12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994 |
- /**
- * Reverb for the OpenAL cross platform audio library
- * Copyright (C) 2008-2009 by Christopher Fitzgerald.
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Library General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Library General Public License for more details.
- *
- * You should have received a copy of the GNU Library General Public
- * License along with this library; if not, write to the
- * Free Software Foundation, Inc.,
- * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
- * Or go to http://www.gnu.org/copyleft/lgpl.html
- */
- #include "config.h"
- #include <stdio.h>
- #include <stdlib.h>
- #include <math.h>
- #include "alMain.h"
- #include "alu.h"
- #include "alAuxEffectSlot.h"
- #include "alEffect.h"
- #include "alFilter.h"
- #include "alError.h"
- #include "mixer_defs.h"
- /* This is the maximum number of samples processed for each inner loop
- * iteration. */
- #define MAX_UPDATE_SAMPLES 256
- static MixerFunc MixSamples = Mix_C;
- static RowMixerFunc MixRowSamples = MixRow_C;
- static alonce_flag mixfunc_inited = AL_ONCE_FLAG_INIT;
- static void init_mixfunc(void)
- {
- MixSamples = SelectMixer();
- MixRowSamples = SelectRowMixer();
- }
- typedef struct DelayLine
- {
- // The delay lines use sample lengths that are powers of 2 to allow the
- // use of bit-masking instead of a modulus for wrapping.
- ALuint Mask;
- ALfloat *Line;
- } DelayLine;
- typedef struct ALreverbState {
- DERIVE_FROM_TYPE(ALeffectState);
- ALboolean IsEax;
- // All delay lines are allocated as a single buffer to reduce memory
- // fragmentation and management code.
- ALfloat *SampleBuffer;
- ALuint TotalSamples;
- // Master effect filters
- struct {
- ALfilterState Lp;
- ALfilterState Hp; // EAX only
- } Filter[4];
- struct {
- // Modulator delay line.
- DelayLine Delay[4];
- // The vibrato time is tracked with an index over a modulus-wrapped
- // range (in samples).
- ALuint Index;
- ALuint Range;
- // The depth of frequency change (also in samples) and its filter.
- ALfloat Depth;
- ALfloat Coeff;
- ALfloat Filter;
- } Mod; // EAX only
- /* Core delay line (early reflections and late reverb tap from this). */
- DelayLine Delay;
- /* The tap points for the initial delay. First set go to early
- * reflections, second to late reverb.
- */
- ALuint EarlyDelayTap[4];
- ALuint LateDelayTap[4];
- struct {
- // Early reflections are done with 4 delay lines.
- ALfloat Coeff[4];
- DelayLine Delay[4];
- ALuint Offset[4];
- // The gain for each output channel based on 3D panning.
- ALfloat CurrentGain[4][MAX_OUTPUT_CHANNELS];
- ALfloat PanGain[4][MAX_OUTPUT_CHANNELS];
- } Early;
- struct {
- // Output gain for late reverb.
- ALfloat Gain;
- // Attenuation to compensate for the modal density and decay rate of
- // the late lines.
- ALfloat DensityGain;
- // The feed-back and feed-forward all-pass coefficient.
- ALfloat ApFeedCoeff;
- // Mixing matrix coefficient.
- ALfloat MixCoeff;
- // Late reverb has 4 parallel all-pass filters.
- struct {
- ALfloat Coeff;
- DelayLine Delay;
- ALuint Offset;
- } Ap[4];
- // In addition to 4 cyclical delay lines.
- ALfloat Coeff[4];
- DelayLine Delay[4];
- ALuint Offset[4];
- // The cyclical delay lines are 1-pole low-pass filtered.
- struct {
- ALfloat Sample;
- ALfloat Coeff;
- } Lp[4];
- // The gain for each output channel based on 3D panning.
- ALfloat CurrentGain[4][MAX_OUTPUT_CHANNELS];
- ALfloat PanGain[4][MAX_OUTPUT_CHANNELS];
- } Late;
- struct {
- // Attenuation to compensate for the modal density and decay rate of
- // the echo line.
- ALfloat DensityGain;
- // Echo delay and all-pass lines.
- struct {
- DelayLine Feedback;
- DelayLine Ap;
- } Delay[4];
- ALfloat Coeff;
- ALfloat ApFeedCoeff;
- ALfloat ApCoeff;
- ALuint Offset;
- ALuint ApOffset;
- // The echo line is 1-pole low-pass filtered.
- ALfloat LpCoeff;
- ALfloat LpSample[4];
- // Echo mixing coefficient.
- ALfloat MixCoeff;
- } Echo; // EAX only
- // The current read offset for all delay lines.
- ALuint Offset;
- /* Temporary storage used when processing. */
- alignas(16) ALfloat AFormatSamples[4][MAX_UPDATE_SAMPLES];
- alignas(16) ALfloat ReverbSamples[4][MAX_UPDATE_SAMPLES];
- alignas(16) ALfloat EarlySamples[4][MAX_UPDATE_SAMPLES];
- } ALreverbState;
- static ALvoid ALreverbState_Destruct(ALreverbState *State);
- static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device);
- static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot, const ALeffectProps *props);
- static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels);
- DECLARE_DEFAULT_ALLOCATORS(ALreverbState)
- DEFINE_ALEFFECTSTATE_VTABLE(ALreverbState);
- static void ALreverbState_Construct(ALreverbState *state)
- {
- ALuint index, l;
- ALeffectState_Construct(STATIC_CAST(ALeffectState, state));
- SET_VTABLE2(ALreverbState, ALeffectState, state);
- state->IsEax = AL_FALSE;
- state->TotalSamples = 0;
- state->SampleBuffer = NULL;
- for(index = 0;index < 4;index++)
- {
- ALfilterState_clear(&state->Filter[index].Lp);
- ALfilterState_clear(&state->Filter[index].Hp);
- state->Mod.Delay[index].Mask = 0;
- state->Mod.Delay[index].Line = NULL;
- }
- state->Mod.Index = 0;
- state->Mod.Range = 1;
- state->Mod.Depth = 0.0f;
- state->Mod.Coeff = 0.0f;
- state->Mod.Filter = 0.0f;
- state->Delay.Mask = 0;
- state->Delay.Line = NULL;
- for(index = 0;index < 4;index++)
- state->EarlyDelayTap[index] = 0;
- for(index = 0;index < 4;index++)
- state->LateDelayTap[index] = 0;
- for(index = 0;index < 4;index++)
- {
- state->Early.Coeff[index] = 0.0f;
- state->Early.Delay[index].Mask = 0;
- state->Early.Delay[index].Line = NULL;
- state->Early.Offset[index] = 0;
- }
- state->Late.Gain = 0.0f;
- state->Late.DensityGain = 0.0f;
- state->Late.ApFeedCoeff = 0.0f;
- state->Late.MixCoeff = 0.0f;
- for(index = 0;index < 4;index++)
- {
- state->Late.Ap[index].Coeff = 0.0f;
- state->Late.Ap[index].Delay.Mask = 0;
- state->Late.Ap[index].Delay.Line = NULL;
- state->Late.Ap[index].Offset = 0;
- state->Late.Coeff[index] = 0.0f;
- state->Late.Delay[index].Mask = 0;
- state->Late.Delay[index].Line = NULL;
- state->Late.Offset[index] = 0;
- state->Late.Lp[index].Sample = 0.0f;
- state->Late.Lp[index].Coeff = 0.0f;
- }
- for(l = 0;l < 4;l++)
- {
- for(index = 0;index < MAX_OUTPUT_CHANNELS;index++)
- {
- state->Early.CurrentGain[l][index] = 0.0f;
- state->Early.PanGain[l][index] = 0.0f;
- state->Late.CurrentGain[l][index] = 0.0f;
- state->Late.PanGain[l][index] = 0.0f;
- }
- }
- state->Echo.DensityGain = 0.0f;
- for(l = 0;l < 4;l++)
- {
- state->Echo.Delay[l].Feedback.Mask = 0;
- state->Echo.Delay[l].Feedback.Line = NULL;
- state->Echo.Delay[l].Ap.Mask = 0;
- state->Echo.Delay[l].Ap.Line = NULL;
- }
- state->Echo.Coeff = 0.0f;
- state->Echo.ApFeedCoeff = 0.0f;
- state->Echo.ApCoeff = 0.0f;
- state->Echo.Offset = 0;
- state->Echo.ApOffset = 0;
- state->Echo.LpCoeff = 0.0f;
- for(l = 0;l < 4;l++)
- state->Echo.LpSample[l] = 0.0f;
- state->Echo.MixCoeff = 0.0f;
- state->Offset = 0;
- }
- static ALvoid ALreverbState_Destruct(ALreverbState *State)
- {
- al_free(State->SampleBuffer);
- State->SampleBuffer = NULL;
- ALeffectState_Destruct(STATIC_CAST(ALeffectState,State));
- }
- /* This is a user config option for modifying the overall output of the reverb
- * effect.
- */
- ALfloat ReverbBoost = 1.0f;
- /* Specifies whether to use a standard reverb effect in place of EAX reverb (no
- * high-pass, modulation, or echo).
- */
- ALboolean EmulateEAXReverb = AL_FALSE;
- /* This coefficient is used to define the maximum frequency range controlled
- * by the modulation depth. The current value of 0.1 will allow it to swing
- * from 0.9x to 1.1x. This value must be below 1. At 1 it will cause the
- * sampler to stall on the downswing, and above 1 it will cause it to sample
- * backwards.
- */
- static const ALfloat MODULATION_DEPTH_COEFF = 0.1f;
- /* A filter is used to avoid the terrible distortion caused by changing
- * modulation time and/or depth. To be consistent across different sample
- * rates, the coefficient must be raised to a constant divided by the sample
- * rate: coeff^(constant / rate).
- */
- static const ALfloat MODULATION_FILTER_COEFF = 0.048f;
- static const ALfloat MODULATION_FILTER_CONST = 100000.0f;
- // When diffusion is above 0, an all-pass filter is used to take the edge off
- // the echo effect. It uses the following line length (in seconds).
- static const ALfloat ECHO_ALLPASS_LENGTH = 0.0133f;
- /* Input into the early reflections and late reverb are decorrelated between
- * four channels. Their timings are dependent on a fraction and multiplier. See
- * the UpdateDelayLine() routine for the calculations involved.
- */
- static const ALfloat DECO_FRACTION = 0.15f;
- static const ALfloat DECO_MULTIPLIER = 2.0f;
- // All delay line lengths are specified in seconds.
- // The lengths of the early delay lines.
- static const ALfloat EARLY_LINE_LENGTH[4] =
- {
- 0.0015f, 0.0045f, 0.0135f, 0.0405f
- };
- // The lengths of the late cyclical delay lines.
- static const ALfloat LATE_LINE_LENGTH[4] =
- {
- 0.0211f, 0.0311f, 0.0461f, 0.0680f
- };
- // The lengths of the late all-pass delay lines.
- static const ALfloat ALLPASS_LINE_LENGTH[4] =
- {
- 0.0151f, 0.0167f, 0.0183f, 0.0200f,
- };
- // The late cyclical delay lines have a variable length dependent on the
- // effect's density parameter (inverted for some reason) and this multiplier.
- static const ALfloat LATE_LINE_MULTIPLIER = 4.0f;
- #if defined(_WIN32) && !defined (_M_X64) && !defined(_M_ARM)
- /* HACK: Workaround for a modff bug in 32-bit Windows, which attempts to write
- * a 64-bit double to the 32-bit float parameter.
- */
- static inline float hack_modff(float x, float *y)
- {
- double di;
- double df = modf((double)x, &di);
- *y = (float)di;
- return (float)df;
- }
- #define modff hack_modff
- #endif
- /**************************************
- * Device Update *
- **************************************/
- // Given the allocated sample buffer, this function updates each delay line
- // offset.
- static inline ALvoid RealizeLineOffset(ALfloat *sampleBuffer, DelayLine *Delay)
- {
- Delay->Line = &sampleBuffer[(ptrdiff_t)Delay->Line];
- }
- // Calculate the length of a delay line and store its mask and offset.
- static ALuint CalcLineLength(ALfloat length, ptrdiff_t offset, ALuint frequency, ALuint extra, DelayLine *Delay)
- {
- ALuint samples;
- // All line lengths are powers of 2, calculated from their lengths, with
- // an additional sample in case of rounding errors.
- samples = fastf2u(length*frequency) + extra;
- samples = NextPowerOf2(samples + 1);
- // All lines share a single sample buffer.
- Delay->Mask = samples - 1;
- Delay->Line = (ALfloat*)offset;
- // Return the sample count for accumulation.
- return samples;
- }
- /* Calculates the delay line metrics and allocates the shared sample buffer
- * for all lines given the sample rate (frequency). If an allocation failure
- * occurs, it returns AL_FALSE.
- */
- static ALboolean AllocLines(ALuint frequency, ALreverbState *State)
- {
- ALuint totalSamples, index;
- ALfloat length;
- // All delay line lengths are calculated to accomodate the full range of
- // lengths given their respective paramters.
- totalSamples = 0;
- /* The modulator's line length is calculated from the maximum modulation
- * time and depth coefficient, and halfed for the low-to-high frequency
- * swing. An additional sample is added to keep it stable when there is no
- * modulation.
- */
- length = (AL_EAXREVERB_MAX_MODULATION_TIME*MODULATION_DEPTH_COEFF/2.0f);
- for(index = 0;index < 4;index++)
- totalSamples += CalcLineLength(length, totalSamples, frequency, 1,
- &State->Mod.Delay[index]);
- /* The initial delay is the sum of the reflections and late reverb delays.
- * The decorrelator length is calculated from the lowest reverb density (a
- * parameter value of 1). This must include space for storing a loop
- * update.
- */
- length = AL_EAXREVERB_MAX_REFLECTIONS_DELAY +
- AL_EAXREVERB_MAX_LATE_REVERB_DELAY;
- length += (DECO_FRACTION * DECO_MULTIPLIER * DECO_MULTIPLIER) *
- LATE_LINE_LENGTH[0] * (1.0f + LATE_LINE_MULTIPLIER);
- /* Multiply length by 4, since we're storing 4 interleaved channels in the
- * main delay line.
- */
- totalSamples += CalcLineLength(length*4, totalSamples, frequency,
- MAX_UPDATE_SAMPLES*4, &State->Delay);
- // The early reflection lines.
- for(index = 0;index < 4;index++)
- totalSamples += CalcLineLength(EARLY_LINE_LENGTH[index], totalSamples,
- frequency, 0, &State->Early.Delay[index]);
- // The late delay lines are calculated from the lowest reverb density.
- for(index = 0;index < 4;index++)
- {
- length = LATE_LINE_LENGTH[index] * (1.0f + LATE_LINE_MULTIPLIER);
- totalSamples += CalcLineLength(length, totalSamples, frequency, 0,
- &State->Late.Delay[index]);
- }
- // The late all-pass lines.
- for(index = 0;index < 4;index++)
- totalSamples += CalcLineLength(ALLPASS_LINE_LENGTH[index], totalSamples,
- frequency, 0, &State->Late.Ap[index].Delay);
- // The echo all-pass and delay lines.
- for(index = 0;index < 4;index++)
- {
- totalSamples += CalcLineLength(ECHO_ALLPASS_LENGTH, totalSamples,
- frequency, 0, &State->Echo.Delay[index].Ap);
- totalSamples += CalcLineLength(AL_EAXREVERB_MAX_ECHO_TIME, totalSamples,
- frequency, 0, &State->Echo.Delay[index].Feedback);
- }
- if(totalSamples != State->TotalSamples)
- {
- ALfloat *newBuffer;
- TRACE("New reverb buffer length: %u samples\n", totalSamples);
- newBuffer = al_calloc(16, sizeof(ALfloat) * totalSamples);
- if(!newBuffer) return AL_FALSE;
- al_free(State->SampleBuffer);
- State->SampleBuffer = newBuffer;
- State->TotalSamples = totalSamples;
- }
- // Update all delays to reflect the new sample buffer.
- RealizeLineOffset(State->SampleBuffer, &State->Delay);
- for(index = 0;index < 4;index++)
- {
- RealizeLineOffset(State->SampleBuffer, &State->Mod.Delay[index]);
- RealizeLineOffset(State->SampleBuffer, &State->Early.Delay[index]);
- RealizeLineOffset(State->SampleBuffer, &State->Late.Ap[index].Delay);
- RealizeLineOffset(State->SampleBuffer, &State->Late.Delay[index]);
- RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay[index].Ap);
- RealizeLineOffset(State->SampleBuffer, &State->Echo.Delay[index].Feedback);
- }
- // Clear the sample buffer.
- for(index = 0;index < State->TotalSamples;index++)
- State->SampleBuffer[index] = 0.0f;
- return AL_TRUE;
- }
- static ALboolean ALreverbState_deviceUpdate(ALreverbState *State, ALCdevice *Device)
- {
- ALuint frequency = Device->Frequency, index;
- // Allocate the delay lines.
- if(!AllocLines(frequency, State))
- return AL_FALSE;
- // Calculate the modulation filter coefficient. Notice that the exponent
- // is calculated given the current sample rate. This ensures that the
- // resulting filter response over time is consistent across all sample
- // rates.
- State->Mod.Coeff = powf(MODULATION_FILTER_COEFF,
- MODULATION_FILTER_CONST / frequency);
- // The early reflection and late all-pass filter line lengths are static,
- // so their offsets only need to be calculated once.
- for(index = 0;index < 4;index++)
- {
- State->Early.Offset[index] = fastf2u(EARLY_LINE_LENGTH[index] * frequency);
- State->Late.Ap[index].Offset = fastf2u(ALLPASS_LINE_LENGTH[index] * frequency);
- }
- // The echo all-pass filter line length is static, so its offset only
- // needs to be calculated once.
- State->Echo.ApOffset = fastf2u(ECHO_ALLPASS_LENGTH * frequency);
- return AL_TRUE;
- }
- /**************************************
- * Effect Update *
- **************************************/
- // Calculate a decay coefficient given the length of each cycle and the time
- // until the decay reaches -60 dB.
- static inline ALfloat CalcDecayCoeff(ALfloat length, ALfloat decayTime)
- {
- return powf(0.001f/*-60 dB*/, length/decayTime);
- }
- // Calculate a decay length from a coefficient and the time until the decay
- // reaches -60 dB.
- static inline ALfloat CalcDecayLength(ALfloat coeff, ALfloat decayTime)
- {
- return log10f(coeff) * decayTime / log10f(0.001f)/*-60 dB*/;
- }
- // Calculate an attenuation to be applied to the input of any echo models to
- // compensate for modal density and decay time.
- static inline ALfloat CalcDensityGain(ALfloat a)
- {
- /* The energy of a signal can be obtained by finding the area under the
- * squared signal. This takes the form of Sum(x_n^2), where x is the
- * amplitude for the sample n.
- *
- * Decaying feedback matches exponential decay of the form Sum(a^n),
- * where a is the attenuation coefficient, and n is the sample. The area
- * under this decay curve can be calculated as: 1 / (1 - a).
- *
- * Modifying the above equation to find the squared area under the curve
- * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
- * calculated by inverting the square root of this approximation,
- * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
- */
- return sqrtf(1.0f - (a * a));
- }
- // Calculate the mixing matrix coefficients given a diffusion factor.
- static inline ALvoid CalcMatrixCoeffs(ALfloat diffusion, ALfloat *x, ALfloat *y)
- {
- ALfloat n, t;
- // The matrix is of order 4, so n is sqrt (4 - 1).
- n = sqrtf(3.0f);
- t = diffusion * atanf(n);
- // Calculate the first mixing matrix coefficient.
- *x = cosf(t);
- // Calculate the second mixing matrix coefficient.
- *y = sinf(t) / n;
- }
- // Calculate the limited HF ratio for use with the late reverb low-pass
- // filters.
- static ALfloat CalcLimitedHfRatio(ALfloat hfRatio, ALfloat airAbsorptionGainHF, ALfloat decayTime)
- {
- ALfloat limitRatio;
- /* Find the attenuation due to air absorption in dB (converting delay
- * time to meters using the speed of sound). Then reversing the decay
- * equation, solve for HF ratio. The delay length is cancelled out of
- * the equation, so it can be calculated once for all lines.
- */
- limitRatio = 1.0f / (CalcDecayLength(airAbsorptionGainHF, decayTime) *
- SPEEDOFSOUNDMETRESPERSEC);
- /* Using the limit calculated above, apply the upper bound to the HF
- * ratio. Also need to limit the result to a minimum of 0.1, just like the
- * HF ratio parameter. */
- return clampf(limitRatio, 0.1f, hfRatio);
- }
- // Calculate the coefficient for a HF (and eventually LF) decay damping
- // filter.
- static inline ALfloat CalcDampingCoeff(ALfloat hfRatio, ALfloat length, ALfloat decayTime, ALfloat decayCoeff, ALfloat cw)
- {
- ALfloat coeff, g;
- // Eventually this should boost the high frequencies when the ratio
- // exceeds 1.
- coeff = 0.0f;
- if (hfRatio < 1.0f)
- {
- // Calculate the low-pass coefficient by dividing the HF decay
- // coefficient by the full decay coefficient.
- g = CalcDecayCoeff(length, decayTime * hfRatio) / decayCoeff;
- // Damping is done with a 1-pole filter, so g needs to be squared.
- g *= g;
- if(g < 0.9999f) /* 1-epsilon */
- {
- /* Be careful with gains < 0.001, as that causes the coefficient
- * head towards 1, which will flatten the signal. */
- g = maxf(g, 0.001f);
- coeff = (1 - g*cw - sqrtf(2*g*(1-cw) - g*g*(1 - cw*cw))) /
- (1 - g);
- }
- // Very low decay times will produce minimal output, so apply an
- // upper bound to the coefficient.
- coeff = minf(coeff, 0.98f);
- }
- return coeff;
- }
- // Update the EAX modulation index, range, and depth. Keep in mind that this
- // kind of vibrato is additive and not multiplicative as one may expect. The
- // downswing will sound stronger than the upswing.
- static ALvoid UpdateModulator(ALfloat modTime, ALfloat modDepth, ALuint frequency, ALreverbState *State)
- {
- ALuint range;
- /* Modulation is calculated in two parts.
- *
- * The modulation time effects the sinus applied to the change in
- * frequency. An index out of the current time range (both in samples)
- * is incremented each sample. The range is bound to a reasonable
- * minimum (1 sample) and when the timing changes, the index is rescaled
- * to the new range (to keep the sinus consistent).
- */
- range = maxu(fastf2u(modTime*frequency), 1);
- State->Mod.Index = (ALuint)(State->Mod.Index * (ALuint64)range /
- State->Mod.Range);
- State->Mod.Range = range;
- /* The modulation depth effects the amount of frequency change over the
- * range of the sinus. It needs to be scaled by the modulation time so
- * that a given depth produces a consistent change in frequency over all
- * ranges of time. Since the depth is applied to a sinus value, it needs
- * to be halfed once for the sinus range and again for the sinus swing
- * in time (half of it is spent decreasing the frequency, half is spent
- * increasing it).
- */
- State->Mod.Depth = modDepth * MODULATION_DEPTH_COEFF * modTime / 2.0f /
- 2.0f * frequency;
- }
- // Update the offsets for the main effect delay line.
- static ALvoid UpdateDelayLine(ALfloat earlyDelay, ALfloat lateDelay, ALfloat density, ALuint frequency, ALreverbState *State)
- {
- ALfloat length;
- ALuint i;
- /* The early reflections and late reverb inputs are decorrelated to provide
- * time-varying reflections, smooth out the reverb tail, and reduce harsh
- * echoes. The first tap occurs immediately, while the remaining taps are
- * delayed by multiples of a fraction of the smallest cyclical delay time.
- *
- * offset[index] = (FRACTION (MULTIPLIER^(index-1))) smallest_delay
- *
- * for index = 1...max_lines
- */
- State->EarlyDelayTap[0] = fastf2u(earlyDelay * frequency);
- for(i = 1;i < 4;i++)
- {
- length = (DECO_FRACTION * powf(DECO_MULTIPLIER, (ALfloat)i-1.0f)) *
- EARLY_LINE_LENGTH[0];
- State->EarlyDelayTap[i] = fastf2u(length * frequency) + State->EarlyDelayTap[0];
- }
- State->LateDelayTap[0] = fastf2u((earlyDelay + lateDelay) * frequency);
- for(i = 1;i < 4;i++)
- {
- length = (DECO_FRACTION * powf(DECO_MULTIPLIER, (ALfloat)i-1.0f)) *
- LATE_LINE_LENGTH[0] * (1.0f + (density * LATE_LINE_MULTIPLIER));
- State->LateDelayTap[i] = fastf2u(length * frequency) + State->LateDelayTap[0];
- }
- }
- // Update the early reflections mix and line coefficients.
- static ALvoid UpdateEarlyLines(ALfloat lateDelay, ALreverbState *State)
- {
- ALuint index;
- // Calculate the gain (coefficient) for each early delay line using the
- // late delay time. This expands the early reflections to the start of
- // the late reverb.
- for(index = 0;index < 4;index++)
- State->Early.Coeff[index] = CalcDecayCoeff(EARLY_LINE_LENGTH[index],
- lateDelay);
- }
- // Update the late reverb mix, line lengths, and line coefficients.
- static ALvoid UpdateLateLines(ALfloat xMix, ALfloat density, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
- {
- ALfloat length;
- ALuint index;
- /* Calculate the late reverb gain. Since the output is tapped prior to the
- * application of the next delay line coefficients, this gain needs to be
- * attenuated by the 'x' mixing matrix coefficient as well. Also attenuate
- * the late reverb when echo depth is high and diffusion is low, so the
- * echo is slightly stronger than the decorrelated echos in the reverb
- * tail.
- */
- State->Late.Gain = xMix * (1.0f - (echoDepth*0.5f*(1.0f - diffusion)));
- /* To compensate for changes in modal density and decay time of the late
- * reverb signal, the input is attenuated based on the maximal energy of
- * the outgoing signal. This approximation is used to keep the apparent
- * energy of the signal equal for all ranges of density and decay time.
- *
- * The average length of the cyclcical delay lines is used to calculate
- * the attenuation coefficient.
- */
- length = (LATE_LINE_LENGTH[0] + LATE_LINE_LENGTH[1] +
- LATE_LINE_LENGTH[2] + LATE_LINE_LENGTH[3]) / 4.0f;
- length *= 1.0f + (density * LATE_LINE_MULTIPLIER);
- /* To account for each channel being a discrete input, also multiply by
- * sqrt(num_channels).
- */
- State->Late.DensityGain = 2.0f * CalcDensityGain(
- CalcDecayCoeff(length, decayTime)
- );
- // Calculate the all-pass feed-back and feed-forward coefficient.
- State->Late.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
- for(index = 0;index < 4;index++)
- {
- // Calculate the gain (coefficient) for each all-pass line.
- State->Late.Ap[index].Coeff = CalcDecayCoeff(
- ALLPASS_LINE_LENGTH[index], decayTime
- );
- // Calculate the length (in seconds) of each cyclical delay line.
- length = LATE_LINE_LENGTH[index] *
- (1.0f + (density * LATE_LINE_MULTIPLIER));
- // Calculate the delay offset for each cyclical delay line.
- State->Late.Offset[index] = fastf2u(length * frequency);
- // Calculate the gain (coefficient) for each cyclical line.
- State->Late.Coeff[index] = CalcDecayCoeff(length, decayTime);
- // Calculate the damping coefficient for each low-pass filter.
- State->Late.Lp[index].Coeff = CalcDampingCoeff(
- hfRatio, length, decayTime, State->Late.Coeff[index], cw
- );
- // Attenuate the cyclical line coefficients by the mixing coefficient
- // (x).
- State->Late.Coeff[index] *= xMix;
- }
- }
- // Update the echo gain, line offset, line coefficients, and mixing
- // coefficients.
- static ALvoid UpdateEchoLine(ALfloat echoTime, ALfloat decayTime, ALfloat diffusion, ALfloat echoDepth, ALfloat hfRatio, ALfloat cw, ALuint frequency, ALreverbState *State)
- {
- // Update the offset and coefficient for the echo delay line.
- State->Echo.Offset = fastf2u(echoTime * frequency);
- // Calculate the decay coefficient for the echo line.
- State->Echo.Coeff = CalcDecayCoeff(echoTime, decayTime);
- // Calculate the energy-based attenuation coefficient for the echo delay
- // line.
- State->Echo.DensityGain = CalcDensityGain(State->Echo.Coeff);
- // Calculate the echo all-pass feed coefficient.
- State->Echo.ApFeedCoeff = 0.5f * powf(diffusion, 2.0f);
- // Calculate the echo all-pass attenuation coefficient.
- State->Echo.ApCoeff = CalcDecayCoeff(ECHO_ALLPASS_LENGTH, decayTime);
- // Calculate the damping coefficient for each low-pass filter.
- State->Echo.LpCoeff = CalcDampingCoeff(hfRatio, echoTime, decayTime,
- State->Echo.Coeff, cw);
- /* Calculate the echo mixing coefficient. This is applied to the output mix
- * only, not the feedback.
- */
- State->Echo.MixCoeff = echoDepth;
- }
- /* Creates a transform matrix given a reverb vector. This works by creating a
- * Z-focus transform, then a rotate transform around X, then Y, to place the
- * focal point in the direction of the vector, using the vector length as a
- * focus strength.
- *
- * This isn't technically correct since the vector is supposed to define the
- * aperture and not rotate the perceived soundfield, but in practice it's
- * probably good enough.
- */
- static aluMatrixf GetTransformFromVector(const ALfloat *vec)
- {
- aluMatrixf zfocus, xrot, yrot;
- aluMatrixf tmp1, tmp2;
- ALfloat length;
- ALfloat sa, a;
- length = sqrtf(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2]);
- /* Define a Z-focus (X in Ambisonics) transform, given the panning vector
- * length.
- */
- sa = sinf(minf(length, 1.0f) * (F_PI/4.0f));
- aluMatrixfSet(&zfocus,
- 1.0f/(1.0f+sa), 0.0f, 0.0f, (sa/(1.0f+sa))/1.732050808f,
- 0.0f, sqrtf((1.0f-sa)/(1.0f+sa)), 0.0f, 0.0f,
- 0.0f, 0.0f, sqrtf((1.0f-sa)/(1.0f+sa)), 0.0f,
- (sa/(1.0f+sa))*1.732050808f, 0.0f, 0.0f, 1.0f/(1.0f+sa)
- );
- /* Define rotation around X (Y in Ambisonics) */
- a = atan2f(vec[1], sqrtf(vec[0]*vec[0] + vec[2]*vec[2]));
- aluMatrixfSet(&xrot,
- 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, 1.0f, 0.0f, 0.0f,
- 0.0f, 0.0f, cosf(a), sinf(a),
- 0.0f, 0.0f, -sinf(a), cosf(a)
- );
- /* Define rotation around Y (Z in Ambisonics). NOTE: EFX's reverb vectors
- * use a right-handled coordinate system, compared to the rest of OpenAL
- * which uses left-handed. This is fixed by negating Z, however it would
- * need to also be negated to get a proper Ambisonics angle, thus
- * cancelling it out.
- */
- a = atan2f(-vec[0], vec[2]);
- aluMatrixfSet(&yrot,
- 1.0f, 0.0f, 0.0f, 0.0f,
- 0.0f, cosf(a), 0.0f, sinf(a),
- 0.0f, 0.0f, 1.0f, 0.0f,
- 0.0f, -sinf(a), 0.0f, cosf(a)
- );
- #define MATRIX_MULT(_res, _m1, _m2) do { \
- int row, col; \
- for(col = 0;col < 4;col++) \
- { \
- for(row = 0;row < 4;row++) \
- _res.m[row][col] = _m1.m[row][0]*_m2.m[0][col] + _m1.m[row][1]*_m2.m[1][col] + \
- _m1.m[row][2]*_m2.m[2][col] + _m1.m[row][3]*_m2.m[3][col]; \
- } \
- } while(0)
- /* Define a matrix that first focuses on Z, then rotates around X then Y to
- * focus the output in the direction of the vector.
- */
- MATRIX_MULT(tmp1, xrot, zfocus);
- MATRIX_MULT(tmp2, yrot, tmp1);
- #undef MATRIX_MULT
- return tmp2;
- }
- // Update the early and late 3D panning gains.
- static ALvoid Update3DPanning(const ALCdevice *Device, const ALfloat *ReflectionsPan, const ALfloat *LateReverbPan, ALfloat Gain, ALfloat EarlyGain, ALfloat LateGain, ALreverbState *State)
- {
- /* Converts early reflections A-Format to B-Format (transposed). */
- static const aluMatrixf EarlyA2B = {{
- { 0.8660254038f, 0.8660254038f, 0.8660254038f, 0.8660254038f },
- { 0.8660254038f, 0.8660254038f, -0.8660254038f, -0.8660254038f },
- { 0.8660254038f, -0.8660254038f, 0.8660254038f, -0.8660254038f },
- { 0.8660254038f, -0.8660254038f, -0.8660254038f, 0.8660254038f }
- }};
- /* Converts late reverb A-Format to B-Format (transposed). */
- static const aluMatrixf LateA2B = {{
- { 0.8660254038f, -0.8660254038f, 0.8660254038f, 0.8660254038f },
- { 0.8660254038f, -0.8660254038f, -0.8660254038f, -0.8660254038f },
- { 0.8660254038f, 0.8660254038f, 0.8660254038f, -0.8660254038f },
- { 0.8660254038f, 0.8660254038f, -0.8660254038f, 0.8660254038f }
- /* { 0.8660254038f, 1.2247448714f, 0.0f, 0.8660254038f },
- { 0.8660254038f, 0.0f, -1.2247448714f, -0.8660254038f },
- { 0.8660254038f, 0.0f, 1.2247448714f, -0.8660254038f },
- { 0.8660254038f, -1.2247448714f, 0.0f, 0.8660254038f }*/
- }};
- aluMatrixf transform, rot;
- ALuint i;
- STATIC_CAST(ALeffectState,State)->OutBuffer = Device->FOAOut.Buffer;
- STATIC_CAST(ALeffectState,State)->OutChannels = Device->FOAOut.NumChannels;
- /* Note: Both _m2 and _res are transposed. */
- #define MATRIX_MULT(_res, _m1, _m2) do { \
- int row, col; \
- for(col = 0;col < 4;col++) \
- { \
- for(row = 0;row < 4;row++) \
- _res.m[col][row] = _m1.m[row][0]*_m2.m[col][0] + _m1.m[row][1]*_m2.m[col][1] + \
- _m1.m[row][2]*_m2.m[col][2] + _m1.m[row][3]*_m2.m[col][3]; \
- } \
- } while(0)
- /* Create a matrix that first converts A-Format to B-Format, then rotates
- * the B-Format soundfield according to the panning vector.
- */
- rot = GetTransformFromVector(ReflectionsPan);
- MATRIX_MULT(transform, rot, EarlyA2B);
- memset(&State->Early.PanGain, 0, sizeof(State->Early.PanGain));
- for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
- ComputeFirstOrderGains(Device->FOAOut, transform.m[i], Gain*EarlyGain, State->Early.PanGain[i]);
- rot = GetTransformFromVector(LateReverbPan);
- MATRIX_MULT(transform, rot, LateA2B);
- memset(&State->Late.PanGain, 0, sizeof(State->Late.PanGain));
- for(i = 0;i < MAX_EFFECT_CHANNELS;i++)
- ComputeFirstOrderGains(Device->FOAOut, transform.m[i], Gain*LateGain, State->Late.PanGain[i]);
- #undef MATRIX_MULT
- }
- static ALvoid ALreverbState_update(ALreverbState *State, const ALCdevice *Device, const ALeffectslot *Slot, const ALeffectProps *props)
- {
- ALuint frequency = Device->Frequency;
- ALfloat lfscale, hfscale, hfRatio;
- ALfloat gain, gainlf, gainhf;
- ALfloat cw, x, y;
- ALuint i;
- if(Slot->Params.EffectType == AL_EFFECT_EAXREVERB && !EmulateEAXReverb)
- State->IsEax = AL_TRUE;
- else if(Slot->Params.EffectType == AL_EFFECT_REVERB || EmulateEAXReverb)
- State->IsEax = AL_FALSE;
- // Calculate the master filters
- hfscale = props->Reverb.HFReference / frequency;
- gainhf = maxf(props->Reverb.GainHF, 0.0001f);
- ALfilterState_setParams(&State->Filter[0].Lp, ALfilterType_HighShelf,
- gainhf, hfscale, calc_rcpQ_from_slope(gainhf, 0.75f));
- lfscale = props->Reverb.LFReference / frequency;
- gainlf = maxf(props->Reverb.GainLF, 0.0001f);
- ALfilterState_setParams(&State->Filter[0].Hp, ALfilterType_LowShelf,
- gainlf, lfscale, calc_rcpQ_from_slope(gainlf, 0.75f));
- for(i = 1;i < 4;i++)
- {
- State->Filter[i].Lp.a1 = State->Filter[0].Lp.a1;
- State->Filter[i].Lp.a2 = State->Filter[0].Lp.a2;
- State->Filter[i].Lp.b0 = State->Filter[0].Lp.b0;
- State->Filter[i].Lp.b1 = State->Filter[0].Lp.b1;
- State->Filter[i].Lp.b2 = State->Filter[0].Lp.b2;
- State->Filter[i].Hp.a1 = State->Filter[0].Hp.a1;
- State->Filter[i].Hp.a2 = State->Filter[0].Hp.a2;
- State->Filter[i].Hp.b0 = State->Filter[0].Hp.b0;
- State->Filter[i].Hp.b1 = State->Filter[0].Hp.b1;
- State->Filter[i].Hp.b2 = State->Filter[0].Hp.b2;
- }
- // Update the modulator line.
- UpdateModulator(props->Reverb.ModulationTime, props->Reverb.ModulationDepth,
- frequency, State);
- // Update the main effect delay.
- UpdateDelayLine(props->Reverb.ReflectionsDelay, props->Reverb.LateReverbDelay,
- props->Reverb.Density, frequency, State);
- // Update the early lines.
- UpdateEarlyLines(props->Reverb.LateReverbDelay, State);
- // Get the mixing matrix coefficients (x and y).
- CalcMatrixCoeffs(props->Reverb.Diffusion, &x, &y);
- // Then divide x into y to simplify the matrix calculation.
- State->Late.MixCoeff = y / x;
- // If the HF limit parameter is flagged, calculate an appropriate limit
- // based on the air absorption parameter.
- hfRatio = props->Reverb.DecayHFRatio;
- if(props->Reverb.DecayHFLimit && props->Reverb.AirAbsorptionGainHF < 1.0f)
- hfRatio = CalcLimitedHfRatio(hfRatio, props->Reverb.AirAbsorptionGainHF,
- props->Reverb.DecayTime);
- cw = cosf(F_TAU * hfscale);
- // Update the late lines.
- UpdateLateLines(x, props->Reverb.Density, props->Reverb.DecayTime,
- props->Reverb.Diffusion, props->Reverb.EchoDepth,
- hfRatio, cw, frequency, State);
- // Update the echo line.
- UpdateEchoLine(props->Reverb.EchoTime, props->Reverb.DecayTime,
- props->Reverb.Diffusion, props->Reverb.EchoDepth,
- hfRatio, cw, frequency, State);
- gain = props->Reverb.Gain * Slot->Params.Gain * ReverbBoost;
- // Update early and late 3D panning.
- Update3DPanning(Device, props->Reverb.ReflectionsPan,
- props->Reverb.LateReverbPan, gain,
- props->Reverb.ReflectionsGain,
- props->Reverb.LateReverbGain, State);
- }
- /**************************************
- * Effect Processing *
- **************************************/
- // Basic delay line input/output routines.
- static inline ALfloat DelayLineOut(DelayLine *Delay, ALuint offset)
- {
- return Delay->Line[offset&Delay->Mask];
- }
- static inline ALvoid DelayLineIn(DelayLine *Delay, ALuint offset, ALfloat in)
- {
- Delay->Line[offset&Delay->Mask] = in;
- }
- static inline ALfloat DelayLineInOut(DelayLine *Delay, ALuint offset, ALuint outoffset, ALfloat in)
- {
- Delay->Line[offset&Delay->Mask] = in;
- return Delay->Line[(offset-outoffset)&Delay->Mask];
- }
- static void CalcModulationDelays(ALreverbState *State, ALfloat *restrict delays, ALuint todo)
- {
- ALfloat sinus, range;
- ALuint index, i;
- index = State->Mod.Index;
- range = State->Mod.Filter;
- for(i = 0;i < todo;i++)
- {
- /* Calculate the sinus rythm (dependent on modulation time and the
- * sampling rate). The center of the sinus is moved to reduce the
- * delay of the effect when the time or depth are low.
- */
- sinus = 1.0f - cosf(F_TAU * index / State->Mod.Range);
- /* Step the modulation index forward, keeping it bound to its range. */
- index = (index+1) % State->Mod.Range;
- /* The depth determines the range over which to read the input samples
- * from, so it must be filtered to reduce the distortion caused by even
- * small parameter changes.
- */
- range = lerp(range, State->Mod.Depth, State->Mod.Coeff);
- /* Calculate the read offset with fraction. */
- delays[i] = range*sinus;
- }
- State->Mod.Index = index;
- State->Mod.Filter = range;
- }
- // Given some input samples, this function produces modulation for the late
- // reverb.
- static void EAXModulation(DelayLine *ModDelay, ALuint offset, const ALfloat *restrict delays, ALfloat*restrict dst, const ALfloat*restrict src, ALuint todo)
- {
- ALfloat frac, fdelay;
- ALfloat out0, out1;
- ALuint delay, i;
- for(i = 0;i < todo;i++)
- {
- /* Separate the integer offset and fraction between it and the next
- * sample.
- */
- frac = modff(delays[i], &fdelay);
- delay = fastf2u(fdelay);
- /* Add the incoming sample to the delay line, and get the two samples
- * crossed by the offset delay.
- */
- out0 = DelayLineInOut(ModDelay, offset, delay, src[i]);
- out1 = DelayLineOut(ModDelay, offset - delay - 1);
- offset++;
- /* The output is obtained by linearly interpolating the two samples
- * that were acquired above.
- */
- dst[i] = lerp(out0, out1, frac);
- }
- }
- /* Given some input samples from the main delay line, this function produces
- * four-channel outputs for the early reflections.
- */
- static ALvoid EarlyReflection(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES])
- {
- ALfloat d[4], v, f[4];
- ALuint i;
- for(i = 0;i < todo;i++)
- {
- ALuint offset = State->Offset+i;
- /* Obtain the first reflection samples from the main delay line. */
- f[0] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[0])*4 + 0);
- f[1] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[1])*4 + 1);
- f[2] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[2])*4 + 2);
- f[3] = DelayLineOut(&State->Delay, (offset-State->EarlyDelayTap[3])*4 + 3);
- /* The following uses a lossless scattering junction from waveguide
- * theory. It actually amounts to a householder mixing matrix, which
- * will produce a maximally diffuse response, and means this can
- * probably be considered a simple feed-back delay network (FDN).
- * N
- * ---
- * \
- * v = 2/N / d_i
- * ---
- * i=1
- */
- v = (f[0] + f[1] + f[2] + f[3]) * 0.5f;
- /* Calculate the feed values for the early delay lines. */
- d[0] = v - f[0];
- d[1] = v - f[1];
- d[2] = v - f[2];
- d[3] = v - f[3];
- /* Feed the early delay lines, and load the delayed results. */
- d[0] = DelayLineInOut(&State->Early.Delay[0], offset, State->Early.Offset[0], d[0]);
- d[1] = DelayLineInOut(&State->Early.Delay[1], offset, State->Early.Offset[1], d[1]);
- d[2] = DelayLineInOut(&State->Early.Delay[2], offset, State->Early.Offset[2], d[2]);
- d[3] = DelayLineInOut(&State->Early.Delay[3], offset, State->Early.Offset[3], d[3]);
- /* Output the initial reflection taps and the results of the delayed
- * and decayed junction for all four channels.
- */
- out[0][i] = f[0] + d[0]*State->Early.Coeff[0];
- out[1][i] = f[1] + d[1]*State->Early.Coeff[1];
- out[2][i] = f[2] + d[2]*State->Early.Coeff[2];
- out[3][i] = f[3] + d[3]*State->Early.Coeff[3];
- }
- }
- // Basic attenuated all-pass input/output routine.
- static inline ALfloat AllpassInOut(DelayLine *Delay, ALuint outOffset, ALuint inOffset, ALfloat in, ALfloat feedCoeff, ALfloat coeff)
- {
- ALfloat out, feed;
- out = DelayLineOut(Delay, outOffset);
- feed = feedCoeff * in;
- DelayLineIn(Delay, inOffset, (feedCoeff * (out - feed)) + in);
- // The time-based attenuation is only applied to the delay output to
- // keep it from affecting the feed-back path (which is already controlled
- // by the all-pass feed coefficient).
- return (coeff * out) - feed;
- }
- // All-pass input/output routine for late reverb.
- static inline ALfloat LateAllPassInOut(ALreverbState *State, ALuint offset, ALuint index, ALfloat in)
- {
- return AllpassInOut(&State->Late.Ap[index].Delay,
- offset - State->Late.Ap[index].Offset,
- offset, in, State->Late.ApFeedCoeff,
- State->Late.Ap[index].Coeff);
- }
- // Low-pass filter input/output routine for late reverb.
- static inline ALfloat LateLowPassInOut(ALreverbState *State, ALuint index, ALfloat in)
- {
- in = lerp(in, State->Late.Lp[index].Sample, State->Late.Lp[index].Coeff);
- State->Late.Lp[index].Sample = in;
- return in;
- }
- // Given four decorrelated input samples, this function produces four-channel
- // output for the late reverb.
- static ALvoid LateReverb(ALreverbState *State, ALuint todo, ALfloat (*restrict out)[MAX_UPDATE_SAMPLES])
- {
- ALfloat d[4], f[4];
- ALuint offset;
- ALuint base, i;
- offset = State->Offset;
- for(base = 0;base < todo;)
- {
- ALfloat tmp[MAX_UPDATE_SAMPLES/4][4];
- ALuint tmp_todo = minu(todo, MAX_UPDATE_SAMPLES/4);
- for(i = 0;i < tmp_todo;i++)
- {
- /* Obtain four decorrelated input samples. */
- f[0] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[0])*4 + 0) * State->Late.DensityGain;
- f[1] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[1])*4 + 1) * State->Late.DensityGain;
- f[2] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[2])*4 + 2) * State->Late.DensityGain;
- f[3] = DelayLineOut(&State->Delay, (offset-State->LateDelayTap[3])*4 + 3) * State->Late.DensityGain;
- /* Add the decayed results of the cyclical delay lines, then pass
- * the results through the low-pass filters.
- */
- f[0] += DelayLineOut(&State->Late.Delay[0], offset-State->Late.Offset[0]) * State->Late.Coeff[0];
- f[1] += DelayLineOut(&State->Late.Delay[1], offset-State->Late.Offset[1]) * State->Late.Coeff[1];
- f[2] += DelayLineOut(&State->Late.Delay[2], offset-State->Late.Offset[2]) * State->Late.Coeff[2];
- f[3] += DelayLineOut(&State->Late.Delay[3], offset-State->Late.Offset[3]) * State->Late.Coeff[3];
- /* This is where the feed-back cycles from line 0 to 3 to 1 to 2
- * and back to 0.
- */
- d[0] = LateLowPassInOut(State, 2, f[2]);
- d[1] = LateLowPassInOut(State, 3, f[3]);
- d[2] = LateLowPassInOut(State, 1, f[1]);
- d[3] = LateLowPassInOut(State, 0, f[0]);
- /* To help increase diffusion, run each line through an all-pass
- * filter. When there is no diffusion, the shortest all-pass filter
- * will feed the shortest delay line.
- */
- d[0] = LateAllPassInOut(State, offset, 0, d[0]);
- d[1] = LateAllPassInOut(State, offset, 1, d[1]);
- d[2] = LateAllPassInOut(State, offset, 2, d[2]);
- d[3] = LateAllPassInOut(State, offset, 3, d[3]);
- /* Late reverb is done with a modified feed-back delay network (FDN)
- * topology. Four input lines are each fed through their own all-pass
- * filter and then into the mixing matrix. The four outputs of the
- * mixing matrix are then cycled back to the inputs. Each output feeds
- * a different input to form a circlular feed cycle.
- *
- * The mixing matrix used is a 4D skew-symmetric rotation matrix
- * derived using a single unitary rotational parameter:
- *
- * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
- * [ -a, d, c, -b ]
- * [ -b, -c, d, a ]
- * [ -c, b, -a, d ]
- *
- * The rotation is constructed from the effect's diffusion parameter,
- * yielding: 1 = x^2 + 3 y^2; where a, b, and c are the coefficient y
- * with differing signs, and d is the coefficient x. The matrix is
- * thus:
- *
- * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
- * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
- * [ y, -y, x, y ] x = cos(t)
- * [ -y, -y, -y, x ] y = sin(t) / n
- *
- * To reduce the number of multiplies, the x coefficient is applied
- * with the cyclical delay line coefficients. Thus only the y
- * coefficient is applied when mixing, and is modified to be: y / x.
- */
- f[0] = d[0] + (State->Late.MixCoeff * ( d[1] + -d[2] + d[3]));
- f[1] = d[1] + (State->Late.MixCoeff * (-d[0] + d[2] + d[3]));
- f[2] = d[2] + (State->Late.MixCoeff * ( d[0] + -d[1] + d[3]));
- f[3] = d[3] + (State->Late.MixCoeff * (-d[0] + -d[1] + -d[2] ));
- /* Re-feed the cyclical delay lines. */
- DelayLineIn(&State->Late.Delay[0], offset, f[0]);
- DelayLineIn(&State->Late.Delay[1], offset, f[1]);
- DelayLineIn(&State->Late.Delay[2], offset, f[2]);
- DelayLineIn(&State->Late.Delay[3], offset, f[3]);
- offset++;
- /* Output the results of the matrix for all four channels,
- * attenuated by the late reverb gain (which is attenuated by the
- * 'x' mix coefficient).
- */
- tmp[i][0] = State->Late.Gain * f[0];
- tmp[i][1] = State->Late.Gain * f[1];
- tmp[i][2] = State->Late.Gain * f[2];
- tmp[i][3] = State->Late.Gain * f[3];
- }
- /* Deinterlace to output */
- for(i = 0;i < tmp_todo;i++) out[0][base+i] = tmp[i][0];
- for(i = 0;i < tmp_todo;i++) out[1][base+i] = tmp[i][1];
- for(i = 0;i < tmp_todo;i++) out[2][base+i] = tmp[i][2];
- for(i = 0;i < tmp_todo;i++) out[3][base+i] = tmp[i][3];
- base += tmp_todo;
- }
- }
- // Given an input sample, this function mixes echo into the four-channel late
- // reverb.
- static ALvoid EAXEcho(ALreverbState *State, ALuint todo, ALfloat (*restrict late)[MAX_UPDATE_SAMPLES])
- {
- ALfloat feed;
- ALuint offset;
- ALuint c, i;
- for(c = 0;c < 4;c++)
- {
- offset = State->Offset;
- for(i = 0;i < todo;i++)
- {
- // Get the latest attenuated echo sample for output.
- feed = DelayLineOut(&State->Echo.Delay[c].Feedback, offset-State->Echo.Offset) *
- State->Echo.Coeff;
- // Write the output.
- late[c][i] += State->Echo.MixCoeff * feed;
- // Mix the energy-attenuated input with the output and pass it through
- // the echo low-pass filter.
- feed += DelayLineOut(&State->Delay, (offset-State->LateDelayTap[0])*4 + c) *
- State->Echo.DensityGain;
- feed = lerp(feed, State->Echo.LpSample[c], State->Echo.LpCoeff);
- State->Echo.LpSample[c] = feed;
- // Then the echo all-pass filter.
- feed = AllpassInOut(&State->Echo.Delay[c].Ap, offset-State->Echo.ApOffset,
- offset, feed, State->Echo.ApFeedCoeff,
- State->Echo.ApCoeff);
- // Feed the delay with the mixed and filtered sample.
- DelayLineIn(&State->Echo.Delay[c].Feedback, offset, feed);
- offset++;
- }
- }
- }
- // Perform the non-EAX reverb pass on a given input sample, resulting in
- // four-channel output.
- static ALvoid VerbPass(ALreverbState *State, ALuint todo, ALfloat (*restrict input)[MAX_UPDATE_SAMPLES], ALfloat (*restrict early)[MAX_UPDATE_SAMPLES], ALfloat (*restrict late)[MAX_UPDATE_SAMPLES])
- {
- ALuint i, c;
- for(c = 0;c < 4;c++)
- {
- /* Low-pass filter the incoming samples (use the early buffer as temp
- * storage).
- */
- ALfilterState_process(&State->Filter[c].Lp, &early[0][0], input[c], todo);
- for(i = 0;i < todo;i++)
- DelayLineIn(&State->Delay, (State->Offset+i)*4 + c, early[0][i]);
- }
- // Calculate the early reflection from the first delay tap.
- EarlyReflection(State, todo, early);
- // Calculate the late reverb from the decorrelator taps.
- LateReverb(State, todo, late);
- // Step all delays forward one sample.
- State->Offset += todo;
- }
- // Perform the EAX reverb pass on a given input sample, resulting in four-
- // channel output.
- static ALvoid EAXVerbPass(ALreverbState *State, ALuint todo, ALfloat (*restrict input)[MAX_UPDATE_SAMPLES], ALfloat (*restrict early)[MAX_UPDATE_SAMPLES], ALfloat (*restrict late)[MAX_UPDATE_SAMPLES])
- {
- ALuint i, c;
- /* Perform any modulation on the input (use the early and late buffers as
- * temp storage).
- */
- CalcModulationDelays(State, &late[0][0], todo);
- for(c = 0;c < 4;c++)
- {
- EAXModulation(&State->Mod.Delay[c], State->Offset, &late[0][0],
- &early[0][0], input[c], todo);
- /* Band-pass the incoming samples */
- ALfilterState_process(&State->Filter[c].Lp, &early[1][0], &early[0][0], todo);
- ALfilterState_process(&State->Filter[c].Hp, &early[2][0], &early[1][0], todo);
- /* Feed the initial delay line. */
- for(i = 0;i < todo;i++)
- DelayLineIn(&State->Delay, (State->Offset+i)*4 + c, early[2][i]);
- }
- // Calculate the early reflection from the first delay tap.
- EarlyReflection(State, todo, early);
- // Calculate the late reverb from the decorrelator taps.
- LateReverb(State, todo, late);
- // Calculate and mix in any echo.
- EAXEcho(State, todo, late);
- // Step all delays forward.
- State->Offset += todo;
- }
- static ALvoid ALreverbState_processStandard(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
- {
- static const aluMatrixf B2A = {{
- { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f },
- { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f },
- { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f },
- { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f }
- }};
- ALfloat (*restrict afmt)[MAX_UPDATE_SAMPLES] = State->AFormatSamples;
- ALfloat (*restrict early)[MAX_UPDATE_SAMPLES] = State->EarlySamples;
- ALfloat (*restrict late)[MAX_UPDATE_SAMPLES] = State->ReverbSamples;
- ALuint base, c;
- /* Process reverb for these samples. */
- for(base = 0;base < SamplesToDo;)
- {
- ALuint todo = minu(SamplesToDo-base, MAX_UPDATE_SAMPLES);
- /* Convert B-Foramt to A-Format for processing. */
- memset(afmt, 0, sizeof(*afmt)*4);
- for(c = 0;c < 4;c++)
- MixRowSamples(afmt[c], B2A.m[c],
- SamplesIn, MAX_EFFECT_CHANNELS, base, todo
- );
- VerbPass(State, todo, afmt, early, late);
- /* Mix the A-Format results to output, implicitly converting back to
- * B-Format.
- */
- for(c = 0;c < 4;c++)
- MixSamples(early[c], NumChannels, SamplesOut,
- State->Early.CurrentGain[c], State->Early.PanGain[c],
- SamplesToDo-base, base, todo
- );
- for(c = 0;c < 4;c++)
- MixSamples(late[c], NumChannels, SamplesOut,
- State->Late.CurrentGain[c], State->Late.PanGain[c],
- SamplesToDo-base, base, todo
- );
- base += todo;
- }
- }
- static ALvoid ALreverbState_processEax(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
- {
- static const aluMatrixf B2A = {{
- { 0.288675134595f, 0.288675134595f, 0.288675134595f, 0.288675134595f },
- { 0.288675134595f, 0.288675134595f, -0.288675134595f, -0.288675134595f },
- { 0.288675134595f, -0.288675134595f, 0.288675134595f, -0.288675134595f },
- { 0.288675134595f, -0.288675134595f, -0.288675134595f, 0.288675134595f }
- }};
- ALfloat (*restrict afmt)[MAX_UPDATE_SAMPLES] = State->AFormatSamples;
- ALfloat (*restrict early)[MAX_UPDATE_SAMPLES] = State->EarlySamples;
- ALfloat (*restrict late)[MAX_UPDATE_SAMPLES] = State->ReverbSamples;
- ALuint base, c;
- /* Process reverb for these samples. */
- for(base = 0;base < SamplesToDo;)
- {
- ALuint todo = minu(SamplesToDo-base, MAX_UPDATE_SAMPLES);
- memset(afmt, 0, 4*MAX_UPDATE_SAMPLES*sizeof(float));
- for(c = 0;c < 4;c++)
- MixRowSamples(afmt[c], B2A.m[c],
- SamplesIn, MAX_EFFECT_CHANNELS, base, todo
- );
- EAXVerbPass(State, todo, afmt, early, late);
- for(c = 0;c < 4;c++)
- MixSamples(early[c], NumChannels, SamplesOut,
- State->Early.CurrentGain[c], State->Early.PanGain[c],
- SamplesToDo-base, base, todo
- );
- for(c = 0;c < 4;c++)
- MixSamples(late[c], NumChannels, SamplesOut,
- State->Late.CurrentGain[c], State->Late.PanGain[c],
- SamplesToDo-base, base, todo
- );
- base += todo;
- }
- }
- static ALvoid ALreverbState_process(ALreverbState *State, ALuint SamplesToDo, const ALfloat (*restrict SamplesIn)[BUFFERSIZE], ALfloat (*restrict SamplesOut)[BUFFERSIZE], ALuint NumChannels)
- {
- if(State->IsEax)
- ALreverbState_processEax(State, SamplesToDo, SamplesIn, SamplesOut, NumChannels);
- else
- ALreverbState_processStandard(State, SamplesToDo, SamplesIn, SamplesOut, NumChannels);
- }
- typedef struct ALreverbStateFactory {
- DERIVE_FROM_TYPE(ALeffectStateFactory);
- } ALreverbStateFactory;
- static ALeffectState *ALreverbStateFactory_create(ALreverbStateFactory* UNUSED(factory))
- {
- ALreverbState *state;
- alcall_once(&mixfunc_inited, init_mixfunc);
- NEW_OBJ0(state, ALreverbState)();
- if(!state) return NULL;
- return STATIC_CAST(ALeffectState, state);
- }
- DEFINE_ALEFFECTSTATEFACTORY_VTABLE(ALreverbStateFactory);
- ALeffectStateFactory *ALreverbStateFactory_getFactory(void)
- {
- static ALreverbStateFactory ReverbFactory = { { GET_VTABLE2(ALreverbStateFactory, ALeffectStateFactory) } };
- return STATIC_CAST(ALeffectStateFactory, &ReverbFactory);
- }
- void ALeaxreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
- {
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DECAY_HFLIMIT:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_HFLIMIT && val <= AL_EAXREVERB_MAX_DECAY_HFLIMIT))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.DecayHFLimit = val;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALeaxreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
- {
- ALeaxreverb_setParami(effect, context, param, vals[0]);
- }
- void ALeaxreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
- {
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DENSITY:
- if(!(val >= AL_EAXREVERB_MIN_DENSITY && val <= AL_EAXREVERB_MAX_DENSITY))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.Density = val;
- break;
- case AL_EAXREVERB_DIFFUSION:
- if(!(val >= AL_EAXREVERB_MIN_DIFFUSION && val <= AL_EAXREVERB_MAX_DIFFUSION))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.Diffusion = val;
- break;
- case AL_EAXREVERB_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_GAIN && val <= AL_EAXREVERB_MAX_GAIN))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.Gain = val;
- break;
- case AL_EAXREVERB_GAINHF:
- if(!(val >= AL_EAXREVERB_MIN_GAINHF && val <= AL_EAXREVERB_MAX_GAINHF))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.GainHF = val;
- break;
- case AL_EAXREVERB_GAINLF:
- if(!(val >= AL_EAXREVERB_MIN_GAINLF && val <= AL_EAXREVERB_MAX_GAINLF))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.GainLF = val;
- break;
- case AL_EAXREVERB_DECAY_TIME:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_TIME && val <= AL_EAXREVERB_MAX_DECAY_TIME))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.DecayTime = val;
- break;
- case AL_EAXREVERB_DECAY_HFRATIO:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_HFRATIO && val <= AL_EAXREVERB_MAX_DECAY_HFRATIO))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.DecayHFRatio = val;
- break;
- case AL_EAXREVERB_DECAY_LFRATIO:
- if(!(val >= AL_EAXREVERB_MIN_DECAY_LFRATIO && val <= AL_EAXREVERB_MAX_DECAY_LFRATIO))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.DecayLFRatio = val;
- break;
- case AL_EAXREVERB_REFLECTIONS_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_GAIN && val <= AL_EAXREVERB_MAX_REFLECTIONS_GAIN))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.ReflectionsGain = val;
- break;
- case AL_EAXREVERB_REFLECTIONS_DELAY:
- if(!(val >= AL_EAXREVERB_MIN_REFLECTIONS_DELAY && val <= AL_EAXREVERB_MAX_REFLECTIONS_DELAY))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.ReflectionsDelay = val;
- break;
- case AL_EAXREVERB_LATE_REVERB_GAIN:
- if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_GAIN && val <= AL_EAXREVERB_MAX_LATE_REVERB_GAIN))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.LateReverbGain = val;
- break;
- case AL_EAXREVERB_LATE_REVERB_DELAY:
- if(!(val >= AL_EAXREVERB_MIN_LATE_REVERB_DELAY && val <= AL_EAXREVERB_MAX_LATE_REVERB_DELAY))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.LateReverbDelay = val;
- break;
- case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
- if(!(val >= AL_EAXREVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_EAXREVERB_MAX_AIR_ABSORPTION_GAINHF))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.AirAbsorptionGainHF = val;
- break;
- case AL_EAXREVERB_ECHO_TIME:
- if(!(val >= AL_EAXREVERB_MIN_ECHO_TIME && val <= AL_EAXREVERB_MAX_ECHO_TIME))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.EchoTime = val;
- break;
- case AL_EAXREVERB_ECHO_DEPTH:
- if(!(val >= AL_EAXREVERB_MIN_ECHO_DEPTH && val <= AL_EAXREVERB_MAX_ECHO_DEPTH))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.EchoDepth = val;
- break;
- case AL_EAXREVERB_MODULATION_TIME:
- if(!(val >= AL_EAXREVERB_MIN_MODULATION_TIME && val <= AL_EAXREVERB_MAX_MODULATION_TIME))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.ModulationTime = val;
- break;
- case AL_EAXREVERB_MODULATION_DEPTH:
- if(!(val >= AL_EAXREVERB_MIN_MODULATION_DEPTH && val <= AL_EAXREVERB_MAX_MODULATION_DEPTH))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.ModulationDepth = val;
- break;
- case AL_EAXREVERB_HFREFERENCE:
- if(!(val >= AL_EAXREVERB_MIN_HFREFERENCE && val <= AL_EAXREVERB_MAX_HFREFERENCE))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.HFReference = val;
- break;
- case AL_EAXREVERB_LFREFERENCE:
- if(!(val >= AL_EAXREVERB_MIN_LFREFERENCE && val <= AL_EAXREVERB_MAX_LFREFERENCE))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.LFReference = val;
- break;
- case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
- if(!(val >= AL_EAXREVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_EAXREVERB_MAX_ROOM_ROLLOFF_FACTOR))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.RoomRolloffFactor = val;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALeaxreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
- {
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_REFLECTIONS_PAN:
- if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.ReflectionsPan[0] = vals[0];
- props->Reverb.ReflectionsPan[1] = vals[1];
- props->Reverb.ReflectionsPan[2] = vals[2];
- break;
- case AL_EAXREVERB_LATE_REVERB_PAN:
- if(!(isfinite(vals[0]) && isfinite(vals[1]) && isfinite(vals[2])))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.LateReverbPan[0] = vals[0];
- props->Reverb.LateReverbPan[1] = vals[1];
- props->Reverb.LateReverbPan[2] = vals[2];
- break;
- default:
- ALeaxreverb_setParamf(effect, context, param, vals[0]);
- break;
- }
- }
- void ALeaxreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
- {
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DECAY_HFLIMIT:
- *val = props->Reverb.DecayHFLimit;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALeaxreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
- {
- ALeaxreverb_getParami(effect, context, param, vals);
- }
- void ALeaxreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
- {
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_DENSITY:
- *val = props->Reverb.Density;
- break;
- case AL_EAXREVERB_DIFFUSION:
- *val = props->Reverb.Diffusion;
- break;
- case AL_EAXREVERB_GAIN:
- *val = props->Reverb.Gain;
- break;
- case AL_EAXREVERB_GAINHF:
- *val = props->Reverb.GainHF;
- break;
- case AL_EAXREVERB_GAINLF:
- *val = props->Reverb.GainLF;
- break;
- case AL_EAXREVERB_DECAY_TIME:
- *val = props->Reverb.DecayTime;
- break;
- case AL_EAXREVERB_DECAY_HFRATIO:
- *val = props->Reverb.DecayHFRatio;
- break;
- case AL_EAXREVERB_DECAY_LFRATIO:
- *val = props->Reverb.DecayLFRatio;
- break;
- case AL_EAXREVERB_REFLECTIONS_GAIN:
- *val = props->Reverb.ReflectionsGain;
- break;
- case AL_EAXREVERB_REFLECTIONS_DELAY:
- *val = props->Reverb.ReflectionsDelay;
- break;
- case AL_EAXREVERB_LATE_REVERB_GAIN:
- *val = props->Reverb.LateReverbGain;
- break;
- case AL_EAXREVERB_LATE_REVERB_DELAY:
- *val = props->Reverb.LateReverbDelay;
- break;
- case AL_EAXREVERB_AIR_ABSORPTION_GAINHF:
- *val = props->Reverb.AirAbsorptionGainHF;
- break;
- case AL_EAXREVERB_ECHO_TIME:
- *val = props->Reverb.EchoTime;
- break;
- case AL_EAXREVERB_ECHO_DEPTH:
- *val = props->Reverb.EchoDepth;
- break;
- case AL_EAXREVERB_MODULATION_TIME:
- *val = props->Reverb.ModulationTime;
- break;
- case AL_EAXREVERB_MODULATION_DEPTH:
- *val = props->Reverb.ModulationDepth;
- break;
- case AL_EAXREVERB_HFREFERENCE:
- *val = props->Reverb.HFReference;
- break;
- case AL_EAXREVERB_LFREFERENCE:
- *val = props->Reverb.LFReference;
- break;
- case AL_EAXREVERB_ROOM_ROLLOFF_FACTOR:
- *val = props->Reverb.RoomRolloffFactor;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALeaxreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
- {
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_EAXREVERB_REFLECTIONS_PAN:
- vals[0] = props->Reverb.ReflectionsPan[0];
- vals[1] = props->Reverb.ReflectionsPan[1];
- vals[2] = props->Reverb.ReflectionsPan[2];
- break;
- case AL_EAXREVERB_LATE_REVERB_PAN:
- vals[0] = props->Reverb.LateReverbPan[0];
- vals[1] = props->Reverb.LateReverbPan[1];
- vals[2] = props->Reverb.LateReverbPan[2];
- break;
- default:
- ALeaxreverb_getParamf(effect, context, param, vals);
- break;
- }
- }
- DEFINE_ALEFFECT_VTABLE(ALeaxreverb);
- void ALreverb_setParami(ALeffect *effect, ALCcontext *context, ALenum param, ALint val)
- {
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DECAY_HFLIMIT:
- if(!(val >= AL_REVERB_MIN_DECAY_HFLIMIT && val <= AL_REVERB_MAX_DECAY_HFLIMIT))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.DecayHFLimit = val;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALreverb_setParamiv(ALeffect *effect, ALCcontext *context, ALenum param, const ALint *vals)
- {
- ALreverb_setParami(effect, context, param, vals[0]);
- }
- void ALreverb_setParamf(ALeffect *effect, ALCcontext *context, ALenum param, ALfloat val)
- {
- ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DENSITY:
- if(!(val >= AL_REVERB_MIN_DENSITY && val <= AL_REVERB_MAX_DENSITY))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.Density = val;
- break;
- case AL_REVERB_DIFFUSION:
- if(!(val >= AL_REVERB_MIN_DIFFUSION && val <= AL_REVERB_MAX_DIFFUSION))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.Diffusion = val;
- break;
- case AL_REVERB_GAIN:
- if(!(val >= AL_REVERB_MIN_GAIN && val <= AL_REVERB_MAX_GAIN))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.Gain = val;
- break;
- case AL_REVERB_GAINHF:
- if(!(val >= AL_REVERB_MIN_GAINHF && val <= AL_REVERB_MAX_GAINHF))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.GainHF = val;
- break;
- case AL_REVERB_DECAY_TIME:
- if(!(val >= AL_REVERB_MIN_DECAY_TIME && val <= AL_REVERB_MAX_DECAY_TIME))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.DecayTime = val;
- break;
- case AL_REVERB_DECAY_HFRATIO:
- if(!(val >= AL_REVERB_MIN_DECAY_HFRATIO && val <= AL_REVERB_MAX_DECAY_HFRATIO))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.DecayHFRatio = val;
- break;
- case AL_REVERB_REFLECTIONS_GAIN:
- if(!(val >= AL_REVERB_MIN_REFLECTIONS_GAIN && val <= AL_REVERB_MAX_REFLECTIONS_GAIN))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.ReflectionsGain = val;
- break;
- case AL_REVERB_REFLECTIONS_DELAY:
- if(!(val >= AL_REVERB_MIN_REFLECTIONS_DELAY && val <= AL_REVERB_MAX_REFLECTIONS_DELAY))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.ReflectionsDelay = val;
- break;
- case AL_REVERB_LATE_REVERB_GAIN:
- if(!(val >= AL_REVERB_MIN_LATE_REVERB_GAIN && val <= AL_REVERB_MAX_LATE_REVERB_GAIN))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.LateReverbGain = val;
- break;
- case AL_REVERB_LATE_REVERB_DELAY:
- if(!(val >= AL_REVERB_MIN_LATE_REVERB_DELAY && val <= AL_REVERB_MAX_LATE_REVERB_DELAY))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.LateReverbDelay = val;
- break;
- case AL_REVERB_AIR_ABSORPTION_GAINHF:
- if(!(val >= AL_REVERB_MIN_AIR_ABSORPTION_GAINHF && val <= AL_REVERB_MAX_AIR_ABSORPTION_GAINHF))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.AirAbsorptionGainHF = val;
- break;
- case AL_REVERB_ROOM_ROLLOFF_FACTOR:
- if(!(val >= AL_REVERB_MIN_ROOM_ROLLOFF_FACTOR && val <= AL_REVERB_MAX_ROOM_ROLLOFF_FACTOR))
- SET_ERROR_AND_RETURN(context, AL_INVALID_VALUE);
- props->Reverb.RoomRolloffFactor = val;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALreverb_setParamfv(ALeffect *effect, ALCcontext *context, ALenum param, const ALfloat *vals)
- {
- ALreverb_setParamf(effect, context, param, vals[0]);
- }
- void ALreverb_getParami(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *val)
- {
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DECAY_HFLIMIT:
- *val = props->Reverb.DecayHFLimit;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALreverb_getParamiv(const ALeffect *effect, ALCcontext *context, ALenum param, ALint *vals)
- {
- ALreverb_getParami(effect, context, param, vals);
- }
- void ALreverb_getParamf(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *val)
- {
- const ALeffectProps *props = &effect->Props;
- switch(param)
- {
- case AL_REVERB_DENSITY:
- *val = props->Reverb.Density;
- break;
- case AL_REVERB_DIFFUSION:
- *val = props->Reverb.Diffusion;
- break;
- case AL_REVERB_GAIN:
- *val = props->Reverb.Gain;
- break;
- case AL_REVERB_GAINHF:
- *val = props->Reverb.GainHF;
- break;
- case AL_REVERB_DECAY_TIME:
- *val = props->Reverb.DecayTime;
- break;
- case AL_REVERB_DECAY_HFRATIO:
- *val = props->Reverb.DecayHFRatio;
- break;
- case AL_REVERB_REFLECTIONS_GAIN:
- *val = props->Reverb.ReflectionsGain;
- break;
- case AL_REVERB_REFLECTIONS_DELAY:
- *val = props->Reverb.ReflectionsDelay;
- break;
- case AL_REVERB_LATE_REVERB_GAIN:
- *val = props->Reverb.LateReverbGain;
- break;
- case AL_REVERB_LATE_REVERB_DELAY:
- *val = props->Reverb.LateReverbDelay;
- break;
- case AL_REVERB_AIR_ABSORPTION_GAINHF:
- *val = props->Reverb.AirAbsorptionGainHF;
- break;
- case AL_REVERB_ROOM_ROLLOFF_FACTOR:
- *val = props->Reverb.RoomRolloffFactor;
- break;
- default:
- SET_ERROR_AND_RETURN(context, AL_INVALID_ENUM);
- }
- }
- void ALreverb_getParamfv(const ALeffect *effect, ALCcontext *context, ALenum param, ALfloat *vals)
- {
- ALreverb_getParamf(effect, context, param, vals);
- }
- DEFINE_ALEFFECT_VTABLE(ALreverb);
|