123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 |
- #include "config.h"
- #include <xmmintrin.h>
- #include "AL/al.h"
- #include "AL/alc.h"
- #include "alMain.h"
- #include "alu.h"
- #include "alSource.h"
- #include "alAuxEffectSlot.h"
- #include "mixer_defs.h"
- const ALfloat *Resample_bsinc32_SSE(const BsincState *state, const ALfloat *restrict src,
- ALuint frac, ALuint increment, ALfloat *restrict dst,
- ALuint dstlen)
- {
- const __m128 sf4 = _mm_set1_ps(state->sf);
- const ALuint m = state->m;
- const ALint l = state->l;
- const ALfloat *fil, *scd, *phd, *spd;
- ALuint pi, j_f, i;
- ALfloat pf;
- ALint j_s;
- __m128 r4;
- for(i = 0;i < dstlen;i++)
- {
- // Calculate the phase index and factor.
- #define FRAC_PHASE_BITDIFF (FRACTIONBITS-BSINC_PHASE_BITS)
- pi = frac >> FRAC_PHASE_BITDIFF;
- pf = (frac & ((1<<FRAC_PHASE_BITDIFF)-1)) * (1.0f/(1<<FRAC_PHASE_BITDIFF));
- #undef FRAC_PHASE_BITDIFF
- fil = state->coeffs[pi].filter;
- scd = state->coeffs[pi].scDelta;
- phd = state->coeffs[pi].phDelta;
- spd = state->coeffs[pi].spDelta;
- // Apply the scale and phase interpolated filter.
- r4 = _mm_setzero_ps();
- {
- const __m128 pf4 = _mm_set1_ps(pf);
- for(j_f = 0,j_s = l;j_f < m;j_f+=4,j_s+=4)
- {
- const __m128 f4 = _mm_add_ps(
- _mm_add_ps(
- _mm_load_ps(&fil[j_f]),
- _mm_mul_ps(sf4, _mm_load_ps(&scd[j_f]))
- ),
- _mm_mul_ps(
- pf4,
- _mm_add_ps(
- _mm_load_ps(&phd[j_f]),
- _mm_mul_ps(sf4, _mm_load_ps(&spd[j_f]))
- )
- )
- );
- r4 = _mm_add_ps(r4, _mm_mul_ps(f4, _mm_loadu_ps(&src[j_s])));
- }
- }
- r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
- r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
- dst[i] = _mm_cvtss_f32(r4);
- frac += increment;
- src += frac>>FRACTIONBITS;
- frac &= FRACTIONMASK;
- }
- return dst;
- }
- static inline void ApplyCoeffsStep(ALuint Offset, ALfloat (*restrict Values)[2],
- const ALuint IrSize,
- ALfloat (*restrict Coeffs)[2],
- const ALfloat (*restrict CoeffStep)[2],
- ALfloat left, ALfloat right)
- {
- const __m128 lrlr = _mm_setr_ps(left, right, left, right);
- __m128 coeffs, deltas, imp0, imp1;
- __m128 vals = _mm_setzero_ps();
- ALuint i;
- if((Offset&1))
- {
- const ALuint o0 = Offset&HRIR_MASK;
- const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
- coeffs = _mm_load_ps(&Coeffs[0][0]);
- deltas = _mm_load_ps(&CoeffStep[0][0]);
- vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
- imp0 = _mm_mul_ps(lrlr, coeffs);
- coeffs = _mm_add_ps(coeffs, deltas);
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Coeffs[0][0], coeffs);
- _mm_storel_pi((__m64*)&Values[o0][0], vals);
- for(i = 1;i < IrSize-1;i += 2)
- {
- const ALuint o2 = (Offset+i)&HRIR_MASK;
- coeffs = _mm_load_ps(&Coeffs[i+1][0]);
- deltas = _mm_load_ps(&CoeffStep[i+1][0]);
- vals = _mm_load_ps(&Values[o2][0]);
- imp1 = _mm_mul_ps(lrlr, coeffs);
- coeffs = _mm_add_ps(coeffs, deltas);
- imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Coeffs[i+1][0], coeffs);
- _mm_store_ps(&Values[o2][0], vals);
- imp0 = imp1;
- }
- vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
- imp0 = _mm_movehl_ps(imp0, imp0);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi((__m64*)&Values[o1][0], vals);
- }
- else
- {
- for(i = 0;i < IrSize;i += 2)
- {
- const ALuint o = (Offset + i)&HRIR_MASK;
- coeffs = _mm_load_ps(&Coeffs[i][0]);
- deltas = _mm_load_ps(&CoeffStep[i][0]);
- vals = _mm_load_ps(&Values[o][0]);
- imp0 = _mm_mul_ps(lrlr, coeffs);
- coeffs = _mm_add_ps(coeffs, deltas);
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Coeffs[i][0], coeffs);
- _mm_store_ps(&Values[o][0], vals);
- }
- }
- }
- static inline void ApplyCoeffs(ALuint Offset, ALfloat (*restrict Values)[2],
- const ALuint IrSize,
- ALfloat (*restrict Coeffs)[2],
- ALfloat left, ALfloat right)
- {
- const __m128 lrlr = _mm_setr_ps(left, right, left, right);
- __m128 vals = _mm_setzero_ps();
- __m128 coeffs;
- ALuint i;
- if((Offset&1))
- {
- const ALuint o0 = Offset&HRIR_MASK;
- const ALuint o1 = (Offset+IrSize-1)&HRIR_MASK;
- __m128 imp0, imp1;
- coeffs = _mm_load_ps(&Coeffs[0][0]);
- vals = _mm_loadl_pi(vals, (__m64*)&Values[o0][0]);
- imp0 = _mm_mul_ps(lrlr, coeffs);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi((__m64*)&Values[o0][0], vals);
- for(i = 1;i < IrSize-1;i += 2)
- {
- const ALuint o2 = (Offset+i)&HRIR_MASK;
- coeffs = _mm_load_ps(&Coeffs[i+1][0]);
- vals = _mm_load_ps(&Values[o2][0]);
- imp1 = _mm_mul_ps(lrlr, coeffs);
- imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
- vals = _mm_add_ps(imp0, vals);
- _mm_store_ps(&Values[o2][0], vals);
- imp0 = imp1;
- }
- vals = _mm_loadl_pi(vals, (__m64*)&Values[o1][0]);
- imp0 = _mm_movehl_ps(imp0, imp0);
- vals = _mm_add_ps(imp0, vals);
- _mm_storel_pi((__m64*)&Values[o1][0], vals);
- }
- else
- {
- for(i = 0;i < IrSize;i += 2)
- {
- const ALuint o = (Offset + i)&HRIR_MASK;
- coeffs = _mm_load_ps(&Coeffs[i][0]);
- vals = _mm_load_ps(&Values[o][0]);
- vals = _mm_add_ps(vals, _mm_mul_ps(lrlr, coeffs));
- _mm_store_ps(&Values[o][0], vals);
- }
- }
- }
- #define MixHrtf MixHrtf_SSE
- #define MixDirectHrtf MixDirectHrtf_SSE
- #include "mixer_inc.c"
- #undef MixHrtf
- void Mix_SSE(const ALfloat *data, ALuint OutChans, ALfloat (*restrict OutBuffer)[BUFFERSIZE],
- ALfloat *CurrentGains, const ALfloat *TargetGains, ALuint Counter, ALuint OutPos,
- ALuint BufferSize)
- {
- ALfloat gain, delta, step;
- __m128 gain4;
- ALuint c;
- delta = (Counter > 0) ? 1.0f/(ALfloat)Counter : 0.0f;
- for(c = 0;c < OutChans;c++)
- {
- ALuint pos = 0;
- gain = CurrentGains[c];
- step = (TargetGains[c] - gain) * delta;
- if(fabsf(step) > FLT_EPSILON)
- {
- ALuint minsize = minu(BufferSize, Counter);
- /* Mix with applying gain steps in aligned multiples of 4. */
- if(minsize-pos > 3)
- {
- __m128 step4;
- gain4 = _mm_setr_ps(
- gain,
- gain + step,
- gain + step + step,
- gain + step + step + step
- );
- step4 = _mm_set1_ps(step + step + step + step);
- do {
- const __m128 val4 = _mm_load_ps(&data[pos]);
- __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- gain4 = _mm_add_ps(gain4, step4);
- _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
- pos += 4;
- } while(minsize-pos > 3);
- /* NOTE: gain4 now represents the next four gains after the
- * last four mixed samples, so the lowest element represents
- * the next gain to apply.
- */
- gain = _mm_cvtss_f32(gain4);
- }
- /* Mix with applying left over gain steps that aren't aligned multiples of 4. */
- for(;pos < minsize;pos++)
- {
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- gain += step;
- }
- if(pos == Counter)
- gain = TargetGains[c];
- CurrentGains[c] = gain;
- /* Mix until pos is aligned with 4 or the mix is done. */
- minsize = minu(BufferSize, (pos+3)&~3);
- for(;pos < minsize;pos++)
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- }
- if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- gain4 = _mm_set1_ps(gain);
- for(;BufferSize-pos > 3;pos += 4)
- {
- const __m128 val4 = _mm_load_ps(&data[pos]);
- __m128 dry4 = _mm_load_ps(&OutBuffer[c][OutPos+pos]);
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(&OutBuffer[c][OutPos+pos], dry4);
- }
- for(;pos < BufferSize;pos++)
- OutBuffer[c][OutPos+pos] += data[pos]*gain;
- }
- }
- void MixRow_SSE(ALfloat *OutBuffer, const ALfloat *Gains, const ALfloat (*restrict data)[BUFFERSIZE], ALuint InChans, ALuint InPos, ALuint BufferSize)
- {
- __m128 gain4;
- ALuint c;
- for(c = 0;c < InChans;c++)
- {
- ALuint pos = 0;
- ALfloat gain = Gains[c];
- if(!(fabsf(gain) > GAIN_SILENCE_THRESHOLD))
- continue;
- gain4 = _mm_set1_ps(gain);
- for(;BufferSize-pos > 3;pos += 4)
- {
- const __m128 val4 = _mm_load_ps(&data[c][InPos+pos]);
- __m128 dry4 = _mm_load_ps(&OutBuffer[pos]);
- dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
- _mm_store_ps(&OutBuffer[pos], dry4);
- }
- for(;pos < BufferSize;pos++)
- OutBuffer[pos] += data[c][InPos+pos]*gain;
- }
- }
|