(MaterialInfo& materialInfo, const SubMeshMaterial& subMeshMaterial, int deviceIndex)
  1348. {
  1349. subMeshMaterial.m_baseColor.StoreToFloat4(materialInfo.m_baseColor.data());
  1350. subMeshMaterial.m_emissiveColor.StoreToFloat4(materialInfo.m_emissiveColor.data());
  1351. subMeshMaterial.m_irradianceColor.StoreToFloat4(materialInfo.m_irradianceColor.data());
  1352. materialInfo.m_metallicFactor = subMeshMaterial.m_metallicFactor;
  1353. materialInfo.m_roughnessFactor = subMeshMaterial.m_roughnessFactor;
  1354. materialInfo.m_textureFlags = subMeshMaterial.m_textureFlags;
  1355. if (materialInfo.m_textureStartIndex != InvalidIndex)
  1356. {
  1357. m_materialTextureIndices[deviceIndex].RemoveEntry(materialInfo.m_textureStartIndex);
  1358. #if !USE_BINDLESS_SRG
  1359. m_materialTextures.RemoveResource(subMeshMaterial.m_baseColorImageView.get());
  1360. m_materialTextures.RemoveResource(subMeshMaterial.m_normalImageView.get());
  1361. m_materialTextures.RemoveResource(subMeshMaterial.m_metallicImageView.get());
  1362. m_materialTextures.RemoveResource(subMeshMaterial.m_roughnessImageView.get());
  1363. m_materialTextures.RemoveResource(subMeshMaterial.m_emissiveImageView.get());
  1364. #endif
  1365. }
  1366. materialInfo.m_textureStartIndex = m_materialTextureIndices[deviceIndex].AddEntry({
  1367. #if USE_BINDLESS_SRG
  1368. subMeshMaterial.m_baseColorImageView.get() ? subMeshMaterial.m_baseColorImageView->GetDeviceImageView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  1369. subMeshMaterial.m_normalImageView.get() ? subMeshMaterial.m_normalImageView->GetDeviceImageView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  1370. subMeshMaterial.m_metallicImageView.get() ? subMeshMaterial.m_metallicImageView->GetDeviceImageView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  1371. subMeshMaterial.m_roughnessImageView.get() ? subMeshMaterial.m_roughnessImageView->GetDeviceImageView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex,
  1372. subMeshMaterial.m_emissiveImageView.get() ? subMeshMaterial.m_emissiveImageView->GetDeviceImageView(deviceIndex)->GetBindlessReadIndex() : InvalidIndex
  1373. #else
  1374. m_materialTextures.AddResource(subMeshMaterial.m_baseColorImageView.get()),
  1375. m_materialTextures.AddResource(subMeshMaterial.m_normalImageView.get()),
  1376. m_materialTextures.AddResource(subMeshMaterial.m_metallicImageView.get()),
  1377. m_materialTextures.AddResource(subMeshMaterial.m_roughnessImageView.get()),
  1378. m_materialTextures.AddResource(subMeshMaterial.m_emissiveImageView.get())
  1379. #endif
  1380. });
  1381. }
  1382. } // namespace Render
  1383. }