|
@@ -1,2079 +0,0 @@
|
|
-/*************************************************************************
|
|
|
|
-* *
|
|
|
|
-* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
|
|
|
|
-* All rights reserved. Email: [email protected] Web: www.q12.org *
|
|
|
|
-* *
|
|
|
|
-* This library is free software; you can redistribute it and/or *
|
|
|
|
-* modify it under the terms of EITHER: *
|
|
|
|
-* (1) The GNU Lesser General Public License as published by the Free *
|
|
|
|
-* Software Foundation; either version 2.1 of the License, or (at *
|
|
|
|
-* your option) any later version. The text of the GNU Lesser *
|
|
|
|
-* General Public License is included with this library in the *
|
|
|
|
-* file LICENSE.TXT. *
|
|
|
|
-* (2) The BSD-style license that is included with this library in *
|
|
|
|
-* the file LICENSE-BSD.TXT. *
|
|
|
|
-* *
|
|
|
|
-* This library is distributed in the hope that it will be useful, *
|
|
|
|
-* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
-* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
|
|
|
|
-* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
|
|
|
|
-* *
|
|
|
|
-*************************************************************************/
|
|
|
|
-
|
|
|
|
-/*
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-THE ALGORITHM
|
|
|
|
--------------
|
|
|
|
-
|
|
|
|
-solve A*x = b+w, with x and w subject to certain LCP conditions.
|
|
|
|
-each x(i),w(i) must lie on one of the three line segments in the following
|
|
|
|
-diagram. each line segment corresponds to one index set :
|
|
|
|
-
|
|
|
|
- w(i)
|
|
|
|
- /|\ | :
|
|
|
|
- | | :
|
|
|
|
- | |i in N :
|
|
|
|
- w>0 | |state[i]=0 :
|
|
|
|
- | | :
|
|
|
|
- | | : i in C
|
|
|
|
- w=0 + +-----------------------+
|
|
|
|
- | : |
|
|
|
|
- | : |
|
|
|
|
- w<0 | : |i in N
|
|
|
|
- | : |state[i]=1
|
|
|
|
- | : |
|
|
|
|
- | : |
|
|
|
|
- +-------|-----------|-----------|----------> x(i)
|
|
|
|
- lo 0 hi
|
|
|
|
-
|
|
|
|
-the Dantzig algorithm proceeds as follows:
|
|
|
|
- for i=1:n
|
|
|
|
- * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
|
|
|
|
- negative towards the line. as this is done, the other (x(j),w(j))
|
|
|
|
- for j<i are constrained to be on the line. if any (x,w) reaches the
|
|
|
|
- end of a line segment then it is switched between index sets.
|
|
|
|
- * i is added to the appropriate index set depending on what line segment
|
|
|
|
- it hits.
|
|
|
|
-
|
|
|
|
-we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
|
|
|
|
-simpler, because the starting point for x(i),w(i) is always on the dotted
|
|
|
|
-line x=0 and x will only ever increase in one direction, so it can only hit
|
|
|
|
-two out of the three line segments.
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-NOTES
|
|
|
|
------
|
|
|
|
-
|
|
|
|
-this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
|
|
|
|
-the implementation is split into an LCP problem object (btLCP) and an LCP
|
|
|
|
-driver function. most optimization occurs in the btLCP object.
|
|
|
|
-
|
|
|
|
-a naive implementation of the algorithm requires either a lot of data motion
|
|
|
|
-or a lot of permutation-array lookup, because we are constantly re-ordering
|
|
|
|
-rows and columns. to avoid this and make a more optimized algorithm, a
|
|
|
|
-non-trivial data structure is used to represent the matrix A (this is
|
|
|
|
-implemented in the fast version of the btLCP object).
|
|
|
|
-
|
|
|
|
-during execution of this algorithm, some indexes in A are clamped (set C),
|
|
|
|
-some are non-clamped (set N), and some are "don't care" (where x=0).
|
|
|
|
-A,x,b,w (and other problem vectors) are permuted such that the clamped
|
|
|
|
-indexes are first, the unclamped indexes are next, and the don't-care
|
|
|
|
-indexes are last. this permutation is recorded in the array `p'.
|
|
|
|
-initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
|
|
|
|
-the corresponding elements of p are swapped.
|
|
|
|
-
|
|
|
|
-because the C and N elements are grouped together in the rows of A, we can do
|
|
|
|
-lots of work with a fast dot product function. if A,x,etc were not permuted
|
|
|
|
-and we only had a permutation array, then those dot products would be much
|
|
|
|
-slower as we would have a permutation array lookup in some inner loops.
|
|
|
|
-
|
|
|
|
-A is accessed through an array of row pointers, so that element (i,j) of the
|
|
|
|
-permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
|
|
|
|
-we still have to actually move the data.
|
|
|
|
-
|
|
|
|
-during execution of this algorithm we maintain an L*D*L' factorization of
|
|
|
|
-the clamped submatrix of A (call it `AC') which is the top left nC*nC
|
|
|
|
-submatrix of A. there are two ways we could arrange the rows/columns in AC.
|
|
|
|
-
|
|
|
|
-(1) AC is always permuted such that L*D*L' = AC. this causes a problem
|
|
|
|
-when a row/column is removed from C, because then all the rows/columns of A
|
|
|
|
-between the deleted index and the end of C need to be rotated downward.
|
|
|
|
-this results in a lot of data motion and slows things down.
|
|
|
|
-(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
|
|
|
|
-itself a permutation of the underlying A). this is what we do - the
|
|
|
|
-permutation is recorded in the vector C. call this permutation A[C,C].
|
|
|
|
-when a row/column is removed from C, all we have to do is swap two
|
|
|
|
-rows/columns and manipulate C.
|
|
|
|
-
|
|
|
|
-*/
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#include "btDantzigLCP.h"
|
|
|
|
-
|
|
|
|
-#include <string.h>//memcpy
|
|
|
|
-
|
|
|
|
-bool s_error = false;
|
|
|
|
-
|
|
|
|
-//***************************************************************************
|
|
|
|
-// code generation parameters
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#define btLCP_FAST // use fast btLCP object
|
|
|
|
-
|
|
|
|
-// option 1 : matrix row pointers (less data copying)
|
|
|
|
-#define BTROWPTRS
|
|
|
|
-#define BTATYPE btScalar **
|
|
|
|
-#define BTAROW(i) (m_A[i])
|
|
|
|
-
|
|
|
|
-// option 2 : no matrix row pointers (slightly faster inner loops)
|
|
|
|
-//#define NOROWPTRS
|
|
|
|
-//#define BTATYPE btScalar *
|
|
|
|
-//#define BTAROW(i) (m_A+(i)*m_nskip)
|
|
|
|
-
|
|
|
|
-#define BTNUB_OPTIMIZATIONS
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-/* solve L*X=B, with B containing 1 right hand sides.
|
|
|
|
- * L is an n*n lower triangular matrix with ones on the diagonal.
|
|
|
|
- * L is stored by rows and its leading dimension is lskip.
|
|
|
|
- * B is an n*1 matrix that contains the right hand sides.
|
|
|
|
- * B is stored by columns and its leading dimension is also lskip.
|
|
|
|
- * B is overwritten with X.
|
|
|
|
- * this processes blocks of 2*2.
|
|
|
|
- * if this is in the factorizer source file, n must be a multiple of 2.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1)
|
|
|
|
-{
|
|
|
|
- /* declare variables - Z matrix, p and q vectors, etc */
|
|
|
|
- btScalar Z11,m11,Z21,m21,p1,q1,p2,*ex;
|
|
|
|
- const btScalar *ell;
|
|
|
|
- int i,j;
|
|
|
|
- /* compute all 2 x 1 blocks of X */
|
|
|
|
- for (i=0; i < n; i+=2) {
|
|
|
|
- /* compute all 2 x 1 block of X, from rows i..i+2-1 */
|
|
|
|
- /* set the Z matrix to 0 */
|
|
|
|
- Z11=0;
|
|
|
|
- Z21=0;
|
|
|
|
- ell = L + i*lskip1;
|
|
|
|
- ex = B;
|
|
|
|
- /* the inner loop that computes outer products and adds them to Z */
|
|
|
|
- for (j=i-2; j >= 0; j -= 2) {
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- p2=ell[lskip1];
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- p1=ell[1];
|
|
|
|
- q1=ex[1];
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- p2=ell[1+lskip1];
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 2;
|
|
|
|
- ex += 2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- /* end of inner loop */
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 2;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- p2=ell[lskip1];
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 1;
|
|
|
|
- ex += 1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- }
|
|
|
|
- /* finish computing the X(i) block */
|
|
|
|
- Z11 = ex[0] - Z11;
|
|
|
|
- ex[0] = Z11;
|
|
|
|
- p1 = ell[lskip1];
|
|
|
|
- Z21 = ex[1] - Z21 - p1*Z11;
|
|
|
|
- ex[1] = Z21;
|
|
|
|
- /* end of outer loop */
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/* solve L*X=B, with B containing 2 right hand sides.
|
|
|
|
- * L is an n*n lower triangular matrix with ones on the diagonal.
|
|
|
|
- * L is stored by rows and its leading dimension is lskip.
|
|
|
|
- * B is an n*2 matrix that contains the right hand sides.
|
|
|
|
- * B is stored by columns and its leading dimension is also lskip.
|
|
|
|
- * B is overwritten with X.
|
|
|
|
- * this processes blocks of 2*2.
|
|
|
|
- * if this is in the factorizer source file, n must be a multiple of 2.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-static void btSolveL1_2 (const btScalar *L, btScalar *B, int n, int lskip1)
|
|
|
|
-{
|
|
|
|
- /* declare variables - Z matrix, p and q vectors, etc */
|
|
|
|
- btScalar Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex;
|
|
|
|
- const btScalar *ell;
|
|
|
|
- int i,j;
|
|
|
|
- /* compute all 2 x 2 blocks of X */
|
|
|
|
- for (i=0; i < n; i+=2) {
|
|
|
|
- /* compute all 2 x 2 block of X, from rows i..i+2-1 */
|
|
|
|
- /* set the Z matrix to 0 */
|
|
|
|
- Z11=0;
|
|
|
|
- Z12=0;
|
|
|
|
- Z21=0;
|
|
|
|
- Z22=0;
|
|
|
|
- ell = L + i*lskip1;
|
|
|
|
- ex = B;
|
|
|
|
- /* the inner loop that computes outer products and adds them to Z */
|
|
|
|
- for (j=i-2; j >= 0; j -= 2) {
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- q2=ex[lskip1];
|
|
|
|
- m12 = p1 * q2;
|
|
|
|
- p2=ell[lskip1];
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m22 = p2 * q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z12 += m12;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- p1=ell[1];
|
|
|
|
- q1=ex[1];
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- q2=ex[1+lskip1];
|
|
|
|
- m12 = p1 * q2;
|
|
|
|
- p2=ell[1+lskip1];
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m22 = p2 * q2;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 2;
|
|
|
|
- ex += 2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z12 += m12;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- /* end of inner loop */
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 2;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- q2=ex[lskip1];
|
|
|
|
- m12 = p1 * q2;
|
|
|
|
- p2=ell[lskip1];
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m22 = p2 * q2;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 1;
|
|
|
|
- ex += 1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z12 += m12;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- }
|
|
|
|
- /* finish computing the X(i) block */
|
|
|
|
- Z11 = ex[0] - Z11;
|
|
|
|
- ex[0] = Z11;
|
|
|
|
- Z12 = ex[lskip1] - Z12;
|
|
|
|
- ex[lskip1] = Z12;
|
|
|
|
- p1 = ell[lskip1];
|
|
|
|
- Z21 = ex[1] - Z21 - p1*Z11;
|
|
|
|
- ex[1] = Z21;
|
|
|
|
- Z22 = ex[1+lskip1] - Z22 - p1*Z12;
|
|
|
|
- ex[1+lskip1] = Z22;
|
|
|
|
- /* end of outer loop */
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1)
|
|
|
|
-{
|
|
|
|
- int i,j;
|
|
|
|
- btScalar sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22;
|
|
|
|
- if (n < 1) return;
|
|
|
|
-
|
|
|
|
- for (i=0; i<=n-2; i += 2) {
|
|
|
|
- /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
|
|
|
|
- btSolveL1_2 (A,A+i*nskip1,i,nskip1);
|
|
|
|
- /* scale the elements in a 2 x i block at A(i,0), and also */
|
|
|
|
- /* compute Z = the outer product matrix that we'll need. */
|
|
|
|
- Z11 = 0;
|
|
|
|
- Z21 = 0;
|
|
|
|
- Z22 = 0;
|
|
|
|
- ell = A+i*nskip1;
|
|
|
|
- dee = d;
|
|
|
|
- for (j=i-6; j >= 0; j -= 6) {
|
|
|
|
- p1 = ell[0];
|
|
|
|
- p2 = ell[nskip1];
|
|
|
|
- dd = dee[0];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- q2 = p2*dd;
|
|
|
|
- ell[0] = q1;
|
|
|
|
- ell[nskip1] = q2;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- m21 = p2*q1;
|
|
|
|
- m22 = p2*q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- p1 = ell[1];
|
|
|
|
- p2 = ell[1+nskip1];
|
|
|
|
- dd = dee[1];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- q2 = p2*dd;
|
|
|
|
- ell[1] = q1;
|
|
|
|
- ell[1+nskip1] = q2;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- m21 = p2*q1;
|
|
|
|
- m22 = p2*q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- p1 = ell[2];
|
|
|
|
- p2 = ell[2+nskip1];
|
|
|
|
- dd = dee[2];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- q2 = p2*dd;
|
|
|
|
- ell[2] = q1;
|
|
|
|
- ell[2+nskip1] = q2;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- m21 = p2*q1;
|
|
|
|
- m22 = p2*q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- p1 = ell[3];
|
|
|
|
- p2 = ell[3+nskip1];
|
|
|
|
- dd = dee[3];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- q2 = p2*dd;
|
|
|
|
- ell[3] = q1;
|
|
|
|
- ell[3+nskip1] = q2;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- m21 = p2*q1;
|
|
|
|
- m22 = p2*q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- p1 = ell[4];
|
|
|
|
- p2 = ell[4+nskip1];
|
|
|
|
- dd = dee[4];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- q2 = p2*dd;
|
|
|
|
- ell[4] = q1;
|
|
|
|
- ell[4+nskip1] = q2;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- m21 = p2*q1;
|
|
|
|
- m22 = p2*q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- p1 = ell[5];
|
|
|
|
- p2 = ell[5+nskip1];
|
|
|
|
- dd = dee[5];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- q2 = p2*dd;
|
|
|
|
- ell[5] = q1;
|
|
|
|
- ell[5+nskip1] = q2;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- m21 = p2*q1;
|
|
|
|
- m22 = p2*q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- ell += 6;
|
|
|
|
- dee += 6;
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 6;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- p1 = ell[0];
|
|
|
|
- p2 = ell[nskip1];
|
|
|
|
- dd = dee[0];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- q2 = p2*dd;
|
|
|
|
- ell[0] = q1;
|
|
|
|
- ell[nskip1] = q2;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- m21 = p2*q1;
|
|
|
|
- m22 = p2*q2;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z22 += m22;
|
|
|
|
- ell++;
|
|
|
|
- dee++;
|
|
|
|
- }
|
|
|
|
- /* solve for diagonal 2 x 2 block at A(i,i) */
|
|
|
|
- Z11 = ell[0] - Z11;
|
|
|
|
- Z21 = ell[nskip1] - Z21;
|
|
|
|
- Z22 = ell[1+nskip1] - Z22;
|
|
|
|
- dee = d + i;
|
|
|
|
- /* factorize 2 x 2 block Z,dee */
|
|
|
|
- /* factorize row 1 */
|
|
|
|
- dee[0] = btRecip(Z11);
|
|
|
|
- /* factorize row 2 */
|
|
|
|
- sum = 0;
|
|
|
|
- q1 = Z21;
|
|
|
|
- q2 = q1 * dee[0];
|
|
|
|
- Z21 = q2;
|
|
|
|
- sum += q1*q2;
|
|
|
|
- dee[1] = btRecip(Z22 - sum);
|
|
|
|
- /* done factorizing 2 x 2 block */
|
|
|
|
- ell[nskip1] = Z21;
|
|
|
|
- }
|
|
|
|
- /* compute the (less than 2) rows at the bottom */
|
|
|
|
- switch (n-i) {
|
|
|
|
- case 0:
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- case 1:
|
|
|
|
- btSolveL1_1 (A,A+i*nskip1,i,nskip1);
|
|
|
|
- /* scale the elements in a 1 x i block at A(i,0), and also */
|
|
|
|
- /* compute Z = the outer product matrix that we'll need. */
|
|
|
|
- Z11 = 0;
|
|
|
|
- ell = A+i*nskip1;
|
|
|
|
- dee = d;
|
|
|
|
- for (j=i-6; j >= 0; j -= 6) {
|
|
|
|
- p1 = ell[0];
|
|
|
|
- dd = dee[0];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- ell[0] = q1;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- p1 = ell[1];
|
|
|
|
- dd = dee[1];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- ell[1] = q1;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- p1 = ell[2];
|
|
|
|
- dd = dee[2];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- ell[2] = q1;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- p1 = ell[3];
|
|
|
|
- dd = dee[3];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- ell[3] = q1;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- p1 = ell[4];
|
|
|
|
- dd = dee[4];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- ell[4] = q1;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- p1 = ell[5];
|
|
|
|
- dd = dee[5];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- ell[5] = q1;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- ell += 6;
|
|
|
|
- dee += 6;
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 6;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- p1 = ell[0];
|
|
|
|
- dd = dee[0];
|
|
|
|
- q1 = p1*dd;
|
|
|
|
- ell[0] = q1;
|
|
|
|
- m11 = p1*q1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- ell++;
|
|
|
|
- dee++;
|
|
|
|
- }
|
|
|
|
- /* solve for diagonal 1 x 1 block at A(i,i) */
|
|
|
|
- Z11 = ell[0] - Z11;
|
|
|
|
- dee = d + i;
|
|
|
|
- /* factorize 1 x 1 block Z,dee */
|
|
|
|
- /* factorize row 1 */
|
|
|
|
- dee[0] = btRecip(Z11);
|
|
|
|
- /* done factorizing 1 x 1 block */
|
|
|
|
- break;
|
|
|
|
-
|
|
|
|
- //default: *((char*)0)=0; /* this should never happen! */
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/* solve L*X=B, with B containing 1 right hand sides.
|
|
|
|
- * L is an n*n lower triangular matrix with ones on the diagonal.
|
|
|
|
- * L is stored by rows and its leading dimension is lskip.
|
|
|
|
- * B is an n*1 matrix that contains the right hand sides.
|
|
|
|
- * B is stored by columns and its leading dimension is also lskip.
|
|
|
|
- * B is overwritten with X.
|
|
|
|
- * this processes blocks of 4*4.
|
|
|
|
- * if this is in the factorizer source file, n must be a multiple of 4.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1)
|
|
|
|
-{
|
|
|
|
- /* declare variables - Z matrix, p and q vectors, etc */
|
|
|
|
- btScalar Z11,Z21,Z31,Z41,p1,q1,p2,p3,p4,*ex;
|
|
|
|
- const btScalar *ell;
|
|
|
|
- int lskip2,lskip3,i,j;
|
|
|
|
- /* compute lskip values */
|
|
|
|
- lskip2 = 2*lskip1;
|
|
|
|
- lskip3 = 3*lskip1;
|
|
|
|
- /* compute all 4 x 1 blocks of X */
|
|
|
|
- for (i=0; i <= n-4; i+=4) {
|
|
|
|
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
|
|
|
|
- /* set the Z matrix to 0 */
|
|
|
|
- Z11=0;
|
|
|
|
- Z21=0;
|
|
|
|
- Z31=0;
|
|
|
|
- Z41=0;
|
|
|
|
- ell = L + i*lskip1;
|
|
|
|
- ex = B;
|
|
|
|
- /* the inner loop that computes outer products and adds them to Z */
|
|
|
|
- for (j=i-12; j >= 0; j -= 12) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- p2=ell[lskip1];
|
|
|
|
- p3=ell[lskip2];
|
|
|
|
- p4=ell[lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[1];
|
|
|
|
- q1=ex[1];
|
|
|
|
- p2=ell[1+lskip1];
|
|
|
|
- p3=ell[1+lskip2];
|
|
|
|
- p4=ell[1+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[2];
|
|
|
|
- q1=ex[2];
|
|
|
|
- p2=ell[2+lskip1];
|
|
|
|
- p3=ell[2+lskip2];
|
|
|
|
- p4=ell[2+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[3];
|
|
|
|
- q1=ex[3];
|
|
|
|
- p2=ell[3+lskip1];
|
|
|
|
- p3=ell[3+lskip2];
|
|
|
|
- p4=ell[3+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[4];
|
|
|
|
- q1=ex[4];
|
|
|
|
- p2=ell[4+lskip1];
|
|
|
|
- p3=ell[4+lskip2];
|
|
|
|
- p4=ell[4+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[5];
|
|
|
|
- q1=ex[5];
|
|
|
|
- p2=ell[5+lskip1];
|
|
|
|
- p3=ell[5+lskip2];
|
|
|
|
- p4=ell[5+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[6];
|
|
|
|
- q1=ex[6];
|
|
|
|
- p2=ell[6+lskip1];
|
|
|
|
- p3=ell[6+lskip2];
|
|
|
|
- p4=ell[6+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[7];
|
|
|
|
- q1=ex[7];
|
|
|
|
- p2=ell[7+lskip1];
|
|
|
|
- p3=ell[7+lskip2];
|
|
|
|
- p4=ell[7+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[8];
|
|
|
|
- q1=ex[8];
|
|
|
|
- p2=ell[8+lskip1];
|
|
|
|
- p3=ell[8+lskip2];
|
|
|
|
- p4=ell[8+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[9];
|
|
|
|
- q1=ex[9];
|
|
|
|
- p2=ell[9+lskip1];
|
|
|
|
- p3=ell[9+lskip2];
|
|
|
|
- p4=ell[9+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[10];
|
|
|
|
- q1=ex[10];
|
|
|
|
- p2=ell[10+lskip1];
|
|
|
|
- p3=ell[10+lskip2];
|
|
|
|
- p4=ell[10+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[11];
|
|
|
|
- q1=ex[11];
|
|
|
|
- p2=ell[11+lskip1];
|
|
|
|
- p3=ell[11+lskip2];
|
|
|
|
- p4=ell[11+lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 12;
|
|
|
|
- ex += 12;
|
|
|
|
- /* end of inner loop */
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 12;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- p2=ell[lskip1];
|
|
|
|
- p3=ell[lskip2];
|
|
|
|
- p4=ell[lskip3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- Z21 += p2 * q1;
|
|
|
|
- Z31 += p3 * q1;
|
|
|
|
- Z41 += p4 * q1;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 1;
|
|
|
|
- ex += 1;
|
|
|
|
- }
|
|
|
|
- /* finish computing the X(i) block */
|
|
|
|
- Z11 = ex[0] - Z11;
|
|
|
|
- ex[0] = Z11;
|
|
|
|
- p1 = ell[lskip1];
|
|
|
|
- Z21 = ex[1] - Z21 - p1*Z11;
|
|
|
|
- ex[1] = Z21;
|
|
|
|
- p1 = ell[lskip2];
|
|
|
|
- p2 = ell[1+lskip2];
|
|
|
|
- Z31 = ex[2] - Z31 - p1*Z11 - p2*Z21;
|
|
|
|
- ex[2] = Z31;
|
|
|
|
- p1 = ell[lskip3];
|
|
|
|
- p2 = ell[1+lskip3];
|
|
|
|
- p3 = ell[2+lskip3];
|
|
|
|
- Z41 = ex[3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
|
|
|
|
- ex[3] = Z41;
|
|
|
|
- /* end of outer loop */
|
|
|
|
- }
|
|
|
|
- /* compute rows at end that are not a multiple of block size */
|
|
|
|
- for (; i < n; i++) {
|
|
|
|
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
|
|
|
|
- /* set the Z matrix to 0 */
|
|
|
|
- Z11=0;
|
|
|
|
- ell = L + i*lskip1;
|
|
|
|
- ex = B;
|
|
|
|
- /* the inner loop that computes outer products and adds them to Z */
|
|
|
|
- for (j=i-12; j >= 0; j -= 12) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[1];
|
|
|
|
- q1=ex[1];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[2];
|
|
|
|
- q1=ex[2];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[3];
|
|
|
|
- q1=ex[3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[4];
|
|
|
|
- q1=ex[4];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[5];
|
|
|
|
- q1=ex[5];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[6];
|
|
|
|
- q1=ex[6];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[7];
|
|
|
|
- q1=ex[7];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[8];
|
|
|
|
- q1=ex[8];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[9];
|
|
|
|
- q1=ex[9];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[10];
|
|
|
|
- q1=ex[10];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[11];
|
|
|
|
- q1=ex[11];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 12;
|
|
|
|
- ex += 12;
|
|
|
|
- /* end of inner loop */
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 12;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- Z11 += p1 * q1;
|
|
|
|
- /* advance pointers */
|
|
|
|
- ell += 1;
|
|
|
|
- ex += 1;
|
|
|
|
- }
|
|
|
|
- /* finish computing the X(i) block */
|
|
|
|
- Z11 = ex[0] - Z11;
|
|
|
|
- ex[0] = Z11;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-/* solve L^T * x=b, with b containing 1 right hand side.
|
|
|
|
- * L is an n*n lower triangular matrix with ones on the diagonal.
|
|
|
|
- * L is stored by rows and its leading dimension is lskip.
|
|
|
|
- * b is an n*1 matrix that contains the right hand side.
|
|
|
|
- * b is overwritten with x.
|
|
|
|
- * this processes blocks of 4.
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-void btSolveL1T (const btScalar *L, btScalar *B, int n, int lskip1)
|
|
|
|
-{
|
|
|
|
- /* declare variables - Z matrix, p and q vectors, etc */
|
|
|
|
- btScalar Z11,m11,Z21,m21,Z31,m31,Z41,m41,p1,q1,p2,p3,p4,*ex;
|
|
|
|
- const btScalar *ell;
|
|
|
|
- int lskip2,lskip3,i,j;
|
|
|
|
- /* special handling for L and B because we're solving L1 *transpose* */
|
|
|
|
- L = L + (n-1)*(lskip1+1);
|
|
|
|
- B = B + n-1;
|
|
|
|
- lskip1 = -lskip1;
|
|
|
|
- /* compute lskip values */
|
|
|
|
- lskip2 = 2*lskip1;
|
|
|
|
- lskip3 = 3*lskip1;
|
|
|
|
- /* compute all 4 x 1 blocks of X */
|
|
|
|
- for (i=0; i <= n-4; i+=4) {
|
|
|
|
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
|
|
|
|
- /* set the Z matrix to 0 */
|
|
|
|
- Z11=0;
|
|
|
|
- Z21=0;
|
|
|
|
- Z31=0;
|
|
|
|
- Z41=0;
|
|
|
|
- ell = L - i;
|
|
|
|
- ex = B;
|
|
|
|
- /* the inner loop that computes outer products and adds them to Z */
|
|
|
|
- for (j=i-4; j >= 0; j -= 4) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- p2=ell[-1];
|
|
|
|
- p3=ell[-2];
|
|
|
|
- p4=ell[-3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m31 = p3 * q1;
|
|
|
|
- m41 = p4 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z31 += m31;
|
|
|
|
- Z41 += m41;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[-1];
|
|
|
|
- p2=ell[-1];
|
|
|
|
- p3=ell[-2];
|
|
|
|
- p4=ell[-3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m31 = p3 * q1;
|
|
|
|
- m41 = p4 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z31 += m31;
|
|
|
|
- Z41 += m41;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[-2];
|
|
|
|
- p2=ell[-1];
|
|
|
|
- p3=ell[-2];
|
|
|
|
- p4=ell[-3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m31 = p3 * q1;
|
|
|
|
- m41 = p4 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z31 += m31;
|
|
|
|
- Z41 += m41;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[-3];
|
|
|
|
- p2=ell[-1];
|
|
|
|
- p3=ell[-2];
|
|
|
|
- p4=ell[-3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m31 = p3 * q1;
|
|
|
|
- m41 = p4 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- ex -= 4;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z31 += m31;
|
|
|
|
- Z41 += m41;
|
|
|
|
- /* end of inner loop */
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 4;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- p2=ell[-1];
|
|
|
|
- p3=ell[-2];
|
|
|
|
- p4=ell[-3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- m21 = p2 * q1;
|
|
|
|
- m31 = p3 * q1;
|
|
|
|
- m41 = p4 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- ex -= 1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- Z21 += m21;
|
|
|
|
- Z31 += m31;
|
|
|
|
- Z41 += m41;
|
|
|
|
- }
|
|
|
|
- /* finish computing the X(i) block */
|
|
|
|
- Z11 = ex[0] - Z11;
|
|
|
|
- ex[0] = Z11;
|
|
|
|
- p1 = ell[-1];
|
|
|
|
- Z21 = ex[-1] - Z21 - p1*Z11;
|
|
|
|
- ex[-1] = Z21;
|
|
|
|
- p1 = ell[-2];
|
|
|
|
- p2 = ell[-2+lskip1];
|
|
|
|
- Z31 = ex[-2] - Z31 - p1*Z11 - p2*Z21;
|
|
|
|
- ex[-2] = Z31;
|
|
|
|
- p1 = ell[-3];
|
|
|
|
- p2 = ell[-3+lskip1];
|
|
|
|
- p3 = ell[-3+lskip2];
|
|
|
|
- Z41 = ex[-3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
|
|
|
|
- ex[-3] = Z41;
|
|
|
|
- /* end of outer loop */
|
|
|
|
- }
|
|
|
|
- /* compute rows at end that are not a multiple of block size */
|
|
|
|
- for (; i < n; i++) {
|
|
|
|
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
|
|
|
|
- /* set the Z matrix to 0 */
|
|
|
|
- Z11=0;
|
|
|
|
- ell = L - i;
|
|
|
|
- ex = B;
|
|
|
|
- /* the inner loop that computes outer products and adds them to Z */
|
|
|
|
- for (j=i-4; j >= 0; j -= 4) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[-1];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[-2];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[-3];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- ex -= 4;
|
|
|
|
- Z11 += m11;
|
|
|
|
- /* end of inner loop */
|
|
|
|
- }
|
|
|
|
- /* compute left-over iterations */
|
|
|
|
- j += 4;
|
|
|
|
- for (; j > 0; j--) {
|
|
|
|
- /* load p and q values */
|
|
|
|
- p1=ell[0];
|
|
|
|
- q1=ex[0];
|
|
|
|
- /* compute outer product and add it to the Z matrix */
|
|
|
|
- m11 = p1 * q1;
|
|
|
|
- ell += lskip1;
|
|
|
|
- ex -= 1;
|
|
|
|
- Z11 += m11;
|
|
|
|
- }
|
|
|
|
- /* finish computing the X(i) block */
|
|
|
|
- Z11 = ex[0] - Z11;
|
|
|
|
- ex[0] = Z11;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btVectorScale (btScalar *a, const btScalar *d, int n)
|
|
|
|
-{
|
|
|
|
- btAssert (a && d && n >= 0);
|
|
|
|
- for (int i=0; i<n; i++) {
|
|
|
|
- a[i] *= d[i];
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
|
|
|
|
-{
|
|
|
|
- btAssert (L && d && b && n > 0 && nskip >= n);
|
|
|
|
- btSolveL1 (L,b,n,nskip);
|
|
|
|
- btVectorScale (b,d,n);
|
|
|
|
- btSolveL1T (L,b,n,nskip);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-//***************************************************************************
|
|
|
|
-
|
|
|
|
-// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
|
|
|
|
-// A is nskip. this only references and swaps the lower triangle.
|
|
|
|
-// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
|
|
|
|
-// rows will be swapped by exchanging row pointers. otherwise the data will
|
|
|
|
-// be copied.
|
|
|
|
-
|
|
|
|
-static void btSwapRowsAndCols (BTATYPE A, int n, int i1, int i2, int nskip,
|
|
|
|
- int do_fast_row_swaps)
|
|
|
|
-{
|
|
|
|
- btAssert (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
|
|
|
|
- nskip >= n && i1 < i2);
|
|
|
|
-
|
|
|
|
-# ifdef BTROWPTRS
|
|
|
|
- btScalar *A_i1 = A[i1];
|
|
|
|
- btScalar *A_i2 = A[i2];
|
|
|
|
- for (int i=i1+1; i<i2; ++i) {
|
|
|
|
- btScalar *A_i_i1 = A[i] + i1;
|
|
|
|
- A_i1[i] = *A_i_i1;
|
|
|
|
- *A_i_i1 = A_i2[i];
|
|
|
|
- }
|
|
|
|
- A_i1[i2] = A_i1[i1];
|
|
|
|
- A_i1[i1] = A_i2[i1];
|
|
|
|
- A_i2[i1] = A_i2[i2];
|
|
|
|
- // swap rows, by swapping row pointers
|
|
|
|
- if (do_fast_row_swaps) {
|
|
|
|
- A[i1] = A_i2;
|
|
|
|
- A[i2] = A_i1;
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- // Only swap till i2 column to match A plain storage variant.
|
|
|
|
- for (int k = 0; k <= i2; ++k) {
|
|
|
|
- btScalar tmp = A_i1[k];
|
|
|
|
- A_i1[k] = A_i2[k];
|
|
|
|
- A_i2[k] = tmp;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- // swap columns the hard way
|
|
|
|
- for (int j=i2+1; j<n; ++j) {
|
|
|
|
- btScalar *A_j = A[j];
|
|
|
|
- btScalar tmp = A_j[i1];
|
|
|
|
- A_j[i1] = A_j[i2];
|
|
|
|
- A_j[i2] = tmp;
|
|
|
|
- }
|
|
|
|
-# else
|
|
|
|
- btScalar *A_i1 = A+i1*nskip;
|
|
|
|
- btScalar *A_i2 = A+i2*nskip;
|
|
|
|
- for (int k = 0; k < i1; ++k) {
|
|
|
|
- btScalar tmp = A_i1[k];
|
|
|
|
- A_i1[k] = A_i2[k];
|
|
|
|
- A_i2[k] = tmp;
|
|
|
|
- }
|
|
|
|
- btScalar *A_i = A_i1 + nskip;
|
|
|
|
- for (int i=i1+1; i<i2; A_i+=nskip, ++i) {
|
|
|
|
- btScalar tmp = A_i2[i];
|
|
|
|
- A_i2[i] = A_i[i1];
|
|
|
|
- A_i[i1] = tmp;
|
|
|
|
- }
|
|
|
|
- {
|
|
|
|
- btScalar tmp = A_i1[i1];
|
|
|
|
- A_i1[i1] = A_i2[i2];
|
|
|
|
- A_i2[i2] = tmp;
|
|
|
|
- }
|
|
|
|
- btScalar *A_j = A_i2 + nskip;
|
|
|
|
- for (int j=i2+1; j<n; A_j+=nskip, ++j) {
|
|
|
|
- btScalar tmp = A_j[i1];
|
|
|
|
- A_j[i1] = A_j[i2];
|
|
|
|
- A_j[i2] = tmp;
|
|
|
|
- }
|
|
|
|
-# endif
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-// swap two indexes in the n*n LCP problem. i1 must be <= i2.
|
|
|
|
-
|
|
|
|
-static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
|
|
|
|
- btScalar *hi, int *p, bool *state, int *findex,
|
|
|
|
- int n, int i1, int i2, int nskip,
|
|
|
|
- int do_fast_row_swaps)
|
|
|
|
-{
|
|
|
|
- btScalar tmpr;
|
|
|
|
- int tmpi;
|
|
|
|
- bool tmpb;
|
|
|
|
- btAssert (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
|
|
|
|
- if (i1==i2) return;
|
|
|
|
-
|
|
|
|
- btSwapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps);
|
|
|
|
-
|
|
|
|
- tmpr = x[i1];
|
|
|
|
- x[i1] = x[i2];
|
|
|
|
- x[i2] = tmpr;
|
|
|
|
-
|
|
|
|
- tmpr = b[i1];
|
|
|
|
- b[i1] = b[i2];
|
|
|
|
- b[i2] = tmpr;
|
|
|
|
-
|
|
|
|
- tmpr = w[i1];
|
|
|
|
- w[i1] = w[i2];
|
|
|
|
- w[i2] = tmpr;
|
|
|
|
-
|
|
|
|
- tmpr = lo[i1];
|
|
|
|
- lo[i1] = lo[i2];
|
|
|
|
- lo[i2] = tmpr;
|
|
|
|
-
|
|
|
|
- tmpr = hi[i1];
|
|
|
|
- hi[i1] = hi[i2];
|
|
|
|
- hi[i2] = tmpr;
|
|
|
|
-
|
|
|
|
- tmpi = p[i1];
|
|
|
|
- p[i1] = p[i2];
|
|
|
|
- p[i2] = tmpi;
|
|
|
|
-
|
|
|
|
- tmpb = state[i1];
|
|
|
|
- state[i1] = state[i2];
|
|
|
|
- state[i2] = tmpb;
|
|
|
|
-
|
|
|
|
- if (findex) {
|
|
|
|
- tmpi = findex[i1];
|
|
|
|
- findex[i1] = findex[i2];
|
|
|
|
- findex[i2] = tmpi;
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-//***************************************************************************
|
|
|
|
-// btLCP manipulator object. this represents an n*n LCP problem.
|
|
|
|
-//
|
|
|
|
-// two index sets C and N are kept. each set holds a subset of
|
|
|
|
-// the variable indexes 0..n-1. an index can only be in one set.
|
|
|
|
-// initially both sets are empty.
|
|
|
|
-//
|
|
|
|
-// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
|
|
|
|
-
|
|
|
|
-//***************************************************************************
|
|
|
|
-// fast implementation of btLCP. see the above definition of btLCP for
|
|
|
|
-// interface comments.
|
|
|
|
-//
|
|
|
|
-// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
|
|
|
|
-// permuted as the other vectors/matrices are permuted.
|
|
|
|
-//
|
|
|
|
-// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
|
|
|
|
-// contiguous indexes. the don't-care indexes follow N.
|
|
|
|
-//
|
|
|
|
-// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
|
|
|
|
-// added or removed from the set C the factorization is updated.
|
|
|
|
-// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
|
|
|
|
-// the leading dimension of the matrix L is always `nskip'.
|
|
|
|
-//
|
|
|
|
-// at the start there may be other indexes that are unbounded but are not
|
|
|
|
-// included in `nub'. btLCP will permute the matrix so that absolutely all
|
|
|
|
-// unbounded vectors are at the start. thus there may be some initial
|
|
|
|
-// permutation.
|
|
|
|
-//
|
|
|
|
-// the algorithms here assume certain patterns, particularly with respect to
|
|
|
|
-// index transfer.
|
|
|
|
-
|
|
|
|
-#ifdef btLCP_FAST
|
|
|
|
-
|
|
|
|
-struct btLCP
|
|
|
|
-{
|
|
|
|
- const int m_n;
|
|
|
|
- const int m_nskip;
|
|
|
|
- int m_nub;
|
|
|
|
- int m_nC, m_nN; // size of each index set
|
|
|
|
- BTATYPE const m_A; // A rows
|
|
|
|
- btScalar *const m_x, * const m_b, *const m_w, *const m_lo,* const m_hi; // permuted LCP problem data
|
|
|
|
- btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
|
|
|
|
- btScalar *const m_Dell, *const m_ell, *const m_tmp;
|
|
|
|
- bool *const m_state;
|
|
|
|
- int *const m_findex, *const m_p, *const m_C;
|
|
|
|
-
|
|
|
|
- btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
|
|
|
|
- btScalar *_lo, btScalar *_hi, btScalar *_L, btScalar *_d,
|
|
|
|
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
|
|
|
|
- bool *_state, int *_findex, int *_p, int *_C, btScalar **Arows);
|
|
|
|
- int getNub() const { return m_nub; }
|
|
|
|
- void transfer_i_to_C (int i);
|
|
|
|
- void transfer_i_to_N (int i) { m_nN++; } // because we can assume C and N span 1:i-1
|
|
|
|
- void transfer_i_from_N_to_C (int i);
|
|
|
|
- void transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch);
|
|
|
|
- int numC() const { return m_nC; }
|
|
|
|
- int numN() const { return m_nN; }
|
|
|
|
- int indexC (int i) const { return i; }
|
|
|
|
- int indexN (int i) const { return i+m_nC; }
|
|
|
|
- btScalar Aii (int i) const { return BTAROW(i)[i]; }
|
|
|
|
- btScalar AiC_times_qC (int i, btScalar *q) const { return btLargeDot (BTAROW(i), q, m_nC); }
|
|
|
|
- btScalar AiN_times_qN (int i, btScalar *q) const { return btLargeDot (BTAROW(i)+m_nC, q+m_nC, m_nN); }
|
|
|
|
- void pN_equals_ANC_times_qC (btScalar *p, btScalar *q);
|
|
|
|
- void pN_plusequals_ANi (btScalar *p, int i, int sign=1);
|
|
|
|
- void pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q);
|
|
|
|
- void pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q);
|
|
|
|
- void solve1 (btScalar *a, int i, int dir=1, int only_transfer=0);
|
|
|
|
- void unpermute();
|
|
|
|
-};
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
|
|
|
|
- btScalar *_lo, btScalar *_hi, btScalar *_L, btScalar *_d,
|
|
|
|
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
|
|
|
|
- bool *_state, int *_findex, int *_p, int *_C, btScalar **Arows):
|
|
|
|
- m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
|
|
|
|
-# ifdef BTROWPTRS
|
|
|
|
- m_A(Arows),
|
|
|
|
-#else
|
|
|
|
- m_A(_Adata),
|
|
|
|
-#endif
|
|
|
|
- m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi),
|
|
|
|
- m_L(_L), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
|
|
|
|
- m_state(_state), m_findex(_findex), m_p(_p), m_C(_C)
|
|
|
|
-{
|
|
|
|
- {
|
|
|
|
- btSetZero (m_x,m_n);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
-# ifdef BTROWPTRS
|
|
|
|
- // make matrix row pointers
|
|
|
|
- btScalar *aptr = _Adata;
|
|
|
|
- BTATYPE A = m_A;
|
|
|
|
- const int n = m_n, nskip = m_nskip;
|
|
|
|
- for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
|
|
|
|
-# endif
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
- int *p = m_p;
|
|
|
|
- const int n = m_n;
|
|
|
|
- for (int k=0; k<n; ++k) p[k]=k; // initially unpermuted
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- // for testing, we can do some random swaps in the area i > nub
|
|
|
|
- {
|
|
|
|
- const int n = m_n;
|
|
|
|
- const int nub = m_nub;
|
|
|
|
- if (nub < n) {
|
|
|
|
- for (int k=0; k<100; k++) {
|
|
|
|
- int i1,i2;
|
|
|
|
- do {
|
|
|
|
- i1 = dRandInt(n-nub)+nub;
|
|
|
|
- i2 = dRandInt(n-nub)+nub;
|
|
|
|
- }
|
|
|
|
- while (i1 > i2);
|
|
|
|
- //printf ("--> %d %d\n",i1,i2);
|
|
|
|
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
- // permute the problem so that *all* the unbounded variables are at the
|
|
|
|
- // start, i.e. look for unbounded variables not included in `nub'. we can
|
|
|
|
- // potentially push up `nub' this way and get a bigger initial factorization.
|
|
|
|
- // note that when we swap rows/cols here we must not just swap row pointers,
|
|
|
|
- // as the initial factorization relies on the data being all in one chunk.
|
|
|
|
- // variables that have findex >= 0 are *not* considered to be unbounded even
|
|
|
|
- // if lo=-inf and hi=inf - this is because these limits may change during the
|
|
|
|
- // solution process.
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
- int *findex = m_findex;
|
|
|
|
- btScalar *lo = m_lo, *hi = m_hi;
|
|
|
|
- const int n = m_n;
|
|
|
|
- for (int k = m_nub; k<n; ++k) {
|
|
|
|
- if (findex && findex[k] >= 0) continue;
|
|
|
|
- if (lo[k]==-BT_INFINITY && hi[k]==BT_INFINITY) {
|
|
|
|
- btSwapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0);
|
|
|
|
- m_nub++;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // if there are unbounded variables at the start, factorize A up to that
|
|
|
|
- // point and solve for x. this puts all indexes 0..nub-1 into C.
|
|
|
|
- if (m_nub > 0) {
|
|
|
|
- const int nub = m_nub;
|
|
|
|
- {
|
|
|
|
- btScalar *Lrow = m_L;
|
|
|
|
- const int nskip = m_nskip;
|
|
|
|
- for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,BTAROW(j),(j+1)*sizeof(btScalar));
|
|
|
|
- }
|
|
|
|
- btFactorLDLT (m_L,m_d,nub,m_nskip);
|
|
|
|
- memcpy (m_x,m_b,nub*sizeof(btScalar));
|
|
|
|
- btSolveLDLT (m_L,m_d,m_x,nub,m_nskip);
|
|
|
|
- btSetZero (m_w,nub);
|
|
|
|
- {
|
|
|
|
- int *C = m_C;
|
|
|
|
- for (int k=0; k<nub; ++k) C[k] = k;
|
|
|
|
- }
|
|
|
|
- m_nC = nub;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // permute the indexes > nub such that all findex variables are at the end
|
|
|
|
- if (m_findex) {
|
|
|
|
- const int nub = m_nub;
|
|
|
|
- int *findex = m_findex;
|
|
|
|
- int num_at_end = 0;
|
|
|
|
- for (int k=m_n-1; k >= nub; k--) {
|
|
|
|
- if (findex[k] >= 0) {
|
|
|
|
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1);
|
|
|
|
- num_at_end++;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // print info about indexes
|
|
|
|
- /*
|
|
|
|
- {
|
|
|
|
- const int n = m_n;
|
|
|
|
- const int nub = m_nub;
|
|
|
|
- for (int k=0; k<n; k++) {
|
|
|
|
- if (k<nub) printf ("C");
|
|
|
|
- else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
|
|
|
|
- else printf (".");
|
|
|
|
- }
|
|
|
|
- printf ("\n");
|
|
|
|
- }
|
|
|
|
- */
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLCP::transfer_i_to_C (int i)
|
|
|
|
-{
|
|
|
|
- {
|
|
|
|
- if (m_nC > 0) {
|
|
|
|
- // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
|
|
|
|
- {
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- btScalar *const Ltgt = m_L + nC*m_nskip, *ell = m_ell;
|
|
|
|
- for (int j=0; j<nC; ++j) Ltgt[j] = ell[j];
|
|
|
|
- }
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- m_d[0] = btRecip (BTAROW(i)[i]);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
|
|
|
|
-
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- m_C[nC] = nC;
|
|
|
|
- m_nC = nC + 1; // nC value is outdated after this line
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLCP::transfer_i_from_N_to_C (int i)
|
|
|
|
-{
|
|
|
|
- {
|
|
|
|
- if (m_nC > 0) {
|
|
|
|
- {
|
|
|
|
- btScalar *const aptr = BTAROW(i);
|
|
|
|
- btScalar *Dell = m_Dell;
|
|
|
|
- const int *C = m_C;
|
|
|
|
-# ifdef BTNUB_OPTIMIZATIONS
|
|
|
|
- // if nub>0, initial part of aptr unpermuted
|
|
|
|
- const int nub = m_nub;
|
|
|
|
- int j=0;
|
|
|
|
- for ( ; j<nub; ++j) Dell[j] = aptr[j];
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
|
|
|
|
-# else
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
|
|
|
|
-# endif
|
|
|
|
- }
|
|
|
|
- btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
|
|
|
|
- {
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- btScalar *const Ltgt = m_L + nC*m_nskip;
|
|
|
|
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
|
|
|
|
- for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
|
|
|
|
- }
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- m_d[0] = btRecip (BTAROW(i)[i]);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
|
|
|
|
-
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- m_C[nC] = nC;
|
|
|
|
- m_nN--;
|
|
|
|
- m_nC = nC + 1; // nC value is outdated after this line
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // @@@ TO DO LATER
|
|
|
|
- // if we just finish here then we'll go back and re-solve for
|
|
|
|
- // delta_x. but actually we can be more efficient and incrementally
|
|
|
|
- // update delta_x here. but if we do this, we wont have ell and Dell
|
|
|
|
- // to use in updating the factorization later.
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void btRemoveRowCol (btScalar *A, int n, int nskip, int r)
|
|
|
|
-{
|
|
|
|
- btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
|
|
|
|
- if (r >= n-1) return;
|
|
|
|
- if (r > 0) {
|
|
|
|
- {
|
|
|
|
- const size_t move_size = (n-r-1)*sizeof(btScalar);
|
|
|
|
- btScalar *Adst = A + r;
|
|
|
|
- for (int i=0; i<r; Adst+=nskip,++i) {
|
|
|
|
- btScalar *Asrc = Adst + 1;
|
|
|
|
- memmove (Adst,Asrc,move_size);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- {
|
|
|
|
- const size_t cpy_size = r*sizeof(btScalar);
|
|
|
|
- btScalar *Adst = A + r * nskip;
|
|
|
|
- for (int i=r; i<(n-1); ++i) {
|
|
|
|
- btScalar *Asrc = Adst + nskip;
|
|
|
|
- memcpy (Adst,Asrc,cpy_size);
|
|
|
|
- Adst = Asrc;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- {
|
|
|
|
- const size_t cpy_size = (n-r-1)*sizeof(btScalar);
|
|
|
|
- btScalar *Adst = A + r * (nskip + 1);
|
|
|
|
- for (int i=r; i<(n-1); ++i) {
|
|
|
|
- btScalar *Asrc = Adst + (nskip + 1);
|
|
|
|
- memcpy (Adst,Asrc,cpy_size);
|
|
|
|
- Adst = Asrc - 1;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLDLTAddTL (btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar>& scratch)
|
|
|
|
-{
|
|
|
|
- btAssert (L && d && a && n > 0 && nskip >= n);
|
|
|
|
-
|
|
|
|
- if (n < 2) return;
|
|
|
|
- scratch.resize(2*nskip);
|
|
|
|
- btScalar *W1 = &scratch[0];
|
|
|
|
-
|
|
|
|
- btScalar *W2 = W1 + nskip;
|
|
|
|
-
|
|
|
|
- W1[0] = btScalar(0.0);
|
|
|
|
- W2[0] = btScalar(0.0);
|
|
|
|
- for (int j=1; j<n; ++j) {
|
|
|
|
- W1[j] = W2[j] = (btScalar) (a[j] * SIMDSQRT12);
|
|
|
|
- }
|
|
|
|
- btScalar W11 = (btScalar) ((btScalar(0.5)*a[0]+1)*SIMDSQRT12);
|
|
|
|
- btScalar W21 = (btScalar) ((btScalar(0.5)*a[0]-1)*SIMDSQRT12);
|
|
|
|
-
|
|
|
|
- btScalar alpha1 = btScalar(1.0);
|
|
|
|
- btScalar alpha2 = btScalar(1.0);
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
- btScalar dee = d[0];
|
|
|
|
- btScalar alphanew = alpha1 + (W11*W11)*dee;
|
|
|
|
- btAssert(alphanew != btScalar(0.0));
|
|
|
|
- dee /= alphanew;
|
|
|
|
- btScalar gamma1 = W11 * dee;
|
|
|
|
- dee *= alpha1;
|
|
|
|
- alpha1 = alphanew;
|
|
|
|
- alphanew = alpha2 - (W21*W21)*dee;
|
|
|
|
- dee /= alphanew;
|
|
|
|
- //btScalar gamma2 = W21 * dee;
|
|
|
|
- alpha2 = alphanew;
|
|
|
|
- btScalar k1 = btScalar(1.0) - W21*gamma1;
|
|
|
|
- btScalar k2 = W21*gamma1*W11 - W21;
|
|
|
|
- btScalar *ll = L + nskip;
|
|
|
|
- for (int p=1; p<n; ll+=nskip, ++p) {
|
|
|
|
- btScalar Wp = W1[p];
|
|
|
|
- btScalar ell = *ll;
|
|
|
|
- W1[p] = Wp - W11*ell;
|
|
|
|
- W2[p] = k1*Wp + k2*ell;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- btScalar *ll = L + (nskip + 1);
|
|
|
|
- for (int j=1; j<n; ll+=nskip+1, ++j) {
|
|
|
|
- btScalar k1 = W1[j];
|
|
|
|
- btScalar k2 = W2[j];
|
|
|
|
-
|
|
|
|
- btScalar dee = d[j];
|
|
|
|
- btScalar alphanew = alpha1 + (k1*k1)*dee;
|
|
|
|
- btAssert(alphanew != btScalar(0.0));
|
|
|
|
- dee /= alphanew;
|
|
|
|
- btScalar gamma1 = k1 * dee;
|
|
|
|
- dee *= alpha1;
|
|
|
|
- alpha1 = alphanew;
|
|
|
|
- alphanew = alpha2 - (k2*k2)*dee;
|
|
|
|
- dee /= alphanew;
|
|
|
|
- btScalar gamma2 = k2 * dee;
|
|
|
|
- dee *= alpha2;
|
|
|
|
- d[j] = dee;
|
|
|
|
- alpha2 = alphanew;
|
|
|
|
-
|
|
|
|
- btScalar *l = ll + nskip;
|
|
|
|
- for (int p=j+1; p<n; l+=nskip, ++p) {
|
|
|
|
- btScalar ell = *l;
|
|
|
|
- btScalar Wp = W1[p] - k1 * ell;
|
|
|
|
- ell += gamma1 * Wp;
|
|
|
|
- W1[p] = Wp;
|
|
|
|
- Wp = W2[p] - k2 * ell;
|
|
|
|
- ell -= gamma2 * Wp;
|
|
|
|
- W2[p] = Wp;
|
|
|
|
- *l = ell;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-#define _BTGETA(i,j) (A[i][j])
|
|
|
|
-//#define _GETA(i,j) (A[(i)*nskip+(j)])
|
|
|
|
-#define BTGETA(i,j) ((i > j) ? _BTGETA(i,j) : _BTGETA(j,i))
|
|
|
|
-
|
|
|
|
-inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
|
|
|
|
-{
|
|
|
|
- return nskip * 2 * sizeof(btScalar);
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLDLTRemove (btScalar **A, const int *p, btScalar *L, btScalar *d,
|
|
|
|
- int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar>& scratch)
|
|
|
|
-{
|
|
|
|
- btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
|
|
|
|
- n1 >= n2 && nskip >= n1);
|
|
|
|
- #ifdef BT_DEBUG
|
|
|
|
- for (int i=0; i<n2; ++i)
|
|
|
|
- btAssert(p[i] >= 0 && p[i] < n1);
|
|
|
|
- #endif
|
|
|
|
-
|
|
|
|
- if (r==n2-1) {
|
|
|
|
- return; // deleting last row/col is easy
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
|
|
|
|
- btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
|
|
|
|
- scratch.resize(nskip * 2+n2);
|
|
|
|
- btScalar *tmp = &scratch[0];
|
|
|
|
- if (r==0) {
|
|
|
|
- btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
|
|
|
|
- const int p_0 = p[0];
|
|
|
|
- for (int i=0; i<n2; ++i) {
|
|
|
|
- a[i] = -BTGETA(p[i],p_0);
|
|
|
|
- }
|
|
|
|
- a[0] += btScalar(1.0);
|
|
|
|
- btLDLTAddTL (L,d,a,n2,nskip,scratch);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
|
|
|
|
- {
|
|
|
|
- btScalar *Lcurr = L + r*nskip;
|
|
|
|
- for (int i=0; i<r; ++Lcurr, ++i) {
|
|
|
|
- btAssert(d[i] != btScalar(0.0));
|
|
|
|
- t[i] = *Lcurr / d[i];
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- btScalar *a = t + r;
|
|
|
|
- {
|
|
|
|
- btScalar *Lcurr = L + r*nskip;
|
|
|
|
- const int *pp_r = p + r, p_r = *pp_r;
|
|
|
|
- const int n2_minus_r = n2-r;
|
|
|
|
- for (int i=0; i<n2_minus_r; Lcurr+=nskip,++i) {
|
|
|
|
- a[i] = btLargeDot(Lcurr,t,r) - BTGETA(pp_r[i],p_r);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- a[0] += btScalar(1.0);
|
|
|
|
- btLDLTAddTL (L + r*nskip+r, d+r, a, n2-r, nskip, scratch);
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // snip out row/column r from L and d
|
|
|
|
- btRemoveRowCol (L,n2,nskip,r);
|
|
|
|
- if (r < (n2-1)) memmove (d+r,d+r+1,(n2-r-1)*sizeof(btScalar));
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLCP::transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch)
|
|
|
|
-{
|
|
|
|
- {
|
|
|
|
- int *C = m_C;
|
|
|
|
- // remove a row/column from the factorization, and adjust the
|
|
|
|
- // indexes (black magic!)
|
|
|
|
- int last_idx = -1;
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- int j = 0;
|
|
|
|
- for ( ; j<nC; ++j) {
|
|
|
|
- if (C[j]==nC-1) {
|
|
|
|
- last_idx = j;
|
|
|
|
- }
|
|
|
|
- if (C[j]==i) {
|
|
|
|
- btLDLTRemove (m_A,C,m_L,m_d,m_n,nC,j,m_nskip,scratch);
|
|
|
|
- int k;
|
|
|
|
- if (last_idx == -1) {
|
|
|
|
- for (k=j+1 ; k<nC; ++k) {
|
|
|
|
- if (C[k]==nC-1) {
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- btAssert (k < nC);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- k = last_idx;
|
|
|
|
- }
|
|
|
|
- C[k] = C[j];
|
|
|
|
- if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int));
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- btAssert (j < nC);
|
|
|
|
-
|
|
|
|
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,i,nC-1,m_nskip,1);
|
|
|
|
-
|
|
|
|
- m_nN++;
|
|
|
|
- m_nC = nC - 1; // nC value is outdated after this line
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLCP::pN_equals_ANC_times_qC (btScalar *p, btScalar *q)
|
|
|
|
-{
|
|
|
|
- // we could try to make this matrix-vector multiplication faster using
|
|
|
|
- // outer product matrix tricks, e.g. with the dMultidotX() functions.
|
|
|
|
- // but i tried it and it actually made things slower on random 100x100
|
|
|
|
- // problems because of the overhead involved. so we'll stick with the
|
|
|
|
- // simple method for now.
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- btScalar *ptgt = p + nC;
|
|
|
|
- const int nN = m_nN;
|
|
|
|
- for (int i=0; i<nN; ++i) {
|
|
|
|
- ptgt[i] = btLargeDot (BTAROW(i+nC),q,nC);
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLCP::pN_plusequals_ANi (btScalar *p, int i, int sign)
|
|
|
|
-{
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- btScalar *aptr = BTAROW(i) + nC;
|
|
|
|
- btScalar *ptgt = p + nC;
|
|
|
|
- if (sign > 0) {
|
|
|
|
- const int nN = m_nN;
|
|
|
|
- for (int j=0; j<nN; ++j) ptgt[j] += aptr[j];
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- const int nN = m_nN;
|
|
|
|
- for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j];
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void btLCP::pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q)
|
|
|
|
-{
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for (int i=0; i<nC; ++i) {
|
|
|
|
- p[i] += s*q[i];
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void btLCP::pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q)
|
|
|
|
-{
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- btScalar *ptgt = p + nC, *qsrc = q + nC;
|
|
|
|
- const int nN = m_nN;
|
|
|
|
- for (int i=0; i<nN; ++i) {
|
|
|
|
- ptgt[i] += s*qsrc[i];
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-void btLCP::solve1 (btScalar *a, int i, int dir, int only_transfer)
|
|
|
|
-{
|
|
|
|
- // the `Dell' and `ell' that are computed here are saved. if index i is
|
|
|
|
- // later added to the factorization then they can be reused.
|
|
|
|
- //
|
|
|
|
- // @@@ question: do we need to solve for entire delta_x??? yes, but
|
|
|
|
- // only if an x goes below 0 during the step.
|
|
|
|
-
|
|
|
|
- if (m_nC > 0) {
|
|
|
|
- {
|
|
|
|
- btScalar *Dell = m_Dell;
|
|
|
|
- int *C = m_C;
|
|
|
|
- btScalar *aptr = BTAROW(i);
|
|
|
|
-# ifdef BTNUB_OPTIMIZATIONS
|
|
|
|
- // if nub>0, initial part of aptr[] is guaranteed unpermuted
|
|
|
|
- const int nub = m_nub;
|
|
|
|
- int j=0;
|
|
|
|
- for ( ; j<nub; ++j) Dell[j] = aptr[j];
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
|
|
|
|
-# else
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
|
|
|
|
-# endif
|
|
|
|
- }
|
|
|
|
- btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
|
|
|
|
- {
|
|
|
|
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j];
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (!only_transfer) {
|
|
|
|
- btScalar *tmp = m_tmp, *ell = m_ell;
|
|
|
|
- {
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for (int j=0; j<nC; ++j) tmp[j] = ell[j];
|
|
|
|
- }
|
|
|
|
- btSolveL1T (m_L,tmp,m_nC,m_nskip);
|
|
|
|
- if (dir > 0) {
|
|
|
|
- int *C = m_C;
|
|
|
|
- btScalar *tmp = m_tmp;
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j];
|
|
|
|
- } else {
|
|
|
|
- int *C = m_C;
|
|
|
|
- btScalar *tmp = m_tmp;
|
|
|
|
- const int nC = m_nC;
|
|
|
|
- for (int j=0; j<nC; ++j) a[C[j]] = tmp[j];
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-void btLCP::unpermute()
|
|
|
|
-{
|
|
|
|
- // now we have to un-permute x and w
|
|
|
|
- {
|
|
|
|
- memcpy (m_tmp,m_x,m_n*sizeof(btScalar));
|
|
|
|
- btScalar *x = m_x, *tmp = m_tmp;
|
|
|
|
- const int *p = m_p;
|
|
|
|
- const int n = m_n;
|
|
|
|
- for (int j=0; j<n; ++j) x[p[j]] = tmp[j];
|
|
|
|
- }
|
|
|
|
- {
|
|
|
|
- memcpy (m_tmp,m_w,m_n*sizeof(btScalar));
|
|
|
|
- btScalar *w = m_w, *tmp = m_tmp;
|
|
|
|
- const int *p = m_p;
|
|
|
|
- const int n = m_n;
|
|
|
|
- for (int j=0; j<n; ++j) w[p[j]] = tmp[j];
|
|
|
|
- }
|
|
|
|
-}
|
|
|
|
-
|
|
|
|
-#endif // btLCP_FAST
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-//***************************************************************************
|
|
|
|
-// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
|
|
|
|
-
|
|
|
|
-bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b,
|
|
|
|
- btScalar* outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory& scratchMem)
|
|
|
|
-{
|
|
|
|
- s_error = false;
|
|
|
|
-
|
|
|
|
-// printf("btSolveDantzigLCP n=%d\n",n);
|
|
|
|
- btAssert (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
|
|
|
|
- btAssert(outer_w);
|
|
|
|
-
|
|
|
|
-#ifdef BT_DEBUG
|
|
|
|
- {
|
|
|
|
- // check restrictions on lo and hi
|
|
|
|
- for (int k=0; k<n; ++k)
|
|
|
|
- btAssert (lo[k] <= 0 && hi[k] >= 0);
|
|
|
|
- }
|
|
|
|
-# endif
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- // if all the variables are unbounded then we can just factor, solve,
|
|
|
|
- // and return
|
|
|
|
- if (nub >= n)
|
|
|
|
- {
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- int nskip = (n);
|
|
|
|
- btFactorLDLT (A, outer_w, n, nskip);
|
|
|
|
- btSolveLDLT (A, outer_w, b, n, nskip);
|
|
|
|
- memcpy (x, b, n*sizeof(btScalar));
|
|
|
|
-
|
|
|
|
- return !s_error;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- const int nskip = (n);
|
|
|
|
- scratchMem.L.resize(n*nskip);
|
|
|
|
-
|
|
|
|
- scratchMem.d.resize(n);
|
|
|
|
-
|
|
|
|
- btScalar *w = outer_w;
|
|
|
|
- scratchMem.delta_w.resize(n);
|
|
|
|
- scratchMem.delta_x.resize(n);
|
|
|
|
- scratchMem.Dell.resize(n);
|
|
|
|
- scratchMem.ell.resize(n);
|
|
|
|
- scratchMem.Arows.resize(n);
|
|
|
|
- scratchMem.p.resize(n);
|
|
|
|
- scratchMem.C.resize(n);
|
|
|
|
-
|
|
|
|
- // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
|
|
|
|
- scratchMem.state.resize(n);
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- // create LCP object. note that tmp is set to delta_w to save space, this
|
|
|
|
- // optimization relies on knowledge of how tmp is used, so be careful!
|
|
|
|
- btLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,&scratchMem.L[0],&scratchMem.d[0],&scratchMem.Dell[0],&scratchMem.ell[0],&scratchMem.delta_w[0],&scratchMem.state[0],findex,&scratchMem.p[0],&scratchMem.C[0],&scratchMem.Arows[0]);
|
|
|
|
- int adj_nub = lcp.getNub();
|
|
|
|
-
|
|
|
|
- // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
|
|
|
|
- // LCP conditions then i is added to the appropriate index set. otherwise
|
|
|
|
- // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
|
|
|
|
- // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
|
|
|
|
- // while driving x(i) we maintain the LCP conditions on the other variables
|
|
|
|
- // 0..i-1. we do this by watching out for other x(i),w(i) values going
|
|
|
|
- // outside the valid region, and then switching them between index sets
|
|
|
|
- // when that happens.
|
|
|
|
-
|
|
|
|
- bool hit_first_friction_index = false;
|
|
|
|
- for (int i=adj_nub; i<n; ++i)
|
|
|
|
- {
|
|
|
|
- s_error = false;
|
|
|
|
- // the index i is the driving index and indexes i+1..n-1 are "dont care",
|
|
|
|
- // i.e. when we make changes to the system those x's will be zero and we
|
|
|
|
- // don't care what happens to those w's. in other words, we only consider
|
|
|
|
- // an (i+1)*(i+1) sub-problem of A*x=b+w.
|
|
|
|
-
|
|
|
|
- // if we've hit the first friction index, we have to compute the lo and
|
|
|
|
- // hi values based on the values of x already computed. we have been
|
|
|
|
- // permuting the indexes, so the values stored in the findex vector are
|
|
|
|
- // no longer valid. thus we have to temporarily unpermute the x vector.
|
|
|
|
- // for the purposes of this computation, 0*infinity = 0 ... so if the
|
|
|
|
- // contact constraint's normal force is 0, there should be no tangential
|
|
|
|
- // force applied.
|
|
|
|
-
|
|
|
|
- if (!hit_first_friction_index && findex && findex[i] >= 0) {
|
|
|
|
- // un-permute x into delta_w, which is not being used at the moment
|
|
|
|
- for (int j=0; j<n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
|
|
|
|
-
|
|
|
|
- // set lo and hi values
|
|
|
|
- for (int k=i; k<n; ++k) {
|
|
|
|
- btScalar wfk = scratchMem.delta_w[findex[k]];
|
|
|
|
- if (wfk == 0) {
|
|
|
|
- hi[k] = 0;
|
|
|
|
- lo[k] = 0;
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- hi[k] = btFabs (hi[k] * wfk);
|
|
|
|
- lo[k] = -hi[k];
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- hit_first_friction_index = true;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // thus far we have not even been computing the w values for indexes
|
|
|
|
- // greater than i, so compute w[i] now.
|
|
|
|
- w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i];
|
|
|
|
-
|
|
|
|
- // if lo=hi=0 (which can happen for tangential friction when normals are
|
|
|
|
- // 0) then the index will be assigned to set N with some state. however,
|
|
|
|
- // set C's line has zero size, so the index will always remain in set N.
|
|
|
|
- // with the "normal" switching logic, if w changed sign then the index
|
|
|
|
- // would have to switch to set C and then back to set N with an inverted
|
|
|
|
- // state. this is pointless, and also computationally expensive. to
|
|
|
|
- // prevent this from happening, we use the rule that indexes with lo=hi=0
|
|
|
|
- // will never be checked for set changes. this means that the state for
|
|
|
|
- // these indexes may be incorrect, but that doesn't matter.
|
|
|
|
-
|
|
|
|
- // see if x(i),w(i) is in a valid region
|
|
|
|
- if (lo[i]==0 && w[i] >= 0) {
|
|
|
|
- lcp.transfer_i_to_N (i);
|
|
|
|
- scratchMem.state[i] = false;
|
|
|
|
- }
|
|
|
|
- else if (hi[i]==0 && w[i] <= 0) {
|
|
|
|
- lcp.transfer_i_to_N (i);
|
|
|
|
- scratchMem.state[i] = true;
|
|
|
|
- }
|
|
|
|
- else if (w[i]==0) {
|
|
|
|
- // this is a degenerate case. by the time we get to this test we know
|
|
|
|
- // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
|
|
|
|
- // and similarly that hi > 0. this means that the line segment
|
|
|
|
- // corresponding to set C is at least finite in extent, and we are on it.
|
|
|
|
- // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
|
|
|
|
- lcp.solve1 (&scratchMem.delta_x[0],i,0,1);
|
|
|
|
-
|
|
|
|
- lcp.transfer_i_to_C (i);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- // we must push x(i) and w(i)
|
|
|
|
- for (;;) {
|
|
|
|
- int dir;
|
|
|
|
- btScalar dirf;
|
|
|
|
- // find direction to push on x(i)
|
|
|
|
- if (w[i] <= 0) {
|
|
|
|
- dir = 1;
|
|
|
|
- dirf = btScalar(1.0);
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- dir = -1;
|
|
|
|
- dirf = btScalar(-1.0);
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
|
|
|
|
- lcp.solve1 (&scratchMem.delta_x[0],i,dir);
|
|
|
|
-
|
|
|
|
- // note that delta_x[i] = dirf, but we wont bother to set it
|
|
|
|
-
|
|
|
|
- // compute: delta_w = A*delta_x ... note we only care about
|
|
|
|
- // delta_w(N) and delta_w(i), the rest is ignored
|
|
|
|
- lcp.pN_equals_ANC_times_qC (&scratchMem.delta_w[0],&scratchMem.delta_x[0]);
|
|
|
|
- lcp.pN_plusequals_ANi (&scratchMem.delta_w[0],i,dir);
|
|
|
|
- scratchMem.delta_w[i] = lcp.AiC_times_qC (i,&scratchMem.delta_x[0]) + lcp.Aii(i)*dirf;
|
|
|
|
-
|
|
|
|
- // find largest step we can take (size=s), either to drive x(i),w(i)
|
|
|
|
- // to the valid LCP region or to drive an already-valid variable
|
|
|
|
- // outside the valid region.
|
|
|
|
-
|
|
|
|
- int cmd = 1; // index switching command
|
|
|
|
- int si = 0; // si = index to switch if cmd>3
|
|
|
|
- btScalar s = -w[i]/scratchMem.delta_w[i];
|
|
|
|
- if (dir > 0) {
|
|
|
|
- if (hi[i] < BT_INFINITY) {
|
|
|
|
- btScalar s2 = (hi[i]-x[i])*dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
|
|
|
|
- if (s2 < s) {
|
|
|
|
- s = s2;
|
|
|
|
- cmd = 3;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- else {
|
|
|
|
- if (lo[i] > -BT_INFINITY) {
|
|
|
|
- btScalar s2 = (lo[i]-x[i])*dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
|
|
|
|
- if (s2 < s) {
|
|
|
|
- s = s2;
|
|
|
|
- cmd = 2;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
- const int numN = lcp.numN();
|
|
|
|
- for (int k=0; k < numN; ++k) {
|
|
|
|
- const int indexN_k = lcp.indexN(k);
|
|
|
|
- if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) {
|
|
|
|
- // don't bother checking if lo=hi=0
|
|
|
|
- if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
|
|
|
|
- btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
|
|
|
|
- if (s2 < s) {
|
|
|
|
- s = s2;
|
|
|
|
- cmd = 4;
|
|
|
|
- si = indexN_k;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- {
|
|
|
|
- const int numC = lcp.numC();
|
|
|
|
- for (int k=adj_nub; k < numC; ++k) {
|
|
|
|
- const int indexC_k = lcp.indexC(k);
|
|
|
|
- if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) {
|
|
|
|
- btScalar s2 = (lo[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
|
|
|
|
- if (s2 < s) {
|
|
|
|
- s = s2;
|
|
|
|
- cmd = 5;
|
|
|
|
- si = indexC_k;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) {
|
|
|
|
- btScalar s2 = (hi[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
|
|
|
|
- if (s2 < s) {
|
|
|
|
- s = s2;
|
|
|
|
- cmd = 6;
|
|
|
|
- si = indexC_k;
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
|
|
|
|
- // "C->NL","C->NH"};
|
|
|
|
- //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
|
|
|
|
-
|
|
|
|
- // if s <= 0 then we've got a problem. if we just keep going then
|
|
|
|
- // we're going to get stuck in an infinite loop. instead, just cross
|
|
|
|
- // our fingers and exit with the current solution.
|
|
|
|
- if (s <= btScalar(0.0))
|
|
|
|
- {
|
|
|
|
-// printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
|
|
|
|
- if (i < n) {
|
|
|
|
- btSetZero (x+i,n-i);
|
|
|
|
- btSetZero (w+i,n-i);
|
|
|
|
- }
|
|
|
|
- s_error = true;
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- // apply x = x + s * delta_x
|
|
|
|
- lcp.pC_plusequals_s_times_qC (x, s, &scratchMem.delta_x[0]);
|
|
|
|
- x[i] += s * dirf;
|
|
|
|
-
|
|
|
|
- // apply w = w + s * delta_w
|
|
|
|
- lcp.pN_plusequals_s_times_qN (w, s, &scratchMem.delta_w[0]);
|
|
|
|
- w[i] += s * scratchMem.delta_w[i];
|
|
|
|
-
|
|
|
|
-// void *tmpbuf;
|
|
|
|
- // switch indexes between sets if necessary
|
|
|
|
- switch (cmd) {
|
|
|
|
- case 1: // done
|
|
|
|
- w[i] = 0;
|
|
|
|
- lcp.transfer_i_to_C (i);
|
|
|
|
- break;
|
|
|
|
- case 2: // done
|
|
|
|
- x[i] = lo[i];
|
|
|
|
- scratchMem.state[i] = false;
|
|
|
|
- lcp.transfer_i_to_N (i);
|
|
|
|
- break;
|
|
|
|
- case 3: // done
|
|
|
|
- x[i] = hi[i];
|
|
|
|
- scratchMem.state[i] = true;
|
|
|
|
- lcp.transfer_i_to_N (i);
|
|
|
|
- break;
|
|
|
|
- case 4: // keep going
|
|
|
|
- w[si] = 0;
|
|
|
|
- lcp.transfer_i_from_N_to_C (si);
|
|
|
|
- break;
|
|
|
|
- case 5: // keep going
|
|
|
|
- x[si] = lo[si];
|
|
|
|
- scratchMem.state[si] = false;
|
|
|
|
- lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
|
|
|
|
- break;
|
|
|
|
- case 6: // keep going
|
|
|
|
- x[si] = hi[si];
|
|
|
|
- scratchMem.state[si] = true;
|
|
|
|
- lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- if (cmd <= 3) break;
|
|
|
|
- } // for (;;)
|
|
|
|
- } // else
|
|
|
|
-
|
|
|
|
- if (s_error)
|
|
|
|
- {
|
|
|
|
- break;
|
|
|
|
- }
|
|
|
|
- } // for (int i=adj_nub; i<n; ++i)
|
|
|
|
-
|
|
|
|
- lcp.unpermute();
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- return !s_error;
|
|
|
|
-}
|
|
|
|
-
|
|
|