mMatrix.h 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #ifndef _MMATRIX_H_
  23. #define _MMATRIX_H_
  24. #include <algorithm>
  25. #ifndef _MPLANE_H_
  26. #include "math/mPlane.h"
  27. #endif
  28. #ifndef _MBOX_H_
  29. #include "math/mBox.h"
  30. #endif
  31. #ifndef _MPOINT4_H_
  32. #include "math/mPoint4.h"
  33. #endif
  34. #ifndef _ENGINETYPEINFO_H_
  35. #include "console/engineTypeInfo.h"
  36. #endif
  37. #ifndef USE_TEMPLATE_MATRIX
  38. /// 4x4 Matrix Class
  39. ///
  40. /// This runs at F32 precision.
  41. class MatrixF
  42. {
  43. friend class MatrixFEngineExport;
  44. private:
  45. F32 m[16]; ///< Note: Torque uses row-major matrices
  46. public:
  47. /// Create an uninitialized matrix.
  48. ///
  49. /// @param identity If true, initialize to the identity matrix.
  50. explicit MatrixF(bool identity=false);
  51. /// Create a matrix to rotate about origin by e.
  52. /// @see set
  53. explicit MatrixF( const EulerF &e);
  54. /// Create a matrix to rotate about p by e.
  55. /// @see set
  56. MatrixF( const EulerF &e, const Point3F& p);
  57. /// Get the index in m to element in column i, row j
  58. ///
  59. /// This is necessary as we have m as a one dimensional array.
  60. ///
  61. /// @param i Column desired.
  62. /// @param j Row desired.
  63. static U32 idx(U32 i, U32 j) { return (i + j*4); }
  64. /// Initialize matrix to rotate about origin by e.
  65. MatrixF& set( const EulerF &e);
  66. /// Initialize matrix to rotate about p by e.
  67. MatrixF& set( const EulerF &e, const Point3F& p);
  68. /// Initialize matrix with a cross product of p.
  69. MatrixF& setCrossProduct( const Point3F &p);
  70. /// Initialize matrix with a tensor product of p.
  71. MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);
  72. operator F32*() { return (m); } ///< Allow people to get at m.
  73. operator const F32*() const { return (F32*)(m); } ///< Allow people to get at m.
  74. bool isAffine() const; ///< Check to see if this is an affine matrix.
  75. bool isIdentity() const; ///< Checks for identity matrix.
  76. /// Make this an identity matrix.
  77. MatrixF& identity();
  78. /// Invert m.
  79. MatrixF& inverse();
  80. /// Copy the inversion of this into out matrix.
  81. void invertTo( MatrixF *out );
  82. /// Take inverse of matrix assuming it is affine (rotation,
  83. /// scale, sheer, translation only).
  84. MatrixF& affineInverse();
  85. /// Swap rows and columns.
  86. MatrixF& transpose();
  87. /// M * Matrix(p) -> M
  88. MatrixF& scale( const Point3F &s );
  89. MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); }
  90. /// Return scale assuming scale was applied via mat.scale(s).
  91. Point3F getScale() const;
  92. EulerF toEuler() const;
  93. /// Compute the inverse of the matrix.
  94. ///
  95. /// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
  96. /// the determinant is 0.
  97. ///
  98. /// Note: In most cases you want to use the normal inverse function. This method should
  99. /// be used if the matrix has something other than (0,0,0,1) in the bottom row.
  100. bool fullInverse();
  101. /// Reverse depth for projection matrix
  102. /// Simplifies reversal matrix mult to 4 subtractions
  103. void reverseProjection();
  104. /// Swaps rows and columns into matrix.
  105. void transposeTo(F32 *matrix) const;
  106. /// Normalize the matrix.
  107. void normalize();
  108. /// Copy the requested column into a Point4F.
  109. void getColumn(S32 col, Point4F *cptr) const;
  110. Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; }
  111. /// Copy the requested column into a Point3F.
  112. ///
  113. /// This drops the bottom-most row.
  114. void getColumn(S32 col, Point3F *cptr) const;
  115. Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; }
  116. /// Set the specified column from a Point4F.
  117. void setColumn(S32 col, const Point4F& cptr);
  118. /// Set the specified column from a Point3F.
  119. ///
  120. /// The bottom-most row is not set.
  121. void setColumn(S32 col, const Point3F& cptr);
  122. /// Copy the specified row into a Point4F.
  123. void getRow(S32 row, Point4F *cptr) const;
  124. Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; }
  125. /// Copy the specified row into a Point3F.
  126. ///
  127. /// Right-most item is dropped.
  128. void getRow(S32 row, Point3F *cptr) const;
  129. Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; }
  130. /// Set the specified row from a Point4F.
  131. void setRow(S32 row, const Point4F& cptr);
  132. /// Set the specified row from a Point3F.
  133. ///
  134. /// The right-most item is not set.
  135. void setRow(S32 row, const Point3F& cptr);
  136. /// Get the position of the matrix.
  137. ///
  138. /// This is the 4th column of the matrix.
  139. Point3F getPosition() const;
  140. /// Set the position of the matrix.
  141. ///
  142. /// This is the 4th column of the matrix.
  143. void setPosition( const Point3F &pos ) { setColumn( 3, pos ); }
  144. /// Add the passed delta to the matrix position.
  145. void displace( const Point3F &delta );
  146. /// Get the x axis of the matrix.
  147. ///
  148. /// This is the 1st column of the matrix and is
  149. /// normally considered the right vector.
  150. VectorF getRightVector() const;
  151. /// Get the y axis of the matrix.
  152. ///
  153. /// This is the 2nd column of the matrix and is
  154. /// normally considered the forward vector.
  155. VectorF getForwardVector() const;
  156. /// Get the z axis of the matrix.
  157. ///
  158. /// This is the 3rd column of the matrix and is
  159. /// normally considered the up vector.
  160. VectorF getUpVector() const;
  161. MatrixF& mul(const MatrixF &a); ///< M * a -> M
  162. MatrixF& mulL(const MatrixF &a); ///< a * M -> M
  163. MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M
  164. // Scalar multiplies
  165. MatrixF& mul(const F32 a); ///< M * a -> M
  166. MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M
  167. void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4])
  168. void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f)
  169. void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f)
  170. void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f)
  171. void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f)
  172. void mul(Box3F& b) const; ///< Axial box -> Axial Box
  173. MatrixF& add( const MatrixF& m );
  174. /// Convenience function to allow people to treat this like an array.
  175. F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }
  176. F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; }
  177. void dumpMatrix(const char *caption=NULL) const;
  178. // Math operator overloads
  179. //------------------------------------
  180. friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 );
  181. MatrixF& operator *= ( const MatrixF &m );
  182. MatrixF &operator = (const MatrixF &m);
  183. bool isNaN();
  184. // Static identity matrix
  185. const static MatrixF Identity;
  186. };
  187. class MatrixFEngineExport
  188. {
  189. public:
  190. static EngineFieldTable::Field getMatrixField();
  191. };
  192. //--------------------------------------
  193. // Inline Functions
  194. inline MatrixF::MatrixF(bool _identity)
  195. {
  196. if (_identity)
  197. identity();
  198. else
  199. std::fill_n(m, 16, 0);
  200. }
  201. inline MatrixF::MatrixF( const EulerF &e )
  202. {
  203. set(e);
  204. }
  205. inline MatrixF::MatrixF( const EulerF &e, const Point3F& p )
  206. {
  207. set(e,p);
  208. }
  209. inline MatrixF& MatrixF::set( const EulerF &e)
  210. {
  211. m_matF_set_euler( e, *this );
  212. return (*this);
  213. }
  214. inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p)
  215. {
  216. m_matF_set_euler_point( e, p, *this );
  217. return (*this);
  218. }
  219. inline MatrixF& MatrixF::setCrossProduct( const Point3F &p)
  220. {
  221. m[1] = -(m[4] = p.z);
  222. m[8] = -(m[2] = p.y);
  223. m[6] = -(m[9] = p.x);
  224. m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =
  225. m[12] = m[13] = m[14] = 0.0f;
  226. m[15] = 1;
  227. return (*this);
  228. }
  229. inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q)
  230. {
  231. m[0] = p.x * q.x;
  232. m[1] = p.x * q.y;
  233. m[2] = p.x * q.z;
  234. m[4] = p.y * q.x;
  235. m[5] = p.y * q.y;
  236. m[6] = p.y * q.z;
  237. m[8] = p.z * q.x;
  238. m[9] = p.z * q.y;
  239. m[10] = p.z * q.z;
  240. m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f;
  241. m[15] = 1.0f;
  242. return (*this);
  243. }
  244. inline bool MatrixF::isIdentity() const
  245. {
  246. return
  247. m[0] == 1.0f &&
  248. m[1] == 0.0f &&
  249. m[2] == 0.0f &&
  250. m[3] == 0.0f &&
  251. m[4] == 0.0f &&
  252. m[5] == 1.0f &&
  253. m[6] == 0.0f &&
  254. m[7] == 0.0f &&
  255. m[8] == 0.0f &&
  256. m[9] == 0.0f &&
  257. m[10] == 1.0f &&
  258. m[11] == 0.0f &&
  259. m[12] == 0.0f &&
  260. m[13] == 0.0f &&
  261. m[14] == 0.0f &&
  262. m[15] == 1.0f;
  263. }
  264. inline MatrixF& MatrixF::identity()
  265. {
  266. m[0] = 1.0f;
  267. m[1] = 0.0f;
  268. m[2] = 0.0f;
  269. m[3] = 0.0f;
  270. m[4] = 0.0f;
  271. m[5] = 1.0f;
  272. m[6] = 0.0f;
  273. m[7] = 0.0f;
  274. m[8] = 0.0f;
  275. m[9] = 0.0f;
  276. m[10] = 1.0f;
  277. m[11] = 0.0f;
  278. m[12] = 0.0f;
  279. m[13] = 0.0f;
  280. m[14] = 0.0f;
  281. m[15] = 1.0f;
  282. return (*this);
  283. }
  284. inline MatrixF& MatrixF::inverse()
  285. {
  286. m_matF_inverse(m);
  287. return (*this);
  288. }
  289. inline void MatrixF::invertTo( MatrixF *out )
  290. {
  291. m_matF_invert_to(m,*out);
  292. }
  293. inline MatrixF& MatrixF::affineInverse()
  294. {
  295. // AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");
  296. m_matF_affineInverse(m);
  297. return (*this);
  298. }
  299. inline MatrixF& MatrixF::transpose()
  300. {
  301. m_matF_transpose(m);
  302. return (*this);
  303. }
  304. inline MatrixF& MatrixF::scale(const Point3F& p)
  305. {
  306. m_matF_scale(m,p);
  307. return *this;
  308. }
  309. inline Point3F MatrixF::getScale() const
  310. {
  311. Point3F scale;
  312. scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]);
  313. scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]);
  314. scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]);
  315. return scale;
  316. }
  317. inline void MatrixF::normalize()
  318. {
  319. m_matF_normalize(m);
  320. }
  321. inline MatrixF& MatrixF::mul( const MatrixF &a )
  322. { // M * a -> M
  323. AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!");
  324. MatrixF tempThis(*this);
  325. m_matF_x_matF(tempThis, a, *this);
  326. return (*this);
  327. }
  328. inline MatrixF& MatrixF::mulL( const MatrixF &a )
  329. { // a * M -> M
  330. AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!");
  331. MatrixF tempThis(*this);
  332. m_matF_x_matF(a, tempThis, *this);
  333. return (*this);
  334. }
  335. inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b )
  336. { // a * b -> M
  337. AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!");
  338. m_matF_x_matF(a, b, *this);
  339. return (*this);
  340. }
  341. inline MatrixF& MatrixF::mul(const F32 a)
  342. {
  343. for (U32 i = 0; i < 16; i++)
  344. m[i] *= a;
  345. return *this;
  346. }
  347. inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b)
  348. {
  349. *this = a;
  350. mul(b);
  351. return *this;
  352. }
  353. inline void MatrixF::mul( Point4F& p ) const
  354. {
  355. Point4F temp;
  356. m_matF_x_point4F(*this, &p.x, &temp.x);
  357. p = temp;
  358. }
  359. inline void MatrixF::mulP( Point3F& p) const
  360. {
  361. // M * p -> d
  362. Point3F d;
  363. m_matF_x_point3F(*this, &p.x, &d.x);
  364. p = d;
  365. }
  366. inline void MatrixF::mulP( const Point3F &p, Point3F *d) const
  367. {
  368. // M * p -> d
  369. m_matF_x_point3F(*this, &p.x, &d->x);
  370. }
  371. inline void MatrixF::mulV( VectorF& v) const
  372. {
  373. // M * v -> v
  374. VectorF temp;
  375. m_matF_x_vectorF(*this, &v.x, &temp.x);
  376. v = temp;
  377. }
  378. inline void MatrixF::mulV( const VectorF &v, Point3F *d) const
  379. {
  380. // M * v -> d
  381. m_matF_x_vectorF(*this, &v.x, &d->x);
  382. }
  383. inline void MatrixF::mul(Box3F& b) const
  384. {
  385. m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x);
  386. }
  387. inline MatrixF& MatrixF::add( const MatrixF& a )
  388. {
  389. for( U32 i = 0; i < 16; ++ i )
  390. m[ i ] += a.m[ i ];
  391. return *this;
  392. }
  393. inline void MatrixF::getColumn(S32 col, Point4F *cptr) const
  394. {
  395. cptr->x = m[col];
  396. cptr->y = m[col+4];
  397. cptr->z = m[col+8];
  398. cptr->w = m[col+12];
  399. }
  400. inline void MatrixF::getColumn(S32 col, Point3F *cptr) const
  401. {
  402. cptr->x = m[col];
  403. cptr->y = m[col+4];
  404. cptr->z = m[col+8];
  405. }
  406. inline void MatrixF::setColumn(S32 col, const Point4F &cptr)
  407. {
  408. m[col] = cptr.x;
  409. m[col+4] = cptr.y;
  410. m[col+8] = cptr.z;
  411. m[col+12]= cptr.w;
  412. }
  413. inline void MatrixF::setColumn(S32 col, const Point3F &cptr)
  414. {
  415. m[col] = cptr.x;
  416. m[col+4] = cptr.y;
  417. m[col+8] = cptr.z;
  418. }
  419. inline void MatrixF::getRow(S32 col, Point4F *cptr) const
  420. {
  421. col *= 4;
  422. cptr->x = m[col++];
  423. cptr->y = m[col++];
  424. cptr->z = m[col++];
  425. cptr->w = m[col];
  426. }
  427. inline void MatrixF::getRow(S32 col, Point3F *cptr) const
  428. {
  429. col *= 4;
  430. cptr->x = m[col++];
  431. cptr->y = m[col++];
  432. cptr->z = m[col];
  433. }
  434. inline void MatrixF::setRow(S32 col, const Point4F &cptr)
  435. {
  436. col *= 4;
  437. m[col++] = cptr.x;
  438. m[col++] = cptr.y;
  439. m[col++] = cptr.z;
  440. m[col] = cptr.w;
  441. }
  442. inline void MatrixF::setRow(S32 col, const Point3F &cptr)
  443. {
  444. col *= 4;
  445. m[col++] = cptr.x;
  446. m[col++] = cptr.y;
  447. m[col] = cptr.z;
  448. }
  449. inline Point3F MatrixF::getPosition() const
  450. {
  451. return Point3F( m[3], m[3+4], m[3+8] );
  452. }
  453. inline void MatrixF::displace( const Point3F &delta )
  454. {
  455. m[3] += delta.x;
  456. m[3+4] += delta.y;
  457. m[3+8] += delta.z;
  458. }
  459. inline VectorF MatrixF::getForwardVector() const
  460. {
  461. VectorF vec;
  462. getColumn( 1, &vec );
  463. return vec;
  464. }
  465. inline VectorF MatrixF::getRightVector() const
  466. {
  467. VectorF vec;
  468. getColumn( 0, &vec );
  469. return vec;
  470. }
  471. inline VectorF MatrixF::getUpVector() const
  472. {
  473. VectorF vec;
  474. getColumn( 2, &vec );
  475. return vec;
  476. }
  477. //------------------------------------
  478. // Math operator overloads
  479. //------------------------------------
  480. inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 )
  481. {
  482. // temp = m1 * m2
  483. MatrixF temp;
  484. m_matF_x_matF(m1, m2, temp);
  485. return temp;
  486. }
  487. inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 )
  488. {
  489. MatrixF tempThis(*this);
  490. m_matF_x_matF(tempThis, m1, *this);
  491. return (*this);
  492. }
  493. inline MatrixF &MatrixF::operator = (const MatrixF &m1)
  494. {
  495. for (U32 i=0;i<16;i++)
  496. this->m[i] = m1.m[i];
  497. return (*this);
  498. }
  499. inline bool MatrixF::isNaN()
  500. {
  501. bool isaNaN = false;
  502. for (U32 i = 0; i < 16; i++)
  503. if (mIsNaN_F(m[i]))
  504. isaNaN = true;
  505. return isaNaN;
  506. }
  507. //------------------------------------
  508. // Non-member methods
  509. //------------------------------------
  510. inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF * result)
  511. {
  512. m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x);
  513. }
  514. #else // !USE_TEMPLATE_MATRIX
  515. //------------------------------------
  516. // Templatized matrix class to replace MATRIXF above
  517. //------------------------------------
  518. template<typename DATA_TYPE, U32 rows, U32 cols>
  519. class Matrix {
  520. friend class MatrixTemplateExport;
  521. private:
  522. DATA_TYPE data[rows * cols];
  523. public:
  524. static_assert(rows >= 2 && cols >= 2, "Matrix must have at least 2 rows and 2 cols.");
  525. // ------ Setters and initializers ------
  526. explicit Matrix(bool identity = false) {
  527. std::fill(data, data + (rows * cols), DATA_TYPE(0));
  528. if (identity) {
  529. for (U32 i = 0; i < rows; i++) {
  530. for (U32 j = 0; j < cols; j++) {
  531. // others already get filled with 0
  532. if (j == i)
  533. (*this)(i, j) = static_cast<DATA_TYPE>(1);
  534. }
  535. }
  536. }
  537. }
  538. explicit Matrix(const EulerF& e);
  539. /// Make this an identity matrix.
  540. Matrix<DATA_TYPE, rows, cols>& identity();
  541. void reverseProjection();
  542. void normalize();
  543. Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e);
  544. Matrix(const EulerF& e, const Point3F p);
  545. Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e, const Point3F p);
  546. Matrix<DATA_TYPE, rows, cols> inverse();
  547. Matrix<DATA_TYPE, rows, cols>& transpose();
  548. void invert();
  549. Matrix<DATA_TYPE, rows, cols>& setCrossProduct(const Point3F& p);
  550. Matrix<DATA_TYPE, rows, cols>& setTensorProduct(const Point3F& p, const Point3F& q);
  551. /// M * Matrix(p) -> M
  552. Matrix<DATA_TYPE, rows, cols>& scale(const Point3F& s);
  553. Matrix<DATA_TYPE, rows, cols>& scale(DATA_TYPE s) { return scale(Point3F(s, s, s)); }
  554. void setColumn(S32 col, const Point4F& cptr);
  555. void setColumn(S32 col, const Point3F& cptr);
  556. void setRow(S32 row, const Point4F& cptr);
  557. void setRow(S32 row, const Point3F& cptr);
  558. void displace(const Point3F& delta);
  559. bool fullInverse();
  560. void setPosition(const Point3F& pos) { setColumn(3, pos); }
  561. ///< M * a -> M
  562. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a)
  563. {
  564. *this = *this * a; return *this;
  565. }
  566. ///< a * M -> M
  567. Matrix<DATA_TYPE, rows, cols>& mulL(const Matrix<DATA_TYPE, rows, cols>& a)
  568. { return *this = a * *this; }
  569. ///< a * b -> M
  570. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const Matrix<DATA_TYPE, rows, cols>& b)
  571. { return *this = a * b; }
  572. ///< M * a -> M
  573. Matrix<DATA_TYPE, rows, cols>& mul(const F32 a)
  574. { return *this * a; }
  575. ///< a * b -> M
  576. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const F32 b)
  577. { return *this = a * b; }
  578. ///< M * p -> p (full [4x4] * [1x4])
  579. void mul(Point4F& p) const { p = *this * p; }
  580. ///< M * p -> p (assume w = 1.0f)
  581. void mulP(Point3F& p) const { p = *this * p; }
  582. ///< M * p -> d (assume w = 1.0f)
  583. void mulP(const Point3F& p, Point3F* d) const { *d = *this * p; }
  584. ///< M * v -> v (assume w = 0.0f)
  585. void mulV(VectorF& v) const
  586. {
  587. AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");
  588. VectorF result(
  589. (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,
  590. (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,
  591. (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z
  592. );
  593. v = result;
  594. }
  595. ///< M * v -> d (assume w = 0.0f)
  596. void mulV(const VectorF& v, Point3F* d) const
  597. {
  598. AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");
  599. VectorF result(
  600. (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,
  601. (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,
  602. (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z
  603. );
  604. d->x = result.x;
  605. d->y = result.y;
  606. d->z = result.z;
  607. }
  608. ///< Axial box -> Axial Box (too big a function to be inline)
  609. void mul(Box3F& box) const;
  610. // ------ Getters ------
  611. bool isNaN() {
  612. for (U32 i = 0; i < rows; i++) {
  613. for (U32 j = 0; j < cols; j++) {
  614. if (mIsNaN_F((*this)(i, j)))
  615. return true;
  616. }
  617. }
  618. return false;
  619. }
  620. // row + col * cols
  621. static U32 idx(U32 i, U32 j) { return (i + j * cols); }
  622. bool isAffine() const;
  623. bool isIdentity() const;
  624. /// Take inverse of matrix assuming it is affine (rotation,
  625. /// scale, sheer, translation only).
  626. Matrix<DATA_TYPE, rows, cols> affineInverse();
  627. Point3F getScale() const;
  628. EulerF toEuler() const;
  629. Point3F getPosition() const;
  630. void getColumn(S32 col, Point4F* cptr) const;
  631. Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col, &ret); return ret; }
  632. void getColumn(S32 col, Point3F* cptr) const;
  633. Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col, &ret); return ret; }
  634. void getRow(S32 row, Point4F* cptr) const;
  635. Point4F getRow4F(S32 row) const { Point4F ret; getRow(row, &ret); return ret; }
  636. void getRow(S32 row, Point3F* cptr) const;
  637. Point3F getRow3F(S32 row) const { Point3F ret; getRow(row, &ret); return ret; }
  638. VectorF getRightVector() const;
  639. VectorF getForwardVector() const;
  640. VectorF getUpVector() const;
  641. DATA_TYPE* getData() {
  642. return data;
  643. }
  644. const DATA_TYPE* getData() const {
  645. return data;
  646. }
  647. void transposeTo(Matrix<DATA_TYPE, cols, rows>& matrix) const {
  648. for (U32 i = 0; i < rows; ++i) {
  649. for (U32 j = 0; j < cols; ++j) {
  650. matrix(j, i) = (*this)(i, j);
  651. }
  652. }
  653. }
  654. void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const;
  655. void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix);
  656. void dumpMatrix(const char* caption = NULL) const;
  657. // Static identity matrix
  658. static const Matrix Identity;
  659. // ------ Operators ------
  660. Matrix<DATA_TYPE, rows, cols> operator * (const Matrix<DATA_TYPE, rows, cols>& other) const {
  661. Matrix<DATA_TYPE, rows, cols> result;
  662. for (U32 i = 0; i < rows; i++) {
  663. for (U32 j = 0; j < cols; j++) {
  664. result(i, j) = 0;
  665. for (U32 k = 0; k < cols; k++) {
  666. result(i, j) += (*this)(i, k) * other(k, j);
  667. }
  668. }
  669. }
  670. return result;
  671. }
  672. Matrix<DATA_TYPE, rows, cols> operator *= (const Matrix<DATA_TYPE, rows, cols>& other) {
  673. *this = *this * other;
  674. return *this;
  675. }
  676. Matrix<DATA_TYPE, rows, cols> operator * (const DATA_TYPE scalar) const {
  677. Matrix<DATA_TYPE, rows, cols> result;
  678. for (U32 i = 0; i < rows; i++) {
  679. for (U32 j = 0; j < cols; j++) {
  680. result(i, j) = (*this)(i, j) * scalar;
  681. }
  682. }
  683. return result;
  684. }
  685. Matrix<DATA_TYPE, rows, cols>& operator *= (const DATA_TYPE scalar) {
  686. for (U32 i = 0; i < rows; i++) {
  687. for (U32 j = 0; j < cols; j++) {
  688. (*this)(i, j) *= scalar;
  689. }
  690. }
  691. return *this;
  692. }
  693. Point3F operator*(const Point3F& point) const {
  694. AssertFatal(rows == 4 && cols == 4, "Multiplying point3 with matrix requires 4x4");
  695. return Point3F(
  696. (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3),
  697. (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3),
  698. (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3)
  699. );
  700. }
  701. Point4F operator*(const Point4F& point) const {
  702. AssertFatal(rows == 4 && cols == 4, "Multiplying point4 with matrix requires 4x4");
  703. return Point4F(
  704. (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3) * point.w,
  705. (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3) * point.w,
  706. (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3) * point.w,
  707. (*this)(3, 0) * point.x + (*this)(3, 1) * point.y + (*this)(3, 2) * point.z + (*this)(3, 3) * point.w
  708. );
  709. }
  710. Matrix<DATA_TYPE, rows, cols>& operator = (const Matrix<DATA_TYPE, rows, cols>& other) {
  711. if (this != &other) {
  712. std::copy(other.data, other.data + rows * cols, this->data);
  713. }
  714. return *this;
  715. }
  716. bool operator == (const Matrix<DATA_TYPE, rows, cols>& other) const {
  717. for (U32 i = 0; i < rows; i++) {
  718. for (U32 j = 0; j < cols; j++) {
  719. if ((*this)(i, j) != other(i, j))
  720. return false;
  721. }
  722. }
  723. return true;
  724. }
  725. bool operator != (const Matrix<DATA_TYPE, rows, cols>& other) const {
  726. return !(*this == other);
  727. }
  728. operator DATA_TYPE* () { return (data); }
  729. operator const DATA_TYPE* () const { return (DATA_TYPE*)(data); }
  730. DATA_TYPE& operator () (U32 row, U32 col) {
  731. if (row >= rows || col >= cols)
  732. AssertFatal(false, "Matrix indices out of range");
  733. return data[idx(col,row)];
  734. }
  735. const DATA_TYPE& operator () (U32 row, U32 col) const {
  736. if (row >= rows || col >= cols)
  737. AssertFatal(false, "Matrix indices out of range");
  738. return data[idx(col, row)];
  739. }
  740. };
  741. //--------------------------------------------
  742. // INLINE FUNCTIONS
  743. //--------------------------------------------
  744. template<typename DATA_TYPE, U32 rows, U32 cols>
  745. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::transpose()
  746. {
  747. Matrix<DATA_TYPE, rows, cols> result;
  748. for (U32 i = 0; i < rows; i++) {
  749. for (U32 j = 0; j < cols; j++) {
  750. result(j, i) = (*this)(i, j);
  751. }
  752. }
  753. std::copy(std::begin(result.data), std::end(result.data), std::begin(data));
  754. return (*this);
  755. }
  756. template<typename DATA_TYPE, U32 rows, U32 cols>
  757. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::identity()
  758. {
  759. for (U32 i = 0; i < rows; i++) {
  760. for (U32 j = 0; j < cols; j++) {
  761. if (j == i)
  762. (*this)(i, j) = static_cast<DATA_TYPE>(1);
  763. else
  764. (*this)(i, j) = static_cast<DATA_TYPE>(0);
  765. }
  766. }
  767. return (*this);
  768. }
  769. template<typename DATA_TYPE, U32 rows, U32 cols>
  770. inline void Matrix<DATA_TYPE, rows, cols>::normalize()
  771. {
  772. AssertFatal(rows >= 3 && cols >= 3, "Normalize can only be applied 3x3 or more");
  773. Point3F col0, col1, col2;
  774. getColumn(0, &col0);
  775. getColumn(1, &col1);
  776. mCross(col0, col1, &col2);
  777. mCross(col2, col0, &col1);
  778. col0.normalize();
  779. col1.normalize();
  780. col2.normalize();
  781. setColumn(0, col0);
  782. setColumn(1, col1);
  783. setColumn(2, col2);
  784. }
  785. template<typename DATA_TYPE, U32 rows, U32 cols>
  786. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::scale(const Point3F& s)
  787. {
  788. // torques scale applies directly, does not create another matrix to multiply with the translation matrix.
  789. AssertFatal(rows >= 3 && cols >= 3, "Scale can only be applied 3x3 or more");
  790. for (U32 i = 0; i < 3; i++) {
  791. for (U32 j = 0; j < 3; j++) {
  792. DATA_TYPE scale = (i == 0) ? s.x : (i == 1) ? s.y : s.z;
  793. (*this)(i, j) *= scale;
  794. }
  795. }
  796. return (*this);
  797. }
  798. template<typename DATA_TYPE, U32 rows, U32 cols>
  799. inline bool Matrix<DATA_TYPE, rows, cols>::isIdentity() const {
  800. for (U32 i = 0; i < rows; i++) {
  801. for (U32 j = 0; j < cols; j++) {
  802. if (j == i) {
  803. if((*this)(i, j) != static_cast<DATA_TYPE>(1)) {
  804. return false;
  805. }
  806. }
  807. else {
  808. if((*this)(i, j) != static_cast<DATA_TYPE>(0)) {
  809. return false;
  810. }
  811. }
  812. }
  813. }
  814. return true;
  815. }
  816. template<typename DATA_TYPE, U32 rows, U32 cols>
  817. inline Point3F Matrix<DATA_TYPE, rows, cols>::getScale() const
  818. {
  819. // this function assumes the matrix has scale applied through the scale(const Point3F& s) function.
  820. // for now assume float since we have point3F.
  821. AssertFatal(rows >= 3 && cols >= 3, "Scale can only be applied 3x3 or more");
  822. Point3F scale;
  823. scale.x = mSqrt((*this)(0, 0) * (*this)(0, 0) + (*this)(1, 0) * (*this)(1, 0) + (*this)(2, 0) * (*this)(2, 0));
  824. scale.y = mSqrt((*this)(0, 1) * (*this)(0, 1) + (*this)(1, 1) * (*this)(1, 1) + (*this)(2, 1) * (*this)(2, 1));
  825. scale.z = mSqrt((*this)(0, 2) * (*this)(0, 2) + (*this)(1, 2) * (*this)(1, 2) + (*this)(2, 2) * (*this)(2, 2));
  826. return scale;
  827. }
  828. template<typename DATA_TYPE, U32 rows, U32 cols>
  829. inline Point3F Matrix<DATA_TYPE, rows, cols>::getPosition() const
  830. {
  831. Point3F pos;
  832. getColumn(3, &pos);
  833. return pos;
  834. }
  835. template<typename DATA_TYPE, U32 rows, U32 cols>
  836. inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point4F* cptr) const
  837. {
  838. if (rows >= 2)
  839. {
  840. cptr->x = (*this)(0, col);
  841. cptr->y = (*this)(1, col);
  842. }
  843. if (rows >= 3)
  844. cptr->z = (*this)(2, col);
  845. else
  846. cptr->z = 0.0f;
  847. if (rows >= 4)
  848. cptr->w = (*this)(3, col);
  849. else
  850. cptr->w = 0.0f;
  851. }
  852. template<typename DATA_TYPE, U32 rows, U32 cols>
  853. inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point3F* cptr) const
  854. {
  855. if (rows >= 2)
  856. {
  857. cptr->x = (*this)(0, col);
  858. cptr->y = (*this)(1, col);
  859. }
  860. if (rows >= 3)
  861. cptr->z = (*this)(2, col);
  862. else
  863. cptr->z = 0.0f;
  864. }
  865. template<typename DATA_TYPE, U32 rows, U32 cols>
  866. inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point4F &cptr) {
  867. if(rows >= 2)
  868. {
  869. (*this)(0, col) = cptr.x;
  870. (*this)(1, col) = cptr.y;
  871. }
  872. if(rows >= 3)
  873. (*this)(2, col) = cptr.z;
  874. if(rows >= 4)
  875. (*this)(3, col) = cptr.w;
  876. }
  877. template<typename DATA_TYPE, U32 rows, U32 cols>
  878. inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point3F &cptr) {
  879. if(rows >= 2)
  880. {
  881. (*this)(0, col) = cptr.x;
  882. (*this)(1, col) = cptr.y;
  883. }
  884. if(rows >= 3)
  885. (*this)(2, col) = cptr.z;
  886. }
  887. template<typename DATA_TYPE, U32 rows, U32 cols>
  888. inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point4F* cptr) const
  889. {
  890. if (cols >= 2)
  891. {
  892. cptr->x = (*this)(row, 0);
  893. cptr->y = (*this)(row, 1);
  894. }
  895. if (cols >= 3)
  896. cptr->z = (*this)(row, 2);
  897. else
  898. cptr->z = 0.0f;
  899. if (cols >= 4)
  900. cptr->w = (*this)(row, 3);
  901. else
  902. cptr->w = 0.0f;
  903. }
  904. template<typename DATA_TYPE, U32 rows, U32 cols>
  905. inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point3F* cptr) const
  906. {
  907. if (cols >= 2)
  908. {
  909. cptr->x = (*this)(row, 0);
  910. cptr->y = (*this)(row, 1);
  911. }
  912. if (cols >= 3)
  913. cptr->z = (*this)(row, 2);
  914. else
  915. cptr->z = 0.0f;
  916. }
  917. template<typename DATA_TYPE, U32 rows, U32 cols>
  918. inline VectorF Matrix<DATA_TYPE, rows, cols>::getRightVector() const
  919. {
  920. VectorF vec;
  921. getColumn(0, &vec);
  922. return vec;
  923. }
  924. template<typename DATA_TYPE, U32 rows, U32 cols>
  925. inline VectorF Matrix<DATA_TYPE, rows, cols>::getForwardVector() const
  926. {
  927. VectorF vec;
  928. getColumn(1, &vec);
  929. return vec;
  930. }
  931. template<typename DATA_TYPE, U32 rows, U32 cols>
  932. inline VectorF Matrix<DATA_TYPE, rows, cols>::getUpVector() const
  933. {
  934. VectorF vec;
  935. getColumn(2, &vec);
  936. return vec;
  937. }
  938. template<typename DATA_TYPE, U32 rows, U32 cols>
  939. inline void Matrix<DATA_TYPE, rows, cols>::invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const
  940. {
  941. Matrix<DATA_TYPE, rows, cols> invMatrix;
  942. for (U32 i = 0; i < rows; ++i) {
  943. for (U32 j = 0; j < cols; ++j) {
  944. invMatrix(i, j) = (*this)(i, j);
  945. }
  946. }
  947. invMatrix.inverse();
  948. for (U32 i = 0; i < rows; ++i) {
  949. for (U32 j = 0; j < cols; ++j) {
  950. (*matrix)(i, j) = invMatrix(i, j);
  951. }
  952. }
  953. }
  954. template<typename DATA_TYPE, U32 rows, U32 cols>
  955. inline void Matrix<DATA_TYPE, rows, cols>::invertTo(Matrix<DATA_TYPE, cols, rows>* matrix)
  956. {
  957. Matrix<DATA_TYPE, rows, cols> invMatrix = this->inverse();
  958. for (U32 i = 0; i < rows; ++i) {
  959. for (U32 j = 0; j < cols; ++j) {
  960. (*matrix)(i, j) = invMatrix(i, j);
  961. }
  962. }
  963. }
  964. template<typename DATA_TYPE, U32 rows, U32 cols>
  965. inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point4F& cptr) {
  966. if(cols >= 2)
  967. {
  968. (*this)(row, 0) = cptr.x;
  969. (*this)(row, 1) = cptr.y;
  970. }
  971. if(cols >= 3)
  972. (*this)(row, 2) = cptr.z;
  973. if(cols >= 4)
  974. (*this)(row, 3) = cptr.w;
  975. }
  976. template<typename DATA_TYPE, U32 rows, U32 cols>
  977. inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point3F& cptr) {
  978. if(cols >= 2)
  979. {
  980. (*this)(row, 0) = cptr.x;
  981. (*this)(row, 1) = cptr.y;
  982. }
  983. if(cols >= 3)
  984. (*this)(row, 2) = cptr.z;
  985. }
  986. template<typename DATA_TYPE, U32 rows, U32 cols>
  987. inline void Matrix<DATA_TYPE, rows, cols>::displace(const Point3F& delta)
  988. {
  989. (*this)(0, 3) += delta.x;
  990. (*this)(1, 3) += delta.y;
  991. (*this)(2, 3) += delta.z;
  992. }
  993. template<typename DATA_TYPE, U32 rows, U32 cols>
  994. void Matrix<DATA_TYPE, rows, cols>::reverseProjection()
  995. {
  996. AssertFatal(rows == 4 && cols == 4, "reverseProjection requires a 4x4 matrix.");
  997. (*this)(2, 0) = (*this)(3, 0) - (*this)(2, 0);
  998. (*this)(2, 1) = (*this)(3, 1) - (*this)(2, 1);
  999. (*this)(2, 2) = (*this)(3, 2) - (*this)(2, 2);
  1000. (*this)(2, 3) = (*this)(3, 3) - (*this)(2, 3);
  1001. }
  1002. template<typename DATA_TYPE, U32 rows, U32 cols>
  1003. const Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::Identity = []() {
  1004. Matrix<DATA_TYPE, rows, cols> identity(true);
  1005. return identity;
  1006. }();
  1007. template<typename DATA_TYPE, U32 rows, U32 cols>
  1008. Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e)
  1009. {
  1010. set(e);
  1011. }
  1012. template<typename DATA_TYPE, U32 rows, U32 cols>
  1013. Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e)
  1014. {
  1015. // when the template refactor is done, euler will be able to be setup in different ways
  1016. AssertFatal(rows >= 3 && cols >= 3, "EulerF can only initialize 3x3 or more");
  1017. static_assert(std::is_same<DATA_TYPE, float>::value, "Can only initialize eulers with floats for now");
  1018. F32 cosPitch, sinPitch;
  1019. mSinCos(e.x, sinPitch, cosPitch);
  1020. F32 cosYaw, sinYaw;
  1021. mSinCos(e.y, sinYaw, cosYaw);
  1022. F32 cosRoll, sinRoll;
  1023. mSinCos(e.z, sinRoll, cosRoll);
  1024. enum {
  1025. AXIS_X = (1 << 0),
  1026. AXIS_Y = (1 << 1),
  1027. AXIS_Z = (1 << 2)
  1028. };
  1029. U32 axis = 0;
  1030. if (e.x != 0.0f) axis |= AXIS_X;
  1031. if (e.y != 0.0f) axis |= AXIS_Y;
  1032. if (e.z != 0.0f) axis |= AXIS_Z;
  1033. switch (axis) {
  1034. case 0:
  1035. (*this) = Matrix<DATA_TYPE, rows, cols>(true);
  1036. break;
  1037. case AXIS_X:
  1038. (*this)(0, 0) = 1.0f; (*this)(1, 0) = 0.0f; (*this)(2, 0) = 0.0f;
  1039. (*this)(0, 1) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(2, 1) = -sinPitch;
  1040. (*this)(0, 2) = 0.0f; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch;
  1041. break;
  1042. case AXIS_Y:
  1043. (*this)(0, 0) = cosYaw; (*this)(1, 0) = 0.0f; (*this)(2, 0) = sinYaw;
  1044. (*this)(0, 1) = 0.0f; (*this)(1, 1) = 1.0f; (*this)(2, 1) = 0.0f;
  1045. (*this)(0, 2) = -sinYaw; (*this)(1, 2) = 0.0f; (*this)(2, 2) = cosYaw;
  1046. break;
  1047. case AXIS_Z:
  1048. (*this)(0, 0) = cosRoll; (*this)(1, 0) = -sinRoll; (*this)(2, 0) = 0.0f;
  1049. (*this)(0, 1) = sinRoll; (*this)(1, 1) = cosRoll; (*this)(2, 1) = 0.0f;
  1050. (*this)(0, 2) = 0.0f; (*this)(1, 2) = 0.0f; (*this)(2, 2) = 0.0f;
  1051. break;
  1052. default:
  1053. F32 r1 = cosYaw * cosRoll;
  1054. F32 r2 = cosYaw * sinRoll;
  1055. F32 r3 = sinYaw * cosRoll;
  1056. F32 r4 = sinYaw * sinRoll;
  1057. // the matrix looks like this:
  1058. // r1 - (r4 * sin(x)) r2 + (r3 * sin(x)) -cos(x) * sin(y)
  1059. // -cos(x) * sin(z) cos(x) * cos(z) sin(x)
  1060. // r3 + (r2 * sin(x)) r4 - (r1 * sin(x)) cos(x) * cos(y)
  1061. //
  1062. // where:
  1063. // r1 = cos(y) * cos(z)
  1064. // r2 = cos(y) * sin(z)
  1065. // r3 = sin(y) * cos(z)
  1066. // r4 = sin(y) * sin(z)
  1067. // init the euler 3x3 rotation matrix.
  1068. (*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(1, 0) = -cosPitch * sinRoll; (*this)(2, 0) = r3 + (r2 * sinPitch);
  1069. (*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(1, 1) = cosPitch * cosRoll; (*this)(2, 1) = r4 - (r1 * sinPitch);
  1070. (*this)(0, 2) = -cosPitch * sinYaw; (*this)(1, 2) = sinPitch; (*this)(2, 2) = cosPitch * cosYaw;
  1071. break;
  1072. }
  1073. if (rows == 4) {
  1074. (*this)(3, 0) = 0.0f;
  1075. (*this)(3, 1) = 0.0f;
  1076. (*this)(3, 2) = 0.0f;
  1077. }
  1078. if (cols == 4) {
  1079. (*this)(0, 3) = 0.0f;
  1080. (*this)(1, 3) = 0.0f;
  1081. (*this)(2, 3) = 0.0f;
  1082. }
  1083. if (rows == 4 && cols == 4) {
  1084. (*this)(3, 3) = 1.0f;
  1085. }
  1086. return(*this);
  1087. }
  1088. template<typename DATA_TYPE, U32 rows, U32 cols>
  1089. Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e, const Point3F p)
  1090. {
  1091. set(e, p);
  1092. }
  1093. template<typename DATA_TYPE, U32 rows, U32 cols>
  1094. Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e, const Point3F p)
  1095. {
  1096. AssertFatal(rows >= 3 && cols >= 4, "Euler and Point can only initialize 3x4 or more");
  1097. // call set euler, this already sets the last row if it exists.
  1098. set(e);
  1099. // does this need to multiply with the result of the euler? or are we just setting position.
  1100. (*this)(0, 3) = p.x;
  1101. (*this)(1, 3) = p.y;
  1102. (*this)(2, 3) = p.z;
  1103. return (*this);
  1104. }
  1105. template<typename DATA_TYPE, U32 rows, U32 cols>
  1106. Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::inverse()
  1107. {
  1108. // TODO: insert return statement here
  1109. AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
  1110. const U32 size = rows;
  1111. // Create augmented matrix [this | I]
  1112. Matrix<DATA_TYPE, size, 2 * size> augmentedMatrix;
  1113. Matrix<DATA_TYPE, size, size> resultMatrix;
  1114. for (U32 i = 0; i < size; i++) {
  1115. for (U32 j = 0; j < size; j++) {
  1116. augmentedMatrix(i, j) = (*this)(i, j);
  1117. augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);
  1118. }
  1119. }
  1120. // Apply gauss-joran elimination
  1121. for (U32 i = 0; i < size; i++) {
  1122. U32 pivotRow = i;
  1123. for (U32 k = i + 1; k < size; k++) {
  1124. // use std::abs until the templated math functions are in place.
  1125. if (std::abs(augmentedMatrix(k, i)) > std::abs(augmentedMatrix(pivotRow, i))) {
  1126. pivotRow = k;
  1127. }
  1128. }
  1129. // Swap if needed.
  1130. if (i != pivotRow) {
  1131. for (U32 j = 0; j < 2 * size; j++) {
  1132. std::swap(augmentedMatrix(i, j), augmentedMatrix(pivotRow, j));
  1133. }
  1134. }
  1135. // Early out if pivot is 0, return identity matrix.
  1136. if (augmentedMatrix(i, i) == static_cast<DATA_TYPE>(0)) {
  1137. return Matrix<DATA_TYPE, rows, cols>(true);
  1138. }
  1139. DATA_TYPE pivotVal = augmentedMatrix(i, i);
  1140. // scale the pivot
  1141. for (U32 j = 0; j < 2 * size; j++) {
  1142. augmentedMatrix(i, j) /= pivotVal;
  1143. }
  1144. // Eliminate the current column in all other rows
  1145. for (U32 k = 0; k < size; k++) {
  1146. if (k != i) {
  1147. DATA_TYPE factor = augmentedMatrix(k, i);
  1148. for (U32 j = 0; j < 2 * size; j++) {
  1149. augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);
  1150. }
  1151. }
  1152. }
  1153. }
  1154. for (U32 i = 0; i < size; i++) {
  1155. for (U32 j = 0; j < size; j++) {
  1156. resultMatrix(i, j) = augmentedMatrix(i, j + size);
  1157. }
  1158. }
  1159. return resultMatrix;
  1160. }
  1161. template<typename DATA_TYPE, U32 rows, U32 cols>
  1162. inline bool Matrix<DATA_TYPE, rows, cols>::fullInverse()
  1163. {
  1164. Matrix<DATA_TYPE, rows, cols> inv = this->inverse();
  1165. if (inv.isIdentity())
  1166. return false;
  1167. *this = inv;
  1168. return true;
  1169. }
  1170. template<typename DATA_TYPE, U32 rows, U32 cols>
  1171. inline void Matrix<DATA_TYPE, rows, cols>::invert()
  1172. {
  1173. (*this) = inverse();
  1174. }
  1175. template<typename DATA_TYPE, U32 rows, U32 cols>
  1176. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setCrossProduct(const Point3F& p)
  1177. {
  1178. AssertFatal(rows == 4 && cols == 4, "Cross product only supported on 4x4 for now");
  1179. (*this)(0, 0) = 0;
  1180. (*this)(0, 1) = -p.z;
  1181. (*this)(0, 2) = p.y;
  1182. (*this)(0, 3) = 0;
  1183. (*this)(1, 0) = p.z;
  1184. (*this)(1, 1) = 0;
  1185. (*this)(1, 2) = -p.x;
  1186. (*this)(1, 3) = 0;
  1187. (*this)(2, 0) = -p.y;
  1188. (*this)(2, 1) = p.x;
  1189. (*this)(2, 2) = 0;
  1190. (*this)(2, 3) = 0;
  1191. (*this)(3, 0) = 0;
  1192. (*this)(3, 1) = 0;
  1193. (*this)(3, 2) = 0;
  1194. (*this)(3, 3) = 1;
  1195. return (*this);
  1196. }
  1197. template<typename DATA_TYPE, U32 rows, U32 cols>
  1198. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setTensorProduct(const Point3F& p, const Point3F& q)
  1199. {
  1200. AssertFatal(rows == 4 && cols == 4, "Tensor product only supported on 4x4 for now");
  1201. (*this)(0, 0) = p.x * q.x;
  1202. (*this)(0, 1) = p.x * q.y;
  1203. (*this)(0, 2) = p.x * q.z;
  1204. (*this)(0, 3) = 0;
  1205. (*this)(1, 0) = p.y * q.x;
  1206. (*this)(1, 1) = p.y * q.y;
  1207. (*this)(1, 2) = p.y * q.z;
  1208. (*this)(1, 3) = 0;
  1209. (*this)(2, 0) = p.z * q.x;
  1210. (*this)(2, 1) = p.z * q.y;
  1211. (*this)(2, 2) = p.z * q.z;
  1212. (*this)(2, 3) = 0;
  1213. (*this)(3, 0) = 0;
  1214. (*this)(3, 1) = 0;
  1215. (*this)(3, 2) = 0;
  1216. (*this)(3, 3) = 1;
  1217. return (*this);
  1218. }
  1219. template<typename DATA_TYPE, U32 rows, U32 cols>
  1220. inline void Matrix<DATA_TYPE, rows, cols>::mul(Box3F& box) const
  1221. {
  1222. AssertFatal(rows == 4 && cols == 4, "Multiplying Box3F with matrix requires 4x4");
  1223. // Create an array of all 8 corners of the box
  1224. Point3F corners[8] = {
  1225. Point3F(box.minExtents.x, box.minExtents.y, box.minExtents.z),
  1226. Point3F(box.minExtents.x, box.minExtents.y, box.maxExtents.z),
  1227. Point3F(box.minExtents.x, box.maxExtents.y, box.minExtents.z),
  1228. Point3F(box.minExtents.x, box.maxExtents.y, box.maxExtents.z),
  1229. Point3F(box.maxExtents.x, box.minExtents.y, box.minExtents.z),
  1230. Point3F(box.maxExtents.x, box.minExtents.y, box.maxExtents.z),
  1231. Point3F(box.maxExtents.x, box.maxExtents.y, box.minExtents.z),
  1232. Point3F(box.maxExtents.x, box.maxExtents.y, box.maxExtents.z),
  1233. };
  1234. for (U32 i = 0; i < 8; i++) {
  1235. corners[i] = (*this) * corners[i];
  1236. }
  1237. box.minExtents = corners[0];
  1238. box.maxExtents = corners[0];
  1239. for (U32 i = 1; i < 8; ++i) {
  1240. box.minExtents.x = mMin(box.minExtents.x, corners[i].x);
  1241. box.minExtents.y = mMin(box.minExtents.y, corners[i].y);
  1242. box.minExtents.z = mMin(box.minExtents.z, corners[i].z);
  1243. box.maxExtents.x = mMax(box.maxExtents.x, corners[i].x);
  1244. box.maxExtents.y = mMax(box.maxExtents.y, corners[i].y);
  1245. box.maxExtents.z = mMax(box.maxExtents.z, corners[i].z);
  1246. }
  1247. }
  1248. template<typename DATA_TYPE, U32 rows, U32 cols>
  1249. inline bool Matrix<DATA_TYPE, rows, cols>::isAffine() const
  1250. {
  1251. if ((*this)(rows - 1, cols - 1) != 1.0f) {
  1252. return false;
  1253. }
  1254. for (U32 col = 0; col < cols - 1; ++col) {
  1255. if ((*this)(rows - 1, col) != 0.0f) {
  1256. return false;
  1257. }
  1258. }
  1259. Point3F one, two, three;
  1260. getColumn(0, &one);
  1261. getColumn(1, &two);
  1262. getColumn(2, &three);
  1263. // check columns
  1264. {
  1265. if (mDot(one, two) > 0.0001f ||
  1266. mDot(one, three) > 0.0001f ||
  1267. mDot(two, three) > 0.0001f)
  1268. return false;
  1269. if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
  1270. mFabs(1.0f - two.lenSquared()) > 0.0001f ||
  1271. mFabs(1.0f - three.lenSquared()) > 0.0001f)
  1272. return false;
  1273. }
  1274. getRow(0, &one);
  1275. getRow(1, &two);
  1276. getRow(2, &three);
  1277. // check rows
  1278. {
  1279. if (mDot(one, two) > 0.0001f ||
  1280. mDot(one, three) > 0.0001f ||
  1281. mDot(two, three) > 0.0001f)
  1282. return false;
  1283. if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
  1284. mFabs(1.0f - two.lenSquared()) > 0.0001f ||
  1285. mFabs(1.0f - three.lenSquared()) > 0.0001f)
  1286. return false;
  1287. }
  1288. return true;
  1289. }
  1290. template<typename DATA_TYPE, U32 rows, U32 cols>
  1291. inline Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::affineInverse()
  1292. {
  1293. AssertFatal(rows >= 4 && cols >= 4, "affineInverse requires at least 4x4");
  1294. Matrix<DATA_TYPE, 3, 3> subMatrix;
  1295. for (U32 i = 0; i < 3; i++) {
  1296. for (U32 j = 0; j < 3; j++) {
  1297. subMatrix(i, j) = (*this)(i, j);
  1298. }
  1299. }
  1300. subMatrix.transpose();
  1301. Point3F pos = getPosition();
  1302. (*this)(0, 3) = mDot(subMatrix.getColumn3F(0), pos);
  1303. (*this)(1, 3) = mDot(subMatrix.getColumn3F(1), pos);
  1304. (*this)(2, 3) = mDot(subMatrix.getColumn3F(2), pos);
  1305. return *this;
  1306. }
  1307. template<typename DATA_TYPE, U32 rows, U32 cols>
  1308. inline EulerF Matrix<DATA_TYPE, rows, cols>::toEuler() const
  1309. {
  1310. AssertFatal(rows >= 3 && cols >= 3, "Euler rotations require at least a 3x3 matrix.");
  1311. // Extract rotation matrix components
  1312. const DATA_TYPE m00 = (*this)(0, 0);
  1313. const DATA_TYPE m01 = (*this)(0, 1);
  1314. const DATA_TYPE m02 = (*this)(0, 2);
  1315. const DATA_TYPE m10 = (*this)(1, 0);
  1316. const DATA_TYPE m11 = (*this)(1, 1);
  1317. const DATA_TYPE m21 = (*this)(2, 1);
  1318. const DATA_TYPE m22 = (*this)(2, 2);
  1319. // like all others assume float for now.
  1320. EulerF r;
  1321. r.x = mAsin(mClampF(m21, -1.0, 1.0));
  1322. if (mCos(r.x) != 0.0f) {
  1323. r.y = mAtan2(-m02, m22); // yaw
  1324. r.z = mAtan2(-m10, m11); // roll
  1325. }
  1326. else {
  1327. r.y = 0.0f;
  1328. r.z = mAtan2(m01, m00); // this rolls when pitch is +90 degrees
  1329. }
  1330. return r;
  1331. }
  1332. template<typename DATA_TYPE, U32 rows, U32 cols>
  1333. inline void Matrix<DATA_TYPE, rows, cols>::dumpMatrix(const char* caption) const
  1334. {
  1335. U32 size = (caption == NULL) ? 0 : dStrlen(caption);
  1336. FrameTemp<char> spacer(size + 1);
  1337. char* spacerRef = spacer;
  1338. // is_floating_point should return true for floats and doubles.
  1339. const char* formatSpec = std::is_floating_point_v<DATA_TYPE> ? " %-8.4f" : " %d";
  1340. dMemset(spacerRef, ' ', size);
  1341. // null terminate.
  1342. spacerRef[size] = '\0';
  1343. /*Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0, 0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
  1344. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1, 0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
  1345. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2, 0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
  1346. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3, 0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);*/
  1347. StringBuilder str;
  1348. str.format("%s = |", caption);
  1349. for (U32 i = 0; i < rows; i++) {
  1350. if (i > 0) {
  1351. str.append(spacerRef);
  1352. }
  1353. for (U32 j = 0; j < cols; j++) {
  1354. str.format(formatSpec, (*this)(i, j));
  1355. }
  1356. str.append(" |\n");
  1357. }
  1358. Con::printf("%s", str.end().c_str());
  1359. }
  1360. //------------------------------------
  1361. // Non-member methods
  1362. //------------------------------------
  1363. template<typename DATA_TYPE, std::size_t Rows, std::size_t Cols>
  1364. inline void mTransformPlane(
  1365. const Matrix<DATA_TYPE, Rows, Cols>& mat,
  1366. const Point3F& scale,
  1367. const PlaneF& plane,
  1368. PlaneF* result
  1369. ) {
  1370. AssertFatal(Rows == 4 && Cols == 4, "Matrix must be 4x4");
  1371. // Create a non-const copy of the matrix
  1372. Matrix<float, 4, 4> matCopy = mat;
  1373. // Create the inverse scale matrix
  1374. Matrix<DATA_TYPE, 4, 4> invScale = Matrix<DATA_TYPE, 4, 4>::Identity;
  1375. invScale(0, 0) = 1.0f / scale.x;
  1376. invScale(1, 1) = 1.0f / scale.y;
  1377. invScale(2, 2) = 1.0f / scale.z;
  1378. // Compute the inverse transpose of the matrix
  1379. Matrix<DATA_TYPE, 4, 4> invTrMatrix = matCopy.transpose().affineInverse() * invScale;
  1380. // Transform the plane normal
  1381. Point3F norm(plane.x, plane.y, plane.z);
  1382. norm = invTrMatrix * norm;
  1383. float normLength = std::sqrt(norm.x * norm.x + norm.y * norm.y + norm.z * norm.z);
  1384. norm.x /= normLength;
  1385. norm.y /= normLength;
  1386. norm.z /= normLength;
  1387. // Transform the plane point
  1388. Point3F point = norm * (-plane.d);
  1389. Matrix<DATA_TYPE, 4, 4> temp = mat;
  1390. point.x *= scale.x;
  1391. point.y *= scale.y;
  1392. point.z *= scale.z;
  1393. point = temp * point;
  1394. // Recompute the plane distance
  1395. PlaneF resultPlane(point, norm);
  1396. result->x = resultPlane.x;
  1397. result->y = resultPlane.y;
  1398. result->z = resultPlane.z;
  1399. result->d = resultPlane.d;
  1400. }
  1401. //--------------------------------------------
  1402. // INLINE FUNCTIONS END
  1403. //--------------------------------------------
  1404. typedef Matrix<F32, 4, 4> MatrixF;
  1405. class MatrixTemplateExport
  1406. {
  1407. public:
  1408. template <typename T, U32 rows, U32 cols>
  1409. static EngineFieldTable::Field getMatrixField();
  1410. };
  1411. template<typename T, U32 rows, U32 cols>
  1412. inline EngineFieldTable::Field MatrixTemplateExport::getMatrixField()
  1413. {
  1414. typedef Matrix<T, rows, cols> ThisType;
  1415. return _FIELD_AS(T, data, data, rows * cols, "");
  1416. }
  1417. #endif // !USE_TEMPLATE_MATRIX
  1418. #endif //_MMATRIX_H_