123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328 |
- /**
- * OpenAL cross platform audio library
- * Copyright (C) 2013 by Mike Gorchak
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <algorithm>
- #include <array>
- #include <cmath>
- #include <cstdlib>
- #include <limits>
- #include <variant>
- #include <vector>
- #include "alc/effects/base.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "core/ambidefs.h"
- #include "core/bufferline.h"
- #include "core/context.h"
- #include "core/cubic_tables.h"
- #include "core/device.h"
- #include "core/effects/base.h"
- #include "core/effectslot.h"
- #include "core/mixer.h"
- #include "core/mixer/defs.h"
- #include "core/resampler_limits.h"
- #include "intrusive_ptr.h"
- #include "opthelpers.h"
- struct BufferStorage;
- namespace {
- using uint = unsigned int;
- constexpr auto inv_sqrt2 = static_cast<float>(1.0 / al::numbers::sqrt2);
- constexpr auto lcoeffs_pw = CalcDirectionCoeffs(std::array{-1.0f, 0.0f, 0.0f});
- constexpr auto rcoeffs_pw = CalcDirectionCoeffs(std::array{ 1.0f, 0.0f, 0.0f});
- constexpr auto lcoeffs_nrml = CalcDirectionCoeffs(std::array{-inv_sqrt2, 0.0f, inv_sqrt2});
- constexpr auto rcoeffs_nrml = CalcDirectionCoeffs(std::array{ inv_sqrt2, 0.0f, inv_sqrt2});
- struct ChorusState final : public EffectState {
- std::vector<float> mDelayBuffer;
- uint mOffset{0};
- uint mLfoOffset{0};
- uint mLfoRange{1};
- float mLfoScale{0.0f};
- uint mLfoDisp{0};
- /* Calculated delays to apply to the left and right outputs. */
- std::array<std::array<uint,BufferLineSize>,2> mModDelays{};
- /* Temp storage for the modulated left and right outputs. */
- alignas(16) std::array<FloatBufferLine,2> mBuffer{};
- /* Gains for left and right outputs. */
- struct OutGains {
- std::array<float,MaxAmbiChannels> Current{};
- std::array<float,MaxAmbiChannels> Target{};
- };
- std::array<OutGains,2> mGains;
- /* effect parameters */
- ChorusWaveform mWaveform{};
- int mDelay{0};
- float mDepth{0.0f};
- float mFeedback{0.0f};
- void calcTriangleDelays(const size_t todo);
- void calcSinusoidDelays(const size_t todo);
- void deviceUpdate(const DeviceBase *device, const float MaxDelay);
- void update(const ContextBase *context, const EffectSlot *slot, const ChorusWaveform waveform,
- const float delay, const float depth, const float feedback, const float rate,
- int phase, const EffectTarget target);
- void deviceUpdate(const DeviceBase *device, const BufferStorage*) final;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props_,
- const EffectTarget target) final;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) final;
- };
- void ChorusState::deviceUpdate(const DeviceBase *Device, const BufferStorage*)
- {
- constexpr auto MaxDelay = std::max(ChorusMaxDelay, FlangerMaxDelay);
- const auto frequency = static_cast<float>(Device->Frequency);
- const size_t maxlen{NextPowerOf2(float2uint(MaxDelay*2.0f*frequency) + 1u)};
- if(maxlen != mDelayBuffer.size())
- decltype(mDelayBuffer)(maxlen).swap(mDelayBuffer);
- std::fill(mDelayBuffer.begin(), mDelayBuffer.end(), 0.0f);
- for(auto &e : mGains)
- {
- e.Current.fill(0.0f);
- e.Target.fill(0.0f);
- }
- }
- void ChorusState::update(const ContextBase *context, const EffectSlot *slot,
- const EffectProps *props_, const EffectTarget target)
- {
- static constexpr int mindelay{MaxResamplerEdge << gCubicTable.sTableBits};
- auto &props = std::get<ChorusProps>(*props_);
- /* The LFO depth is scaled to be relative to the sample delay. Clamp the
- * delay and depth to allow enough padding for resampling.
- */
- const DeviceBase *device{context->mDevice};
- const auto frequency = static_cast<float>(device->Frequency);
- mWaveform = props.Waveform;
- const auto stepscale = float{frequency * gCubicTable.sTableSteps};
- mDelay = std::max(float2int(std::round(props.Delay * stepscale)), mindelay);
- mDepth = std::min(static_cast<float>(mDelay) * props.Depth,
- static_cast<float>(mDelay - mindelay));
- mFeedback = props.Feedback;
- /* Gains for left and right sides */
- const bool ispairwise{device->mRenderMode == RenderMode::Pairwise};
- const auto lcoeffs = (!ispairwise) ? al::span{lcoeffs_nrml} : al::span{lcoeffs_pw};
- const auto rcoeffs = (!ispairwise) ? al::span{rcoeffs_nrml} : al::span{rcoeffs_pw};
- /* Attenuate the outputs by -3dB, since we duplicate a single mono input to
- * separate left/right outputs.
- */
- const auto gain = slot->Gain * (1.0f/al::numbers::sqrt2_v<float>);
- mOutTarget = target.Main->Buffer;
- ComputePanGains(target.Main, lcoeffs, gain, mGains[0].Target);
- ComputePanGains(target.Main, rcoeffs, gain, mGains[1].Target);
- if(!(props.Rate > 0.0f))
- {
- mLfoOffset = 0;
- mLfoRange = 1;
- mLfoScale = 0.0f;
- mLfoDisp = 0;
- }
- else
- {
- /* Calculate LFO coefficient (number of samples per cycle). Limit the
- * max range to avoid overflow when calculating the displacement.
- */
- static constexpr int range_limit{std::numeric_limits<int>::max()/360 - 180};
- const auto range = std::round(frequency / props.Rate);
- const uint lfo_range{float2uint(std::min(range, float{range_limit}))};
- mLfoOffset = mLfoOffset * lfo_range / mLfoRange;
- mLfoRange = lfo_range;
- switch(mWaveform)
- {
- case ChorusWaveform::Triangle:
- mLfoScale = 4.0f / static_cast<float>(mLfoRange);
- break;
- case ChorusWaveform::Sinusoid:
- mLfoScale = al::numbers::pi_v<float>*2.0f / static_cast<float>(mLfoRange);
- break;
- }
- /* Calculate lfo phase displacement */
- auto phase = props.Phase;
- if(phase < 0) phase += 360;
- mLfoDisp = (mLfoRange*static_cast<uint>(phase) + 180) / 360;
- }
- }
- void ChorusState::calcTriangleDelays(const size_t todo)
- {
- const uint lfo_range{mLfoRange};
- const float lfo_scale{mLfoScale};
- const float depth{mDepth};
- const int delay{mDelay};
- auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
- {
- const float offset_norm{static_cast<float>(offset) * lfo_scale};
- return static_cast<uint>(fastf2i((1.0f-std::abs(2.0f-offset_norm)) * depth) + delay);
- };
- uint offset{mLfoOffset};
- ASSUME(lfo_range > offset);
- auto ldelays = mModDelays[0].begin();
- for(size_t i{0};i < todo;)
- {
- const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
- ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
- if(offset == lfo_range) offset = 0;
- i += rem;
- }
- offset = (mLfoOffset+mLfoDisp) % lfo_range;
- auto rdelays = mModDelays[1].begin();
- for(size_t i{0};i < todo;)
- {
- const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
- rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
- if(offset == lfo_range) offset = 0;
- i += rem;
- }
- mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
- }
- void ChorusState::calcSinusoidDelays(const size_t todo)
- {
- const uint lfo_range{mLfoRange};
- const float lfo_scale{mLfoScale};
- const float depth{mDepth};
- const int delay{mDelay};
- auto gen_lfo = [lfo_scale,depth,delay](const uint offset) -> uint
- {
- const float offset_norm{static_cast<float>(offset) * lfo_scale};
- return static_cast<uint>(fastf2i(std::sin(offset_norm)*depth) + delay);
- };
- uint offset{mLfoOffset};
- ASSUME(lfo_range > offset);
- auto ldelays = mModDelays[0].begin();
- for(size_t i{0};i < todo;)
- {
- const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
- ldelays = std::generate_n(ldelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
- if(offset == lfo_range) offset = 0;
- i += rem;
- }
- offset = (mLfoOffset+mLfoDisp) % lfo_range;
- auto rdelays = mModDelays[1].begin();
- for(size_t i{0};i < todo;)
- {
- const size_t rem{std::min(todo-i, size_t{lfo_range-offset})};
- rdelays = std::generate_n(rdelays, rem, [&offset,gen_lfo] { return gen_lfo(offset++); });
- if(offset == lfo_range) offset = 0;
- i += rem;
- }
- mLfoOffset = static_cast<uint>(mLfoOffset+todo) % lfo_range;
- }
- void ChorusState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- const auto delaybuf = al::span{mDelayBuffer};
- const size_t bufmask{delaybuf.size()-1};
- const float feedback{mFeedback};
- const uint avgdelay{(static_cast<uint>(mDelay) + MixerFracHalf) >> MixerFracBits};
- uint offset{mOffset};
- if(mWaveform == ChorusWaveform::Sinusoid)
- calcSinusoidDelays(samplesToDo);
- else /*if(mWaveform == ChorusWaveform::Triangle)*/
- calcTriangleDelays(samplesToDo);
- const auto ldelays = al::span{mModDelays[0]};
- const auto rdelays = al::span{mModDelays[1]};
- const auto lbuffer = al::span{mBuffer[0]};
- const auto rbuffer = al::span{mBuffer[1]};
- for(size_t i{0u};i < samplesToDo;++i)
- {
- // Feed the buffer's input first (necessary for delays < 1).
- delaybuf[offset&bufmask] = samplesIn[0][i];
- // Tap for the left output.
- size_t delay{offset - (ldelays[i] >> gCubicTable.sTableBits)};
- size_t phase{ldelays[i] & gCubicTable.sTableMask};
- lbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) +
- delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) +
- delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) +
- delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase);
- // Tap for the right output.
- delay = offset - (rdelays[i] >> gCubicTable.sTableBits);
- phase = rdelays[i] & gCubicTable.sTableMask;
- rbuffer[i] = delaybuf[(delay+1) & bufmask]*gCubicTable.getCoeff0(phase) +
- delaybuf[(delay ) & bufmask]*gCubicTable.getCoeff1(phase) +
- delaybuf[(delay-1) & bufmask]*gCubicTable.getCoeff2(phase) +
- delaybuf[(delay-2) & bufmask]*gCubicTable.getCoeff3(phase);
- // Accumulate feedback from the average delay of the taps.
- delaybuf[offset&bufmask] += delaybuf[(offset-avgdelay) & bufmask] * feedback;
- ++offset;
- }
- MixSamples(lbuffer.first(samplesToDo), samplesOut, mGains[0].Current, mGains[0].Target,
- samplesToDo, 0);
- MixSamples(rbuffer.first(samplesToDo), samplesOut, mGains[1].Current, mGains[1].Target,
- samplesToDo, 0);
- mOffset = offset;
- }
- struct ChorusStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new ChorusState{}}; }
- };
- } // namespace
- EffectStateFactory *ChorusStateFactory_getFactory()
- {
- static ChorusStateFactory ChorusFactory{};
- return &ChorusFactory;
- }
|