123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830 |
- /**
- * Ambisonic reverb engine for the OpenAL cross platform audio library
- * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <algorithm>
- #include <array>
- #include <cassert>
- #include <cmath>
- #include <cstdint>
- #include <cstdio>
- #include <functional>
- #include <numeric>
- #include <utility>
- #include <variant>
- #include "alc/effects/base.h"
- #include "alnumbers.h"
- #include "alnumeric.h"
- #include "alspan.h"
- #include "core/ambidefs.h"
- #include "core/bufferline.h"
- #include "core/context.h"
- #include "core/cubic_tables.h"
- #include "core/device.h"
- #include "core/effects/base.h"
- #include "core/effectslot.h"
- #include "core/filters/biquad.h"
- #include "core/filters/splitter.h"
- #include "core/mixer.h"
- #include "core/mixer/defs.h"
- #include "intrusive_ptr.h"
- #include "opthelpers.h"
- #include "vector.h"
- struct BufferStorage;
- namespace {
- using uint = unsigned int;
- constexpr float MaxModulationTime{4.0f};
- constexpr float DefaultModulationTime{0.25f};
- #define MOD_FRACBITS 24
- #define MOD_FRACONE (1<<MOD_FRACBITS)
- #define MOD_FRACMASK (MOD_FRACONE-1)
- /* Max samples per process iteration. Used to limit the size needed for
- * temporary buffers. Must be a multiple of 4 for SIMD alignment.
- */
- constexpr size_t MAX_UPDATE_SAMPLES{256};
- /* The number of spatialized lines or channels to process. Four channels allows
- * for a 3D A-Format response. NOTE: This can't be changed without taking care
- * of the conversion matrices, and a few places where the length arrays are
- * assumed to have 4 elements.
- */
- constexpr size_t NUM_LINES{4u};
- /* This coefficient is used to define the maximum frequency range controlled by
- * the modulation depth. The current value of 0.05 will allow it to swing from
- * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
- * to stall on the downswing, and above 1 it will cause it to sample backwards.
- * The value 0.05 seems be nearest to Creative hardware behavior.
- */
- constexpr float MODULATION_DEPTH_COEFF{0.05f};
- /* The B-Format to (W-normalized) A-Format conversion matrix. This produces a
- * tetrahedral array of discrete signals (boosted by a factor of sqrt(3), to
- * reduce the error introduced in the conversion).
- */
- alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> B2A{{
- /* W Y Z X */
- {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* A0 */
- {{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* A1 */
- {{ 0.5f, 0.5f, -0.5f, -0.5f }}, /* A2 */
- {{ 0.5f, -0.5f, 0.5f, -0.5f }} /* A3 */
- }};
- /* Converts (W-normalized) A-Format to B-Format for early reflections (scaled
- * by 1/sqrt(3) to compensate for the boost in the B2A matrix).
- */
- alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B{{
- /* A0 A1 A2 A3 */
- {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */
- {{ 0.5f, -0.5f, 0.5f, -0.5f }}, /* Y */
- {{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* Z */
- {{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */
- }};
- /* Converts (W-normalized) A-Format to B-Format for late reverb (scaled
- * by 1/sqrt(3) to compensate for the boost in the B2A matrix). The response
- * is rotated around Z (ambisonic X) so that the front lines are placed
- * horizontally in front, and the rear lines are placed vertically in back.
- */
- constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
- alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> LateA2B{{
- /* A0 A1 A2 A3 */
- {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */
- {{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }}, /* Y */
- {{ 0.0f, 0.0f, -InvSqrt2, InvSqrt2 }}, /* Z */
- {{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */
- }};
- /* The all-pass and delay lines have a variable length dependent on the
- * effect's density parameter, which helps alter the perceived environment
- * size. The size-to-density conversion is a cubed scale:
- *
- * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
- *
- * The line lengths scale linearly with room size, so the inverse density
- * conversion is needed, taking the cube root of the re-scaled density to
- * calculate the line length multiplier:
- *
- * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
- *
- * The density scale below will result in a max line multiplier of 50, for an
- * effective size range of 5m to 50m.
- */
- constexpr float DENSITY_SCALE{125000.0f};
- /* All delay line lengths are specified in seconds.
- *
- * To approximate early reflections, we break them up into primary (those
- * arriving from the same direction as the source) and secondary (those
- * arriving from the opposite direction).
- *
- * The early taps decorrelate the 4-channel signal to approximate an average
- * room response for the primary reflections after the initial early delay.
- *
- * Given an average room dimension (d_a) and the speed of sound (c) we can
- * calculate the average reflection delay (r_a) regardless of listener and
- * source positions as:
- *
- * r_a = d_a / c
- * c = 343.3
- *
- * This can extended to finding the average difference (r_d) between the
- * maximum (r_1) and minimum (r_0) reflection delays:
- *
- * r_0 = 2 / 3 r_a
- * = r_a - r_d / 2
- * = r_d
- * r_1 = 4 / 3 r_a
- * = r_a + r_d / 2
- * = 2 r_d
- * r_d = 2 / 3 r_a
- * = r_1 - r_0
- *
- * As can be determined by integrating the 1D model with a source (s) and
- * listener (l) positioned across the dimension of length (d_a):
- *
- * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
- *
- * The initial taps (T_(i=0)^N) are then specified by taking a power series
- * that ranges between r_0 and half of r_1 less r_0:
- *
- * R_i = 2^(i / (2 N - 1)) r_d
- * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
- * = r_0 + T_i
- * T_i = R_i - r_0
- * = (2^(i / (2 N - 1)) - 1) r_d
- *
- * Assuming an average of 1m, we get the following taps:
- */
- constexpr std::array<float,NUM_LINES> EARLY_TAP_LENGTHS{{
- 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
- }};
- /* The early all-pass filter lengths are based on the early tap lengths:
- *
- * A_i = R_i / a
- *
- * Where a is the approximate maximum all-pass cycle limit (20).
- */
- constexpr std::array<float,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
- 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
- }};
- /* The early delay lines are used to transform the primary reflections into
- * the secondary reflections. The A-format is arranged in such a way that
- * the channels/lines are spatially opposite:
- *
- * C_i is opposite C_(N-i-1)
- *
- * The delays of the two opposing reflections (R_i and O_i) from a source
- * anywhere along a particular dimension always sum to twice its full delay:
- *
- * 2 r_a = R_i + O_i
- *
- * With that in mind we can determine the delay between the two reflections
- * and thus specify our early line lengths (L_(i=0)^N) using:
- *
- * O_i = 2 r_a - R_(N-i-1)
- * L_i = O_i - R_(N-i-1)
- * = 2 (r_a - R_(N-i-1))
- * = 2 (r_a - T_(N-i-1) - r_0)
- * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
- *
- * Using an average dimension of 1m, we get:
- */
- constexpr std::array<float,NUM_LINES> EARLY_LINE_LENGTHS{{
- 0.0000000e+0f, 4.9281100e-4f, 9.3916180e-4f, 1.3434322e-3f
- }};
- /* The late all-pass filter lengths are based on the late line lengths:
- *
- * A_i = (5 / 3) L_i / r_1
- */
- constexpr std::array<float,NUM_LINES> LATE_ALLPASS_LENGTHS{{
- 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
- }};
- /* The late lines are used to approximate the decaying cycle of recursive
- * late reflections.
- *
- * Splitting the lines in half, we start with the shortest reflection paths
- * (L_(i=0)^(N/2)):
- *
- * L_i = 2^(i / (N - 1)) r_d
- *
- * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
- *
- * L_i = 2 r_a - L_(i-N/2)
- * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
- *
- * For our 1m average room, we get:
- */
- constexpr std::array<float,NUM_LINES> LATE_LINE_LENGTHS{{
- 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
- }};
- using ReverbUpdateLine = std::array<float,MAX_UPDATE_SAMPLES>;
- struct DelayLineI {
- /* The delay lines use interleaved samples, with the lengths being powers
- * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
- */
- al::span<float> mLine;
- /* Given the allocated sample buffer, this function updates each delay line
- * offset.
- */
- void realizeLineOffset(al::span<float> sampleBuffer) noexcept
- { mLine = sampleBuffer; }
- /* Calculate the length of a delay line and store its mask and offset. */
- static
- auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t
- {
- /* All line lengths are powers of 2, calculated from their lengths in
- * seconds, rounded up.
- */
- uint samples{float2uint(std::ceil(length*frequency))};
- samples = NextPowerOf2(samples + extra);
- /* Return the sample count for accumulation. */
- return samples*NUM_LINES;
- }
- };
- struct DelayLineU {
- al::span<float> mLine;
- void realizeLineOffset(al::span<float> sampleBuffer) noexcept
- {
- assert(sampleBuffer.size() > 4 && !(sampleBuffer.size() & (sampleBuffer.size()-1)));
- mLine = sampleBuffer;
- }
- static
- auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t
- {
- uint samples{float2uint(std::ceil(length*frequency))};
- samples = NextPowerOf2(samples + extra);
- return samples*NUM_LINES;
- }
- [[nodiscard]]
- auto get(size_t chan) const noexcept
- {
- const size_t stride{mLine.size() / NUM_LINES};
- return mLine.subspan(chan*stride, stride);
- }
- void write(size_t offset, const size_t c, al::span<const float> in) const noexcept
- {
- const size_t stride{mLine.size() / NUM_LINES};
- const auto output = mLine.subspan(c*stride);
- while(!in.empty())
- {
- offset &= stride-1;
- const size_t td{std::min(stride - offset, in.size())};
- std::copy_n(in.begin(), td, output.begin() + ptrdiff_t(offset));
- offset += td;
- in = in.subspan(td);
- }
- }
- /* Writes the given input lines to the delay buffer, applying a geometric
- * reflection. This effectively applies the matrix
- *
- * [ +1/2 -1/2 -1/2 -1/2 ]
- * [ -1/2 +1/2 -1/2 -1/2 ]
- * [ -1/2 -1/2 +1/2 -1/2 ]
- * [ -1/2 -1/2 -1/2 +1/2 ]
- *
- * to the four input lines when writing to the delay buffer. The effect on
- * the B-Format signal is negating W, applying a 180-degree phase shift and
- * moving each response to its spatially opposite location.
- */
- void writeReflected(size_t offset, const al::span<const ReverbUpdateLine,NUM_LINES> in,
- const size_t count) const noexcept
- {
- const size_t stride{mLine.size() / NUM_LINES};
- for(size_t i{0u};i < count;)
- {
- offset &= stride-1;
- size_t td{std::min(stride - offset, count - i)};
- do {
- const std::array src{in[0][i], in[1][i], in[2][i], in[3][i]};
- ++i;
- const std::array f{
- (src[0] - src[1] - src[2] - src[3]) * 0.5f,
- (src[1] - src[0] - src[2] - src[3]) * 0.5f,
- (src[2] - src[0] - src[1] - src[3]) * 0.5f,
- (src[3] - src[0] - src[1] - src[2] ) * 0.5f
- };
- mLine[0*stride + offset] = f[0];
- mLine[1*stride + offset] = f[1];
- mLine[2*stride + offset] = f[2];
- mLine[3*stride + offset] = f[3];
- ++offset;
- } while(--td);
- }
- }
- };
- struct VecAllpass {
- DelayLineI Delay;
- float Coeff{0.0f};
- std::array<size_t,NUM_LINES> Offset{};
- void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
- const float xCoeff, const float yCoeff, const size_t todo) const noexcept;
- };
- struct Allpass4 {
- DelayLineU Delay;
- float Coeff{0.0f};
- std::array<size_t,NUM_LINES> Offset{};
- void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t offset,
- const size_t todo) const noexcept;
- };
- struct T60Filter {
- /* Two filters are used to adjust the signal. One to control the low
- * frequencies, and one to control the high frequencies.
- */
- float MidGain{0.0f};
- BiquadFilter HFFilter, LFFilter;
- void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime,
- const float hfDecayTime, const float lf0norm, const float hf0norm);
- /* Applies the two T60 damping filter sections. */
- void process(const al::span<float> samples)
- { DualBiquad{HFFilter, LFFilter}.process(samples, samples); }
- void clear() noexcept { HFFilter.clear(); LFFilter.clear(); }
- };
- struct EarlyReflections {
- Allpass4 VecAp;
- /* An echo line is used to complete the second half of the early
- * reflections.
- */
- DelayLineU Delay;
- std::array<size_t,NUM_LINES> Offset{};
- std::array<float,NUM_LINES> Coeff{};
- /* The gain for each output channel based on 3D panning. */
- struct OutGains {
- std::array<float,MaxAmbiChannels> Current{};
- std::array<float,MaxAmbiChannels> Target{};
- void clear() { Current.fill(0.0f); Target.fill(0.0); }
- };
- std::array<OutGains,NUM_LINES> Gains{};
- void updateLines(const float density_mult, const float diffusion, const float decayTime,
- const float frequency);
- void clear()
- {
- std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear));
- }
- };
- struct Modulation {
- /* The vibrato time is tracked with an index over a (MOD_FRACONE)
- * normalized range.
- */
- uint Index{0u}, Step{1u};
- /* The depth of frequency change, in samples. */
- float Depth{0.0f};
- std::array<uint,MAX_UPDATE_SAMPLES> ModDelays{};
- void updateModulator(float modTime, float modDepth, float frequency);
- auto calcDelays(size_t todo) -> al::span<const uint>;
- void clear() noexcept
- {
- Index = 0u;
- Step = 1u;
- Depth = 0.0f;
- }
- };
- struct LateReverb {
- /* A recursive delay line is used fill in the reverb tail. */
- DelayLineU Delay;
- std::array<size_t,NUM_LINES> Offset{};
- /* Attenuation to compensate for the modal density and decay rate of the
- * late lines.
- */
- float DensityGain{0.0f};
- /* T60 decay filters are used to simulate absorption. */
- std::array<T60Filter,NUM_LINES> T60;
- Modulation Mod;
- /* A Gerzon vector all-pass filter is used to simulate diffusion. */
- VecAllpass VecAp;
- /* The gain for each output channel based on 3D panning. */
- struct OutGains {
- std::array<float,MaxAmbiChannels> Current{};
- std::array<float,MaxAmbiChannels> Target{};
- void clear() { Current.fill(0.0f); Target.fill(0.0); }
- };
- std::array<OutGains,NUM_LINES> Gains{};
- void updateLines(const float density_mult, const float diffusion, const float lfDecayTime,
- const float mfDecayTime, const float hfDecayTime, const float lf0norm,
- const float hf0norm, const float frequency);
- void clear()
- {
- std::for_each(T60.begin(), T60.end(), std::mem_fn(&T60Filter::clear));
- Mod.clear();
- std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear));
- }
- };
- struct ReverbPipeline {
- /* Master effect filters */
- struct FilterPair {
- BiquadFilter Lp;
- BiquadFilter Hp;
- void clear() noexcept { Lp.clear(); Hp.clear(); }
- };
- std::array<FilterPair,NUM_LINES> mFilter;
- /* Late reverb input delay line (early reflections feed this, and late
- * reverb taps from it).
- */
- DelayLineU mLateDelayIn;
- /* Tap points for early reflection input delay. */
- std::array<std::array<size_t,2>,NUM_LINES> mEarlyDelayTap{};
- std::array<std::array<float,2>,NUM_LINES> mEarlyDelayCoeff{};
- /* Tap points for late reverb feed and delay. */
- std::array<std::array<size_t,2>,NUM_LINES> mLateDelayTap{};
- /* Coefficients for the all-pass and line scattering matrices. */
- float mMixX{1.0f};
- float mMixY{0.0f};
- EarlyReflections mEarly;
- LateReverb mLate;
- std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
- size_t mFadeSampleCount{1};
- void updateDelayLine(const float gain, const float earlyDelay, const float lateDelay,
- const float density_mult, const float decayTime, const float frequency);
- void update3DPanning(const al::span<const float,3> ReflectionsPan,
- const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
- const bool doUpmix, const MixParams *mainMix);
- void processEarly(const DelayLineU &main_delay, size_t offset, const size_t samplesToDo,
- const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
- const al::span<FloatBufferLine,NUM_LINES> outSamples);
- void processLate(size_t offset, const size_t samplesToDo,
- const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
- const al::span<FloatBufferLine,NUM_LINES> outSamples);
- void clear() noexcept
- {
- std::for_each(mFilter.begin(), mFilter.end(), std::mem_fn(&FilterPair::clear));
- mEarlyDelayTap = {};
- mEarlyDelayCoeff = {};
- mLateDelayTap = {};
- mEarly.clear();
- mLate.clear();
- auto clear_filters = [](const al::span<BandSplitter,NUM_LINES> filters)
- { std::for_each(filters.begin(), filters.end(), std::mem_fn(&BandSplitter::clear)); };
- std::for_each(mAmbiSplitter.begin(), mAmbiSplitter.end(), clear_filters);
- }
- };
- struct ReverbState final : public EffectState {
- /* All delay lines are allocated as a single buffer to reduce memory
- * fragmentation and management code.
- */
- al::vector<float,16> mSampleBuffer;
- struct Params {
- /* Calculated parameters which indicate if cross-fading is needed after
- * an update.
- */
- float Density{1.0f};
- float Diffusion{1.0f};
- float DecayTime{1.49f};
- float HFDecayTime{0.83f * 1.49f};
- float LFDecayTime{1.0f * 1.49f};
- float ModulationTime{0.25f};
- float ModulationDepth{0.0f};
- float HFReference{5000.0f};
- float LFReference{250.0f};
- };
- Params mParams;
- enum PipelineState : uint8_t {
- DeviceClear,
- StartFade,
- Fading,
- Cleanup,
- Normal,
- };
- PipelineState mPipelineState{DeviceClear};
- bool mCurrentPipeline{false};
- /* Core delay line (early reflections tap from this). */
- DelayLineU mMainDelay;
- std::array<ReverbPipeline,2> mPipelines;
- /* The current write offset for all delay lines. */
- size_t mOffset{};
- /* Temporary storage used when processing. */
- alignas(16) FloatBufferLine mTempLine{};
- alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mTempSamples{};
- alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlySamples{};
- alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateSamples{};
- std::array<float,MaxAmbiOrder+1> mOrderScales{};
- bool mUpmixOutput{false};
- void MixOutPlain(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
- const size_t todo) const
- {
- /* When not upsampling, the panning gains convert to B-Format and pan
- * at the same time.
- */
- auto inBuffer = mEarlySamples.cbegin();
- for(auto &gains : pipeline.mEarly.Gains)
- {
- MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target,
- todo, 0);
- }
- inBuffer = mLateSamples.cbegin();
- for(auto &gains : pipeline.mLate.Gains)
- {
- MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target,
- todo, 0);
- }
- }
- void MixOutAmbiUp(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
- const size_t todo)
- {
- auto DoMixRow = [](const al::span<float> OutBuffer, const al::span<const float,4> Gains,
- const al::span<const FloatBufferLine,4> InSamples)
- {
- auto inBuffer = InSamples.cbegin();
- std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f);
- for(const float gain : Gains)
- {
- if(std::fabs(gain) > GainSilenceThreshold)
- {
- auto mix_sample = [gain](const float sample, const float in) noexcept -> float
- { return sample + in*gain; };
- std::transform(OutBuffer.begin(), OutBuffer.end(), inBuffer->cbegin(),
- OutBuffer.begin(), mix_sample);
- }
- ++inBuffer;
- }
- };
- /* When upsampling, the B-Format conversion needs to be done separately
- * so the proper HF scaling can be applied to each B-Format channel.
- * The panning gains then pan and upsample the B-Format channels.
- */
- const auto tmpspan = al::span{mTempLine}.first(todo);
- auto hfscale = float{mOrderScales[0]};
- auto splitter = pipeline.mAmbiSplitter[0].begin();
- auto a2bcoeffs = EarlyA2B.cbegin();
- for(auto &gains : pipeline.mEarly.Gains)
- {
- DoMixRow(tmpspan, *(a2bcoeffs++), mEarlySamples);
- /* Apply scaling to the B-Format's HF response to "upsample" it to
- * higher-order output.
- */
- (splitter++)->processHfScale(tmpspan, hfscale);
- hfscale = mOrderScales[1];
- MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0);
- }
- hfscale = mOrderScales[0];
- splitter = pipeline.mAmbiSplitter[1].begin();
- a2bcoeffs = LateA2B.cbegin();
- for(auto &gains : pipeline.mLate.Gains)
- {
- DoMixRow(tmpspan, *(a2bcoeffs++), mLateSamples);
- (splitter++)->processHfScale(tmpspan, hfscale);
- hfscale = mOrderScales[1];
- MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0);
- }
- }
- void mixOut(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut, const size_t todo)
- {
- if(mUpmixOutput)
- MixOutAmbiUp(pipeline, samplesOut, todo);
- else
- MixOutPlain(pipeline, samplesOut, todo);
- }
- void allocLines(const float frequency);
- void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
- void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
- const EffectTarget target) override;
- void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
- const al::span<FloatBufferLine> samplesOut) override;
- };
- /**************************************
- * Device Update *
- **************************************/
- inline float CalcDelayLengthMult(float density)
- { return std::max(5.0f, std::cbrt(density*DENSITY_SCALE)); }
- /* Calculates the delay line metrics and allocates the shared sample buffer
- * for all lines given the sample rate (frequency).
- */
- void ReverbState::allocLines(const float frequency)
- {
- /* Multiplier for the maximum density value, i.e. density=1, which is
- * actually the least density...
- */
- const float multiplier{CalcDelayLengthMult(1.0f)};
- /* The modulator's line length is calculated from the maximum modulation
- * time and depth coefficient, and halfed for the low-to-high frequency
- * swing.
- */
- static constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f};
- std::array<size_t,11> linelengths{};
- size_t oidx{0};
- size_t totalSamples{0u};
- /* The main delay length includes the maximum early reflection delay and
- * the largest early tap width. It must also be extended by the update size
- * (BufferLineSize) for block processing.
- */
- float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier};
- size_t count{mMainDelay.calcLineLength(length, frequency, BufferLineSize)};
- linelengths[oidx++] = count;
- totalSamples += count;
- for(auto &pipeline : mPipelines)
- {
- static constexpr float LateDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) /
- float{NUM_LINES}};
- length = ReverbMaxLateReverbDelay + LateDiffAvg*multiplier;
- count = pipeline.mLateDelayIn.calcLineLength(length, frequency, BufferLineSize);
- linelengths[oidx++] = count;
- totalSamples += count;
- /* The early vector all-pass line. */
- length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
- count = pipeline.mEarly.VecAp.Delay.calcLineLength(length, frequency, 0);
- linelengths[oidx++] = count;
- totalSamples += count;
- /* The early reflection line. */
- length = EARLY_LINE_LENGTHS.back() * multiplier;
- count = pipeline.mEarly.Delay.calcLineLength(length, frequency, MAX_UPDATE_SAMPLES);
- linelengths[oidx++] = count;
- totalSamples += count;
- /* The late vector all-pass line. */
- length = LATE_ALLPASS_LENGTHS.back() * multiplier;
- count = pipeline.mLate.VecAp.Delay.calcLineLength(length, frequency, 0);
- linelengths[oidx++] = count;
- totalSamples += count;
- /* The late delay lines are calculated from the largest maximum density
- * line length, and the maximum modulation delay. Four additional
- * samples are needed for resampling the modulator delay.
- */
- length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay;
- count = pipeline.mLate.Delay.calcLineLength(length, frequency, 4);
- linelengths[oidx++] = count;
- totalSamples += count;
- }
- assert(oidx == linelengths.size());
- if(totalSamples != mSampleBuffer.size())
- decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer);
- /* Clear the sample buffer. */
- std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
- /* Update all delays to reflect the new sample buffer. */
- auto bufferspan = al::span{mSampleBuffer};
- oidx = 0;
- mMainDelay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
- bufferspan = bufferspan.subspan(linelengths[oidx++]);
- for(auto &pipeline : mPipelines)
- {
- pipeline.mLateDelayIn.realizeLineOffset(bufferspan.first(linelengths[oidx]));
- bufferspan = bufferspan.subspan(linelengths[oidx++]);
- pipeline.mEarly.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
- bufferspan = bufferspan.subspan(linelengths[oidx++]);
- pipeline.mEarly.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
- bufferspan = bufferspan.subspan(linelengths[oidx++]);
- pipeline.mLate.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
- bufferspan = bufferspan.subspan(linelengths[oidx++]);
- pipeline.mLate.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
- bufferspan = bufferspan.subspan(linelengths[oidx++]);
- }
- assert(oidx == linelengths.size());
- }
- void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*)
- {
- const auto frequency = static_cast<float>(device->Frequency);
- /* Allocate the delay lines. */
- allocLines(frequency);
- std::for_each(mPipelines.begin(), mPipelines.end(), std::mem_fn(&ReverbPipeline::clear));
- mPipelineState = DeviceClear;
- /* Reset offset base. */
- mOffset = 0;
- if(device->mAmbiOrder > 1)
- {
- mUpmixOutput = true;
- mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder, device->m2DMixing);
- }
- else
- {
- mUpmixOutput = false;
- mOrderScales.fill(1.0f);
- }
- auto splitter = BandSplitter{device->mXOverFreq / frequency};
- auto set_splitters = [&splitter](ReverbPipeline &pipeline)
- {
- std::fill(pipeline.mAmbiSplitter[0].begin(), pipeline.mAmbiSplitter[0].end(), splitter);
- std::fill(pipeline.mAmbiSplitter[1].begin(), pipeline.mAmbiSplitter[1].end(), splitter);
- };
- std::for_each(mPipelines.begin(), mPipelines.end(), set_splitters);
- }
- /**************************************
- * Effect Update *
- **************************************/
- /* Calculate a decay coefficient given the length of each cycle and the time
- * until the decay reaches -60 dB.
- */
- inline float CalcDecayCoeff(const float length, const float decayTime)
- { return std::pow(ReverbDecayGain, length/decayTime); }
- /* Calculate a decay length from a coefficient and the time until the decay
- * reaches -60 dB.
- */
- inline float CalcDecayLength(const float coeff, const float decayTime)
- {
- constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
- return std::log10(coeff) * decayTime / log10_decaygain;
- }
- /* Calculate an attenuation to be applied to the input of any echo models to
- * compensate for modal density and decay time.
- */
- inline float CalcDensityGain(const float a)
- {
- /* The energy of a signal can be obtained by finding the area under the
- * squared signal. This takes the form of Sum(x_n^2), where x is the
- * amplitude for the sample n.
- *
- * Decaying feedback matches exponential decay of the form Sum(a^n),
- * where a is the attenuation coefficient, and n is the sample. The area
- * under this decay curve can be calculated as: 1 / (1 - a).
- *
- * Modifying the above equation to find the area under the squared curve
- * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
- * calculated by inverting the square root of this approximation,
- * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
- */
- return std::sqrt(1.0f - a*a);
- }
- /* Calculate the scattering matrix coefficients given a diffusion factor. */
- inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y)
- {
- /* The matrix is of order 4, so n is sqrt(4 - 1). */
- constexpr float n{al::numbers::sqrt3_v<float>};
- const float t{diffusion * std::atan(n)};
- /* Calculate the first mixing matrix coefficient. */
- *x = std::cos(t);
- /* Calculate the second mixing matrix coefficient. */
- *y = std::sin(t) / n;
- }
- /* Calculate the limited HF ratio for use with the late reverb low-pass
- * filters.
- */
- float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF,
- const float decayTime)
- {
- /* Find the attenuation due to air absorption in dB (converting delay
- * time to meters using the speed of sound). Then reversing the decay
- * equation, solve for HF ratio. The delay length is cancelled out of
- * the equation, so it can be calculated once for all lines.
- */
- float limitRatio{1.0f / SpeedOfSoundMetersPerSec /
- CalcDecayLength(airAbsorptionGainHF, decayTime)};
- /* Using the limit calculated above, apply the upper bound to the HF ratio. */
- return std::min(limitRatio, hfRatio);
- }
- /* Calculates the 3-band T60 damping coefficients for a particular delay line
- * of specified length, using a combination of two shelf filter sections given
- * decay times for each band split at two reference frequencies.
- */
- void T60Filter::calcCoeffs(const float length, const float lfDecayTime,
- const float mfDecayTime, const float hfDecayTime, const float lf0norm,
- const float hf0norm)
- {
- const float mfGain{CalcDecayCoeff(length, mfDecayTime)};
- const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain};
- const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain};
- MidGain = mfGain;
- LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f);
- HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f);
- }
- /* Update the early reflection line lengths and gain coefficients. */
- void EarlyReflections::updateLines(const float density_mult, const float diffusion,
- const float decayTime, const float frequency)
- {
- /* Calculate the all-pass feed-back/forward coefficient. */
- VecAp.Coeff = diffusion*diffusion * InvSqrt2;
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- /* Calculate the delay length of each all-pass line. */
- float length{EARLY_ALLPASS_LENGTHS[i] * density_mult};
- VecAp.Offset[i] = float2uint(length * frequency);
- /* Calculate the delay length of each delay line. */
- length = EARLY_LINE_LENGTHS[i] * density_mult;
- Offset[i] = float2uint(length * frequency);
- /* Calculate the gain (coefficient) for each line. */
- Coeff[i] = CalcDecayCoeff(length, decayTime);
- }
- }
- /* Update the EAX modulation step and depth. Keep in mind that this kind of
- * vibrato is additive and not multiplicative as one may expect. The downswing
- * will sound stronger than the upswing.
- */
- void Modulation::updateModulator(float modTime, float modDepth, float frequency)
- {
- /* Modulation is calculated in two parts.
- *
- * The modulation time effects the sinus rate, altering the speed of
- * frequency changes. An index is incremented for each sample with an
- * appropriate step size to generate an LFO, which will vary the feedback
- * delay over time.
- */
- Step = std::max(fastf2u(MOD_FRACONE / (frequency * modTime)), 1u);
- /* The modulation depth effects the amount of frequency change over the
- * range of the sinus. It needs to be scaled by the modulation time so that
- * a given depth produces a consistent change in frequency over all ranges
- * of time. Since the depth is applied to a sinus value, it needs to be
- * halved once for the sinus range and again for the sinus swing in time
- * (half of it is spent decreasing the frequency, half is spent increasing
- * it).
- */
- if(modTime >= DefaultModulationTime)
- {
- /* To cancel the effects of a long period modulation on the late
- * reverberation, the amount of pitch should be varied (decreased)
- * according to the modulation time. The natural form is varying
- * inversely, in fact resulting in an invariant.
- */
- Depth = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency;
- }
- else
- Depth = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency;
- }
- /* Update the late reverb line lengths and T60 coefficients. */
- void LateReverb::updateLines(const float density_mult, const float diffusion,
- const float lfDecayTime, const float mfDecayTime, const float hfDecayTime,
- const float lf0norm, const float hf0norm, const float frequency)
- {
- /* Scaling factor to convert the normalized reference frequencies from
- * representing 0...freq to 0...max_reference.
- */
- constexpr float MaxHFReference{20000.0f};
- const float norm_weight_factor{frequency / MaxHFReference};
- const float late_allpass_avg{
- std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
- float{NUM_LINES}};
- /* To compensate for changes in modal density and decay time of the late
- * reverb signal, the input is attenuated based on the maximal energy of
- * the outgoing signal. This approximation is used to keep the apparent
- * energy of the signal equal for all ranges of density and decay time.
- *
- * The average length of the delay lines is used to calculate the
- * attenuation coefficient.
- */
- float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
- float{NUM_LINES} + late_allpass_avg};
- length *= density_mult;
- /* The density gain calculation uses an average decay time weighted by
- * approximate bandwidth. This attempts to compensate for losses of energy
- * that reduce decay time due to scattering into highly attenuated bands.
- */
- const float decayTimeWeighted{
- lf0norm*norm_weight_factor*lfDecayTime +
- (hf0norm - lf0norm)*norm_weight_factor*mfDecayTime +
- (1.0f - hf0norm*norm_weight_factor)*hfDecayTime};
- DensityGain = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted));
- /* Calculate the all-pass feed-back/forward coefficient. */
- VecAp.Coeff = diffusion*diffusion * InvSqrt2;
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- /* Calculate the delay length of each all-pass line. */
- length = LATE_ALLPASS_LENGTHS[i] * density_mult;
- VecAp.Offset[i] = float2uint(length * frequency);
- /* Calculate the delay length of each feedback delay line. A cubic
- * resampler is used for modulation on the feedback delay, which
- * includes one sample of delay. Reduce by one to compensate.
- */
- length = LATE_LINE_LENGTHS[i] * density_mult;
- Offset[i] = std::max(float2uint(length*frequency + 0.5f), 1u) - 1u;
- /* Approximate the absorption that the vector all-pass would exhibit
- * given the current diffusion so we don't have to process a full T60
- * filter for each of its four lines. Also include the average
- * modulation delay (depth is half the max delay in samples).
- */
- length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult +
- Mod.Depth/frequency;
- /* Calculate the T60 damping coefficients for each line. */
- T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
- }
- }
- /* Update the offsets for the main effect delay line. */
- void ReverbPipeline::updateDelayLine(const float gain, const float earlyDelay,
- const float lateDelay, const float density_mult, const float decayTime, const float frequency)
- {
- /* Early reflection taps are decorrelated by means of an average room
- * reflection approximation described above the definition of the taps.
- * This approximation is linear and so the above density multiplier can
- * be applied to adjust the width of the taps. A single-band decay
- * coefficient is applied to simulate initial attenuation and absorption.
- *
- * Late reverb taps are based on the late line lengths to allow a zero-
- * delay path and offsets that would continue the propagation naturally
- * into the late lines.
- */
- for(size_t i{0u};i < NUM_LINES;i++)
- {
- float length{EARLY_TAP_LENGTHS[i]*density_mult};
- mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency);
- mEarlyDelayCoeff[i][1] = CalcDecayCoeff(length, decayTime) * gain;
- /* Reduce the late delay tap by the shortest early delay line length to
- * compensate for the late line input being fed by the delayed early
- * output.
- */
- length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult +
- lateDelay;
- mLateDelayTap[i][1] = float2uint(length * frequency);
- }
- }
- /* Creates a transform matrix given a reverb vector. The vector pans the reverb
- * reflections toward the given direction, using its magnitude (up to 1) as a
- * focal strength. This function results in a B-Format transformation matrix
- * that spatially focuses the signal in the desired direction.
- */
- std::array<std::array<float,4>,4> GetTransformFromVector(const al::span<const float,3> vec)
- {
- /* Normalize the panning vector according to the N3D scale, which has an
- * extra sqrt(3) term on the directional components. Converting from OpenAL
- * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
- * that the reverb panning vectors use left-handed coordinates, unlike the
- * rest of OpenAL which use right-handed. This is fixed by negating Z,
- * which cancels out with the B-Format Z negation.
- */
- std::array<float,3> norm{{vec[0], vec[1], vec[2]}};
- float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
- if(mag > 1.0f)
- {
- const float scale{al::numbers::sqrt3_v<float> / mag};
- norm[0] *= -scale;
- norm[1] *= scale;
- norm[2] *= scale;
- mag = 1.0f;
- }
- else
- {
- /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
- * term. There's no need to renormalize the magnitude since it would
- * just be reapplied in the matrix.
- */
- norm[0] *= -al::numbers::sqrt3_v<float>;
- norm[1] *= al::numbers::sqrt3_v<float>;
- norm[2] *= al::numbers::sqrt3_v<float>;
- }
- return std::array<std::array<float,4>,4>{{
- {{1.0f, 0.0f, 0.0f, 0.0f}},
- {{norm[0], 1.0f-mag, 0.0f, 0.0f}},
- {{norm[1], 0.0f, 1.0f-mag, 0.0f}},
- {{norm[2], 0.0f, 0.0f, 1.0f-mag}}
- }};
- }
- /* Update the early and late 3D panning gains. */
- void ReverbPipeline::update3DPanning(const al::span<const float,3> ReflectionsPan,
- const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
- const bool doUpmix, const MixParams *mainMix)
- {
- /* Create matrices that transform a B-Format signal according to the
- * panning vectors.
- */
- const auto earlymat = GetTransformFromVector(ReflectionsPan);
- const auto latemat = GetTransformFromVector(LateReverbPan);
- const auto [earlycoeffs, latecoeffs] = [&]{
- if(doUpmix)
- {
- /* When upsampling, combine the early and late transforms with the
- * first-order upsample matrix. This results in panning gains that
- * apply the panning transform to first-order B-Format, which is
- * then upsampled.
- */
- auto mult_matrix = [](const al::span<const std::array<float,4>,4> mtx1)
- {
- std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
- const auto mtx2 = al::span{AmbiScale::FirstOrderUp};
- for(size_t i{0};i < mtx1[0].size();++i)
- {
- const al::span dst{res[i]};
- static_assert(dst.size() >= std::tuple_size_v<decltype(mtx2)::element_type>);
- for(size_t k{0};k < mtx1.size();++k)
- {
- const float a{mtx1[k][i]};
- std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(),
- [a](const float in, const float out) noexcept -> float
- { return a*in + out; });
- }
- }
- return res;
- };
- return std::make_pair(mult_matrix(earlymat), mult_matrix(latemat));
- }
- /* When not upsampling, combine the early and late A-to-B-Format
- * conversions with their respective transform. This results panning
- * gains that convert A-Format to B-Format, which is then panned.
- */
- auto mult_matrix = [](const al::span<const std::array<float,NUM_LINES>,4> mtx1,
- const al::span<const std::array<float,4>,4> mtx2)
- {
- std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
- for(size_t i{0};i < mtx1[0].size();++i)
- {
- const al::span dst{res[i]};
- static_assert(dst.size() >= std::tuple_size_v<decltype(mtx2)::element_type>);
- for(size_t k{0};k < mtx1.size();++k)
- {
- const float a{mtx1[k][i]};
- std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(),
- [a](const float in, const float out) noexcept -> float
- { return a*in + out; });
- }
- }
- return res;
- };
- return std::make_pair(mult_matrix(EarlyA2B, earlymat), mult_matrix(LateA2B, latemat));
- }();
- auto earlygains = mEarly.Gains.begin();
- for(auto &coeffs : earlycoeffs)
- ComputePanGains(mainMix, coeffs, earlyGain, (earlygains++)->Target);
- auto lategains = mLate.Gains.begin();
- for(auto &coeffs : latecoeffs)
- ComputePanGains(mainMix, coeffs, lateGain, (lategains++)->Target);
- }
- void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot,
- const EffectProps *props_, const EffectTarget target)
- {
- auto &props = std::get<ReverbProps>(*props_);
- const DeviceBase *Device{Context->mDevice};
- const auto frequency = static_cast<float>(Device->Frequency);
- /* If the HF limit parameter is flagged, calculate an appropriate limit
- * based on the air absorption parameter.
- */
- float hfRatio{props.DecayHFRatio};
- if(props.DecayHFLimit && props.AirAbsorptionGainHF < 1.0f)
- hfRatio = CalcLimitedHfRatio(hfRatio, props.AirAbsorptionGainHF, props.DecayTime);
- /* Calculate the LF/HF decay times. */
- constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f};
- const float lfDecayTime{std::clamp(props.DecayTime*props.DecayLFRatio, MinDecayTime,
- MaxDecayTime)};
- const float hfDecayTime{std::clamp(props.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)};
- /* Determine if a full update is required. */
- const bool fullUpdate{mPipelineState == DeviceClear ||
- /* Density is essentially a master control for the feedback delays, so
- * changes the offsets of many delay lines.
- */
- mParams.Density != props.Density ||
- /* Diffusion and decay times influences the decay rate (gain) of the
- * late reverb T60 filter.
- */
- mParams.Diffusion != props.Diffusion ||
- mParams.DecayTime != props.DecayTime ||
- mParams.HFDecayTime != hfDecayTime ||
- mParams.LFDecayTime != lfDecayTime ||
- /* Modulation time and depth both require fading the modulation delay. */
- mParams.ModulationTime != props.ModulationTime ||
- mParams.ModulationDepth != props.ModulationDepth ||
- /* HF/LF References control the weighting used to calculate the density
- * gain.
- */
- mParams.HFReference != props.HFReference ||
- mParams.LFReference != props.LFReference};
- if(fullUpdate)
- {
- mParams.Density = props.Density;
- mParams.Diffusion = props.Diffusion;
- mParams.DecayTime = props.DecayTime;
- mParams.HFDecayTime = hfDecayTime;
- mParams.LFDecayTime = lfDecayTime;
- mParams.ModulationTime = props.ModulationTime;
- mParams.ModulationDepth = props.ModulationDepth;
- mParams.HFReference = props.HFReference;
- mParams.LFReference = props.LFReference;
- mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal;
- mCurrentPipeline = !mCurrentPipeline;
- auto &oldpipeline = mPipelines[!mCurrentPipeline];
- for(size_t j{0};j < NUM_LINES;++j)
- oldpipeline.mEarlyDelayCoeff[j][1] = 0.0f;
- }
- auto &pipeline = mPipelines[mCurrentPipeline];
- /* The density-based room size (delay length) multiplier. */
- const float density_mult{CalcDelayLengthMult(props.Density)};
- /* Update the main effect delay and associated taps. */
- pipeline.updateDelayLine(props.Gain, props.ReflectionsDelay, props.LateReverbDelay,
- density_mult, props.DecayTime, frequency);
- /* Update early and late 3D panning. */
- mOutTarget = target.Main->Buffer;
- const float gain{Slot->Gain * ReverbBoost};
- pipeline.update3DPanning(props.ReflectionsPan, props.LateReverbPan, props.ReflectionsGain*gain,
- props.LateReverbGain*gain, mUpmixOutput, target.Main);
- /* Calculate the master filters */
- float hf0norm{std::min(props.HFReference/frequency, 0.49f)};
- pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props.GainHF, 1.0f);
- float lf0norm{std::min(props.LFReference/frequency, 0.49f)};
- pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props.GainLF, 1.0f);
- for(size_t i{1u};i < NUM_LINES;i++)
- {
- pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp);
- pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp);
- }
- if(fullUpdate)
- {
- /* Update the early lines. */
- pipeline.mEarly.updateLines(density_mult, props.Diffusion, props.DecayTime, frequency);
- /* Get the mixing matrix coefficients. */
- CalcMatrixCoeffs(props.Diffusion, &pipeline.mMixX, &pipeline.mMixY);
- /* Update the modulator rate and depth. */
- pipeline.mLate.Mod.updateModulator(props.ModulationTime, props.ModulationDepth, frequency);
- /* Update the late lines. */
- pipeline.mLate.updateLines(density_mult, props.Diffusion, lfDecayTime, props.DecayTime,
- hfDecayTime, lf0norm, hf0norm, frequency);
- }
- /* Calculate the gain at the start of the late reverb stage, and the gain
- * difference from the decay target (0.001, or -60dB).
- */
- const float decayBase{props.ReflectionsGain * props.LateReverbGain};
- const float decayDiff{ReverbDecayGain / decayBase};
- /* Given the DecayTime (the amount of time for the late reverb to decay by
- * -60dB), calculate the time to decay to -60dB from the start of the late
- * reverb.
- *
- * Otherwise, if the late reverb already starts at -60dB or less, only
- * include the time to get to the late reverb.
- */
- const float diffTime{!(decayDiff < 1.0f) ? 0.0f
- : (std::log10(decayDiff)*(20.0f / -60.0f) * props.DecayTime)};
- const float decaySamples{(props.ReflectionsDelay+props.LateReverbDelay+diffTime)
- * frequency};
- /* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to avoid
- * excessive double-processing.
- */
- pipeline.mFadeSampleCount = static_cast<size_t>(std::min(decaySamples, 100'000.0f));
- }
- /**************************************
- * Effect Processing *
- **************************************/
- /* Applies a scattering matrix to the 4-line (vector) input. This is used
- * for both the below vector all-pass model and to perform modal feed-back
- * delay network (FDN) mixing.
- *
- * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
- * matrix with a single unitary rotational parameter:
- *
- * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
- * [ -a, d, c, -b ]
- * [ -b, -c, d, a ]
- * [ -c, b, -a, d ]
- *
- * The rotation is constructed from the effect's diffusion parameter,
- * yielding:
- *
- * 1 = x^2 + 3 y^2
- *
- * Where a, b, and c are the coefficient y with differing signs, and d is the
- * coefficient x. The final matrix is thus:
- *
- * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
- * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
- * [ y, -y, x, y ] x = cos(t)
- * [ -y, -y, -y, x ] y = sin(t) / n
- *
- * Any square orthogonal matrix with an order that is a power of two will
- * work (where ^T is transpose, ^-1 is inverse):
- *
- * M^T = M^-1
- *
- * Using that knowledge, finding an appropriate matrix can be accomplished
- * naively by searching all combinations of:
- *
- * M = D + S - S^T
- *
- * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
- * whose combination of signs are being iterated.
- */
- inline auto VectorPartialScatter(const std::array<float,NUM_LINES> &in, const float xCoeff,
- const float yCoeff) noexcept -> std::array<float,NUM_LINES>
- {
- return std::array{
- xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]),
- xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]),
- xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]),
- xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] )
- };
- }
- /* Utilizes the above, but also applies a line-based reflection on the input
- * channels (swapping 0<->3 and 1<->2).
- */
- void VectorScatterRev(const float xCoeff, const float yCoeff,
- const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t count) noexcept
- {
- ASSUME(count > 0);
- for(size_t i{0u};i < count;++i)
- {
- std::array src{samples[0][i], samples[1][i], samples[2][i], samples[3][i]};
- src = VectorPartialScatter(std::array{src[3], src[2], src[1], src[0]}, xCoeff, yCoeff);
- samples[0][i] = src[0];
- samples[1][i] = src[1];
- samples[2][i] = src[2];
- samples[3][i] = src[3];
- }
- }
- /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
- * filter to the 4-line input.
- *
- * It works by vectorizing a regular all-pass filter and replacing the delay
- * element with a scattering matrix (like the one above) and a diagonal
- * matrix of delay elements.
- */
- void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t main_offset,
- const float xCoeff, const float yCoeff, const size_t todo) const noexcept
- {
- const auto linelen = size_t{Delay.mLine.size()/NUM_LINES};
- const float feedCoeff{Coeff};
- ASSUME(todo > 0);
- for(size_t i{0u};i < todo;)
- {
- std::array<size_t,NUM_LINES> vap_offset{};
- std::transform(Offset.cbegin(), Offset.cend(), vap_offset.begin(),
- [main_offset,mask=linelen-1](const size_t delay) noexcept -> size_t
- { return (main_offset-delay) & mask; });
- main_offset &= linelen-1;
- const auto maxoff = std::accumulate(vap_offset.cbegin(), vap_offset.cend(), main_offset,
- [](const size_t offset, const size_t apoffset) { return std::max(offset, apoffset); });
- size_t td{std::min(linelen - maxoff, todo - i)};
- auto delayIn = Delay.mLine.begin();
- auto delayOut = Delay.mLine.begin() + ptrdiff_t(main_offset*NUM_LINES);
- main_offset += td;
- do {
- std::array<float,NUM_LINES> f{};
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- const float input{samples[j][i]};
- const float out{delayIn[vap_offset[j]*NUM_LINES + j] - feedCoeff*input};
- f[j] = input + feedCoeff*out;
- samples[j][i] = out;
- }
- delayIn += NUM_LINES;
- ++i;
- f = VectorPartialScatter(f, xCoeff, yCoeff);
- delayOut = std::copy_n(f.cbegin(), f.size(), delayOut);
- } while(--td);
- }
- }
- /* This applies a more typical all-pass to each line, without the scattering
- * matrix.
- */
- void Allpass4::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t offset,
- const size_t todo) const noexcept
- {
- const DelayLineU delay{Delay};
- const float feedCoeff{Coeff};
- ASSUME(todo > 0);
- for(size_t j{0u};j < NUM_LINES;j++)
- {
- auto smpiter = samples[j].begin();
- const auto buffer = delay.get(j);
- size_t dstoffset{offset};
- size_t vap_offset{offset - Offset[j]};
- for(size_t i{0u};i < todo;)
- {
- vap_offset &= buffer.size()-1;
- dstoffset &= buffer.size()-1;
- const size_t maxoff{std::max(dstoffset, vap_offset)};
- const size_t td{std::min(buffer.size() - maxoff, todo - i)};
- auto proc_sample = [buffer,feedCoeff,&vap_offset,&dstoffset](const float x) -> float
- {
- const float y{buffer[vap_offset++] - feedCoeff*x};
- buffer[dstoffset++] = x + feedCoeff*y;
- return y;
- };
- smpiter = std::transform(smpiter, smpiter+td, smpiter, proc_sample);
- i += td;
- }
- }
- }
- /* This generates early reflections.
- *
- * This is done by obtaining the primary reflections (those arriving from the
- * same direction as the source) from the main delay line. These are
- * attenuated and all-pass filtered (based on the diffusion parameter).
- *
- * The early lines are then reflected about the origin to create the secondary
- * reflections (those arriving from the opposite direction as the source).
- *
- * The early response is then completed by combining the primary reflections
- * with the delayed and attenuated output from the early lines.
- *
- * Finally, the early response is reflected, scattered (based on diffusion),
- * and fed into the late reverb section of the main delay line.
- */
- void ReverbPipeline::processEarly(const DelayLineU &main_delay, size_t offset,
- const size_t samplesToDo, const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
- const al::span<FloatBufferLine, NUM_LINES> outSamples)
- {
- const DelayLineU early_delay{mEarly.Delay};
- const DelayLineU in_delay{main_delay};
- const float mixX{mMixX};
- const float mixY{mMixY};
- ASSUME(samplesToDo <= BufferLineSize);
- for(size_t base{0};base < samplesToDo;)
- {
- const size_t todo{std::min(samplesToDo-base, MAX_UPDATE_SAMPLES)};
- /* First, load decorrelated samples from the main delay line as the
- * primary reflections.
- */
- const auto fadeStep = float{1.0f / static_cast<float>(todo)};
- for(size_t j{0_uz};j < NUM_LINES;j++)
- {
- const auto input = in_delay.get(j);
- auto early_delay_tap0 = size_t{offset - mEarlyDelayTap[j][0]};
- auto early_delay_tap1 = size_t{offset - mEarlyDelayTap[j][1]};
- mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1];
- const auto coeff0 = float{mEarlyDelayCoeff[j][0]};
- const auto coeff1 = float{mEarlyDelayCoeff[j][1]};
- mEarlyDelayCoeff[j][0] = mEarlyDelayCoeff[j][1];
- auto fadeCount = float{0.0f};
- auto tmp = tempSamples[j].begin();
- for(size_t i{0_uz};i < todo;)
- {
- early_delay_tap0 &= input.size()-1;
- early_delay_tap1 &= input.size()-1;
- const auto max_tap = size_t{std::max(early_delay_tap0, early_delay_tap1)};
- const auto td = size_t{std::min(input.size()-max_tap, todo-i)};
- const auto intap0 = input.subspan(early_delay_tap0, td);
- const auto intap1 = input.subspan(early_delay_tap1, td);
- auto do_blend = [coeff0,coeff1,fadeStep,&fadeCount](const float in0,
- const float in1) noexcept -> float
- {
- const auto ret = lerpf(in0*coeff0, in1*coeff1, fadeStep*fadeCount);
- fadeCount += 1.0f;
- return ret;
- };
- tmp = std::transform(intap0.begin(), intap0.end(), intap1.begin(), tmp, do_blend);
- early_delay_tap0 += td;
- early_delay_tap1 += td;
- i += td;
- }
- /* Band-pass the incoming samples. */
- auto&& filter = DualBiquad{mFilter[j].Lp, mFilter[j].Hp};
- filter.process(al::span{tempSamples[j]}.first(todo), tempSamples[j]);
- }
- /* Apply an all-pass, to help color the initial reflections. */
- mEarly.VecAp.process(tempSamples, offset, todo);
- /* Apply a delay and bounce to generate secondary reflections. */
- early_delay.writeReflected(offset, tempSamples, todo);
- for(size_t j{0_uz};j < NUM_LINES;j++)
- {
- const auto input = early_delay.get(j);
- auto feedb_tap = size_t{offset - mEarly.Offset[j]};
- const auto feedb_coeff = float{mEarly.Coeff[j]};
- auto out = outSamples[j].begin() + base;
- auto tmp = tempSamples[j].begin();
- for(size_t i{0_uz};i < todo;)
- {
- feedb_tap &= input.size()-1;
- const auto td = size_t{std::min(input.size() - feedb_tap, todo - i)};
- const auto delaySrc = input.subspan(feedb_tap, td);
- /* Combine the main input with the attenuated delayed echo for
- * the early output.
- */
- out = std::transform(delaySrc.begin(), delaySrc.end(), tmp, out,
- [feedb_coeff](const float delayspl, const float mainspl) noexcept -> float
- { return delayspl*feedb_coeff + mainspl; });
- /* Move the (non-attenuated) delayed echo to the temp buffer
- * for feeding the late reverb.
- */
- tmp = std::copy_n(delaySrc.begin(), delaySrc.size(), tmp);
- feedb_tap += td;
- i += td;
- }
- }
- /* Finally, apply a scatter and bounce to improve the initial diffusion
- * in the late reverb, writing the result to the late delay line input.
- */
- VectorScatterRev(mixX, mixY, tempSamples, todo);
- for(size_t j{0_uz};j < NUM_LINES;j++)
- mLateDelayIn.write(offset, j, al::span{tempSamples[j]}.first(todo));
- base += todo;
- offset += todo;
- }
- }
- auto Modulation::calcDelays(size_t todo) -> al::span<const uint>
- {
- auto idx = uint{Index};
- const auto step = uint{Step};
- const auto depth = float{Depth * float{gCubicTable.sTableSteps}};
- const auto delays = al::span{ModDelays}.first(todo);
- std::generate(delays.begin(), delays.end(), [step,depth,&idx]
- {
- idx += step;
- const auto x = float{static_cast<float>(idx&MOD_FRACMASK) * (1.0f/MOD_FRACONE)};
- /* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape
- * and stays within [-1...+1], it needn't be perfect.
- */
- const auto lfo = float{!(idx&(MOD_FRACONE>>1))
- ? ((-16.0f * x * x) + (8.0f * x))
- : ((16.0f * x * x) + (-8.0f * x) + (-16.0f * x) + 8.0f)};
- return float2uint((lfo+1.0f) * depth);
- });
- Index = idx;
- return delays;
- }
- /* This generates the reverb tail using a modified feed-back delay network
- * (FDN).
- *
- * Results from the early reflections are mixed with the output from the
- * modulated late delay lines.
- *
- * The late response is then completed by T60 and all-pass filtering the mix.
- *
- * Finally, the lines are reversed (so they feed their opposite directions)
- * and scattered with the FDN matrix before re-feeding the delay lines.
- */
- void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo,
- const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
- const al::span<FloatBufferLine, NUM_LINES> outSamples)
- {
- const DelayLineU late_delay{mLate.Delay};
- const DelayLineU in_delay{mLateDelayIn};
- const float mixX{mMixX};
- const float mixY{mMixY};
- ASSUME(samplesToDo <= BufferLineSize);
- for(size_t base{0};base < samplesToDo;)
- {
- const size_t todo{std::min(std::min(mLate.Offset[0], MAX_UPDATE_SAMPLES),
- samplesToDo-base)};
- ASSUME(todo > 0);
- /* First, calculate the modulated delays for the late feedback. */
- const auto delays = mLate.Mod.calcDelays(todo);
- /* Now load samples from the feedback delay lines. Filter the signal to
- * apply its frequency-dependent decay.
- */
- for(size_t j{0_uz};j < NUM_LINES;++j)
- {
- const auto input = late_delay.get(j);
- const auto midGain = float{mLate.T60[j].MidGain};
- auto late_feedb_tap = size_t{offset - mLate.Offset[j]};
- auto proc_sample = [input,midGain,&late_feedb_tap](const size_t idelay) -> float
- {
- /* Calculate the read sample offset and sub-sample offset
- * between it and the next sample.
- */
- const auto delay = size_t{late_feedb_tap - (idelay>>gCubicTable.sTableBits)};
- const auto delayoffset = size_t{idelay & gCubicTable.sTableMask};
- ++late_feedb_tap;
- /* Get the samples around the delayed offset, interpolated for
- * output.
- */
- const auto out0 = float{input[(delay ) & (input.size()-1)]};
- const auto out1 = float{input[(delay-1) & (input.size()-1)]};
- const auto out2 = float{input[(delay-2) & (input.size()-1)]};
- const auto out3 = float{input[(delay-3) & (input.size()-1)]};
- const auto out = float{out0*gCubicTable.getCoeff0(delayoffset)
- + out1*gCubicTable.getCoeff1(delayoffset)
- + out2*gCubicTable.getCoeff2(delayoffset)
- + out3*gCubicTable.getCoeff3(delayoffset)};
- return out * midGain;
- };
- std::transform(delays.begin(), delays.end(), tempSamples[j].begin(), proc_sample);
- mLate.T60[j].process(al::span{tempSamples[j]}.first(todo));
- }
- /* Next load decorrelated samples from the main delay lines. */
- const float fadeStep{1.0f / static_cast<float>(todo)};
- for(size_t j{0_uz};j < NUM_LINES;++j)
- {
- const auto input = in_delay.get(j);
- auto late_delay_tap0 = size_t{offset - mLateDelayTap[j][0]};
- auto late_delay_tap1 = size_t{offset - mLateDelayTap[j][1]};
- mLateDelayTap[j][0] = mLateDelayTap[j][1];
- const auto densityGain = float{mLate.DensityGain};
- const auto densityStep = float{late_delay_tap0 != late_delay_tap1
- ? densityGain*fadeStep : 0.0f};
- auto fadeCount = float{0.0f};
- auto samples = tempSamples[j].begin();
- for(size_t i{0u};i < todo;)
- {
- late_delay_tap0 &= input.size()-1;
- late_delay_tap1 &= input.size()-1;
- const auto td = size_t{std::min(todo - i,
- input.size() - std::max(late_delay_tap0, late_delay_tap1))};
- auto proc_sample = [input,densityGain,densityStep,&late_delay_tap0,
- &late_delay_tap1,&fadeCount](const float sample) noexcept -> float
- {
- const auto fade0 = float{densityGain - densityStep*fadeCount};
- const auto fade1 = float{densityStep*fadeCount};
- fadeCount += 1.0f;
- return input[late_delay_tap0++]*fade0 + input[late_delay_tap1++]*fade1
- + sample;
- };
- samples = std::transform(samples, samples+ptrdiff_t(td), samples, proc_sample);
- i += td;
- }
- }
- /* Apply a vector all-pass to improve micro-surface diffusion, and
- * write out the results for mixing.
- */
- mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo);
- for(size_t j{0_uz};j < NUM_LINES;++j)
- std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base);
- /* Finally, scatter and bounce the results to refeed the feedback buffer. */
- VectorScatterRev(mixX, mixY, tempSamples, todo);
- for(size_t j{0_uz};j < NUM_LINES;++j)
- late_delay.write(offset, j, al::span{tempSamples[j]}.first(todo));
- base += todo;
- offset += todo;
- }
- }
- void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
- {
- const size_t offset{mOffset};
- ASSUME(samplesToDo <= BufferLineSize);
- auto &oldpipeline = mPipelines[!mCurrentPipeline];
- auto &pipeline = mPipelines[mCurrentPipeline];
- /* Convert B-Format to A-Format for processing. */
- const size_t numInput{std::min(samplesIn.size(), NUM_LINES)};
- const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
- for(size_t c{0u};c < NUM_LINES;++c)
- {
- std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
- for(size_t i{0};i < numInput;++i)
- {
- const float gain{B2A[c][i]};
- auto mix_sample = [gain](const float sample, const float in) noexcept -> float
- { return sample + in*gain; };
- std::transform(tmpspan.begin(), tmpspan.end(), samplesIn[i].begin(), tmpspan.begin(),
- mix_sample);
- }
- mMainDelay.write(offset, c, tmpspan);
- }
- if(mPipelineState < Fading)
- mPipelineState = Fading;
- /* Process reverb for these samples. and mix them to the output. */
- pipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples);
- pipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
- mixOut(pipeline, samplesOut, samplesToDo);
- if(mPipelineState != Normal)
- {
- if(mPipelineState == Cleanup)
- {
- size_t numSamples{mSampleBuffer.size()/2};
- const auto bufferspan = al::span{mSampleBuffer}.subspan(numSamples * !mCurrentPipeline,
- numSamples);
- std::fill_n(bufferspan.begin(), bufferspan.size(), 0.0f);
- oldpipeline.clear();
- mPipelineState = Normal;
- }
- else
- {
- /* If this is the final mix for this old pipeline, set the target
- * gains to 0 to ensure a complete fade out, and set the state to
- * Cleanup so the next invocation cleans up the delay buffers and
- * filters.
- */
- if(samplesToDo >= oldpipeline.mFadeSampleCount)
- {
- for(auto &gains : oldpipeline.mEarly.Gains)
- std::fill(gains.Target.begin(), gains.Target.end(), 0.0f);
- for(auto &gains : oldpipeline.mLate.Gains)
- std::fill(gains.Target.begin(), gains.Target.end(), 0.0f);
- oldpipeline.mFadeSampleCount = 0;
- mPipelineState = Cleanup;
- }
- else
- oldpipeline.mFadeSampleCount -= samplesToDo;
- /* Process the old reverb for these samples. */
- oldpipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples);
- oldpipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
- mixOut(oldpipeline, samplesOut, samplesToDo);
- }
- }
- mOffset = offset + samplesToDo;
- }
- struct ReverbStateFactory final : public EffectStateFactory {
- al::intrusive_ptr<EffectState> create() override
- { return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
- };
- } // namespace
- EffectStateFactory *ReverbStateFactory_getFactory()
- {
- static ReverbStateFactory ReverbFactory{};
- return &ReverbFactory;
- }
|