123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679 |
- /*
- Bullet Continuous Collision Detection and Physics Library
- Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
- This software is provided 'as-is', without any express or implied warranty.
- In no event will the authors be held liable for any damages arising from the use of this software.
- Permission is granted to anyone to use this software for any purpose,
- including commercial applications, and to alter it and redistribute it freely,
- subject to the following restrictions:
- 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
- 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
- 3. This notice may not be removed or altered from any source distribution.
- */
- /*
- 2014 May: btGeneric6DofSpring2Constraint is created from the original (2.82.2712) btGeneric6DofConstraint by Gabor Puhr and Tamas Umenhoffer
- Pros:
- - Much more accurate and stable in a lot of situation. (Especially when a sleeping chain of RBs connected with 6dof2 is pulled)
- - Stable and accurate spring with minimal energy loss that works with all of the solvers. (latter is not true for the original 6dof spring)
- - Servo motor functionality
- - Much more accurate bouncing. 0 really means zero bouncing (not true for the original 6odf) and there is only a minimal energy loss when the value is 1 (because of the solvers' precision)
- - Rotation order for the Euler system can be set. (One axis' freedom is still limited to pi/2)
- Cons:
- - It is slower than the original 6dof. There is no exact ratio, but half speed is a good estimation.
- - At bouncing the correct velocity is calculated, but not the correct position. (it is because of the solver can correct position or velocity, but not both.)
- */
- /// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
- /// Added support for generic constraint solver through getInfo1/getInfo2 methods
- /*
- 2007-09-09
- btGeneric6DofConstraint Refactored by Francisco Le?n
- email: [email protected]
- http://gimpact.sf.net
- */
- #ifndef BT_GENERIC_6DOF_CONSTRAINT2_H
- #define BT_GENERIC_6DOF_CONSTRAINT2_H
- #include "LinearMath/btVector3.h"
- #include "btJacobianEntry.h"
- #include "btTypedConstraint.h"
- class btRigidBody;
- #ifdef BT_USE_DOUBLE_PRECISION
- #define btGeneric6DofSpring2ConstraintData2 btGeneric6DofSpring2ConstraintDoubleData2
- #define btGeneric6DofSpring2ConstraintDataName "btGeneric6DofSpring2ConstraintDoubleData2"
- #else
- #define btGeneric6DofSpring2ConstraintData2 btGeneric6DofSpring2ConstraintData
- #define btGeneric6DofSpring2ConstraintDataName "btGeneric6DofSpring2ConstraintData"
- #endif //BT_USE_DOUBLE_PRECISION
- enum RotateOrder
- {
- RO_XYZ=0,
- RO_XZY,
- RO_YXZ,
- RO_YZX,
- RO_ZXY,
- RO_ZYX
- };
- class btRotationalLimitMotor2
- {
- public:
- // upper < lower means free
- // upper == lower means locked
- // upper > lower means limited
- btScalar m_loLimit;
- btScalar m_hiLimit;
- btScalar m_bounce;
- btScalar m_stopERP;
- btScalar m_stopCFM;
- btScalar m_motorERP;
- btScalar m_motorCFM;
- bool m_enableMotor;
- btScalar m_targetVelocity;
- btScalar m_maxMotorForce;
- bool m_servoMotor;
- btScalar m_servoTarget;
- bool m_enableSpring;
- btScalar m_springStiffness;
- bool m_springStiffnessLimited;
- btScalar m_springDamping;
- bool m_springDampingLimited;
- btScalar m_equilibriumPoint;
- btScalar m_currentLimitError;
- btScalar m_currentLimitErrorHi;
- btScalar m_currentPosition;
- int m_currentLimit;
- btRotationalLimitMotor2()
- {
- m_loLimit = 1.0f;
- m_hiLimit = -1.0f;
- m_bounce = 0.0f;
- m_stopERP = 0.2f;
- m_stopCFM = 0.f;
- m_motorERP = 0.9f;
- m_motorCFM = 0.f;
- m_enableMotor = false;
- m_targetVelocity = 0;
- m_maxMotorForce = 0.1f;
- m_servoMotor = false;
- m_servoTarget = 0;
- m_enableSpring = false;
- m_springStiffness = 0;
- m_springStiffnessLimited = false;
- m_springDamping = 0;
- m_springDampingLimited = false;
- m_equilibriumPoint = 0;
- m_currentLimitError = 0;
- m_currentLimitErrorHi = 0;
- m_currentPosition = 0;
- m_currentLimit = 0;
- }
- btRotationalLimitMotor2(const btRotationalLimitMotor2 & limot)
- {
- m_loLimit = limot.m_loLimit;
- m_hiLimit = limot.m_hiLimit;
- m_bounce = limot.m_bounce;
- m_stopERP = limot.m_stopERP;
- m_stopCFM = limot.m_stopCFM;
- m_motorERP = limot.m_motorERP;
- m_motorCFM = limot.m_motorCFM;
- m_enableMotor = limot.m_enableMotor;
- m_targetVelocity = limot.m_targetVelocity;
- m_maxMotorForce = limot.m_maxMotorForce;
- m_servoMotor = limot.m_servoMotor;
- m_servoTarget = limot.m_servoTarget;
- m_enableSpring = limot.m_enableSpring;
- m_springStiffness = limot.m_springStiffness;
- m_springStiffnessLimited = limot.m_springStiffnessLimited;
- m_springDamping = limot.m_springDamping;
- m_springDampingLimited = limot.m_springDampingLimited;
- m_equilibriumPoint = limot.m_equilibriumPoint;
- m_currentLimitError = limot.m_currentLimitError;
- m_currentLimitErrorHi = limot.m_currentLimitErrorHi;
- m_currentPosition = limot.m_currentPosition;
- m_currentLimit = limot.m_currentLimit;
- }
- bool isLimited()
- {
- if(m_loLimit > m_hiLimit) return false;
- return true;
- }
- void testLimitValue(btScalar test_value);
- };
- class btTranslationalLimitMotor2
- {
- public:
- // upper < lower means free
- // upper == lower means locked
- // upper > lower means limited
- btVector3 m_lowerLimit;
- btVector3 m_upperLimit;
- btVector3 m_bounce;
- btVector3 m_stopERP;
- btVector3 m_stopCFM;
- btVector3 m_motorERP;
- btVector3 m_motorCFM;
- bool m_enableMotor[3];
- bool m_servoMotor[3];
- bool m_enableSpring[3];
- btVector3 m_servoTarget;
- btVector3 m_springStiffness;
- bool m_springStiffnessLimited[3];
- btVector3 m_springDamping;
- bool m_springDampingLimited[3];
- btVector3 m_equilibriumPoint;
- btVector3 m_targetVelocity;
- btVector3 m_maxMotorForce;
- btVector3 m_currentLimitError;
- btVector3 m_currentLimitErrorHi;
- btVector3 m_currentLinearDiff;
- int m_currentLimit[3];
- btTranslationalLimitMotor2()
- {
- m_lowerLimit .setValue(0.f , 0.f , 0.f );
- m_upperLimit .setValue(0.f , 0.f , 0.f );
- m_bounce .setValue(0.f , 0.f , 0.f );
- m_stopERP .setValue(0.2f, 0.2f, 0.2f);
- m_stopCFM .setValue(0.f , 0.f , 0.f );
- m_motorERP .setValue(0.9f, 0.9f, 0.9f);
- m_motorCFM .setValue(0.f , 0.f , 0.f );
- m_currentLimitError .setValue(0.f , 0.f , 0.f );
- m_currentLimitErrorHi.setValue(0.f , 0.f , 0.f );
- m_currentLinearDiff .setValue(0.f , 0.f , 0.f );
- for(int i=0; i < 3; i++)
- {
- m_enableMotor[i] = false;
- m_servoMotor[i] = false;
- m_enableSpring[i] = false;
- m_servoTarget[i] = btScalar(0.f);
- m_springStiffness[i] = btScalar(0.f);
- m_springStiffnessLimited[i] = false;
- m_springDamping[i] = btScalar(0.f);
- m_springDampingLimited[i] = false;
- m_equilibriumPoint[i] = btScalar(0.f);
- m_targetVelocity[i] = btScalar(0.f);
- m_maxMotorForce[i] = btScalar(0.f);
-
- m_currentLimit[i] = 0;
- }
- }
- btTranslationalLimitMotor2(const btTranslationalLimitMotor2 & other )
- {
- m_lowerLimit = other.m_lowerLimit;
- m_upperLimit = other.m_upperLimit;
- m_bounce = other.m_bounce;
- m_stopERP = other.m_stopERP;
- m_stopCFM = other.m_stopCFM;
- m_motorERP = other.m_motorERP;
- m_motorCFM = other.m_motorCFM;
-
- m_currentLimitError = other.m_currentLimitError;
- m_currentLimitErrorHi = other.m_currentLimitErrorHi;
- m_currentLinearDiff = other.m_currentLinearDiff;
- for(int i=0; i < 3; i++)
- {
- m_enableMotor[i] = other.m_enableMotor[i];
- m_servoMotor[i] = other.m_servoMotor[i];
- m_enableSpring[i] = other.m_enableSpring[i];
- m_servoTarget[i] = other.m_servoTarget[i];
- m_springStiffness[i] = other.m_springStiffness[i];
- m_springStiffnessLimited[i] = other.m_springStiffnessLimited[i];
- m_springDamping[i] = other.m_springDamping[i];
- m_springDampingLimited[i] = other.m_springDampingLimited[i];
- m_equilibriumPoint[i] = other.m_equilibriumPoint[i];
- m_targetVelocity[i] = other.m_targetVelocity[i];
- m_maxMotorForce[i] = other.m_maxMotorForce[i];
- m_currentLimit[i] = other.m_currentLimit[i];
- }
- }
- inline bool isLimited(int limitIndex)
- {
- return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
- }
- void testLimitValue(int limitIndex, btScalar test_value);
- };
- enum bt6DofFlags2
- {
- BT_6DOF_FLAGS_CFM_STOP2 = 1,
- BT_6DOF_FLAGS_ERP_STOP2 = 2,
- BT_6DOF_FLAGS_CFM_MOTO2 = 4,
- BT_6DOF_FLAGS_ERP_MOTO2 = 8
- };
- #define BT_6DOF_FLAGS_AXIS_SHIFT2 4 // bits per axis
- ATTRIBUTE_ALIGNED16(class) btGeneric6DofSpring2Constraint : public btTypedConstraint
- {
- protected:
- btTransform m_frameInA;
- btTransform m_frameInB;
- btJacobianEntry m_jacLinear[3];
- btJacobianEntry m_jacAng[3];
- btTranslationalLimitMotor2 m_linearLimits;
- btRotationalLimitMotor2 m_angularLimits[3];
- RotateOrder m_rotateOrder;
- protected:
- btTransform m_calculatedTransformA;
- btTransform m_calculatedTransformB;
- btVector3 m_calculatedAxisAngleDiff;
- btVector3 m_calculatedAxis[3];
- btVector3 m_calculatedLinearDiff;
- btScalar m_factA;
- btScalar m_factB;
- bool m_hasStaticBody;
- int m_flags;
- btGeneric6DofSpring2Constraint& operator=(btGeneric6DofSpring2Constraint&)
- {
- btAssert(0);
- return *this;
- }
- int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
- int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
- void calculateLinearInfo();
- void calculateAngleInfo();
- void testAngularLimitMotor(int axis_index);
- void calculateJacobi(btRotationalLimitMotor2* limot, const btTransform& transA,const btTransform& transB, btConstraintInfo2* info, int srow, btVector3& ax1, int rotational, int rotAllowed);
- int get_limit_motor_info2(btRotationalLimitMotor2* limot,
- const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
- btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed = false);
- public:
- BT_DECLARE_ALIGNED_ALLOCATOR();
- btGeneric6DofSpring2Constraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, RotateOrder rotOrder = RO_XYZ);
- btGeneric6DofSpring2Constraint(btRigidBody& rbB, const btTransform& frameInB, RotateOrder rotOrder = RO_XYZ);
- virtual void buildJacobian() {}
- virtual void getInfo1 (btConstraintInfo1* info);
- virtual void getInfo2 (btConstraintInfo2* info);
- virtual int calculateSerializeBufferSize() const;
- virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
- btRotationalLimitMotor2* getRotationalLimitMotor(int index) { return &m_angularLimits[index]; }
- btTranslationalLimitMotor2* getTranslationalLimitMotor() { return &m_linearLimits; }
- // Calculates the global transform for the joint offset for body A an B, and also calculates the angle differences between the bodies.
- void calculateTransforms(const btTransform& transA,const btTransform& transB);
- void calculateTransforms();
- // Gets the global transform of the offset for body A
- const btTransform & getCalculatedTransformA() const { return m_calculatedTransformA; }
- // Gets the global transform of the offset for body B
- const btTransform & getCalculatedTransformB() const { return m_calculatedTransformB; }
- const btTransform & getFrameOffsetA() const { return m_frameInA; }
- const btTransform & getFrameOffsetB() const { return m_frameInB; }
- btTransform & getFrameOffsetA() { return m_frameInA; }
- btTransform & getFrameOffsetB() { return m_frameInB; }
- // Get the rotation axis in global coordinates ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
- btVector3 getAxis(int axis_index) const { return m_calculatedAxis[axis_index]; }
- // Get the relative Euler angle ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
- btScalar getAngle(int axis_index) const { return m_calculatedAxisAngleDiff[axis_index]; }
- // Get the relative position of the constraint pivot ( btGeneric6DofSpring2Constraint::calculateTransforms() must be called previously )
- btScalar getRelativePivotPosition(int axis_index) const { return m_calculatedLinearDiff[axis_index]; }
- void setFrames(const btTransform & frameA, const btTransform & frameB);
- void setLinearLowerLimit(const btVector3& linearLower) { m_linearLimits.m_lowerLimit = linearLower; }
- void getLinearLowerLimit(btVector3& linearLower) { linearLower = m_linearLimits.m_lowerLimit; }
- void setLinearUpperLimit(const btVector3& linearUpper) { m_linearLimits.m_upperLimit = linearUpper; }
- void getLinearUpperLimit(btVector3& linearUpper) { linearUpper = m_linearLimits.m_upperLimit; }
- void setAngularLowerLimit(const btVector3& angularLower)
- {
- for(int i = 0; i < 3; i++)
- m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
- }
- void setAngularLowerLimitReversed(const btVector3& angularLower)
- {
- for(int i = 0; i < 3; i++)
- m_angularLimits[i].m_hiLimit = btNormalizeAngle(-angularLower[i]);
- }
- void getAngularLowerLimit(btVector3& angularLower)
- {
- for(int i = 0; i < 3; i++)
- angularLower[i] = m_angularLimits[i].m_loLimit;
- }
- void getAngularLowerLimitReversed(btVector3& angularLower)
- {
- for(int i = 0; i < 3; i++)
- angularLower[i] = -m_angularLimits[i].m_hiLimit;
- }
- void setAngularUpperLimit(const btVector3& angularUpper)
- {
- for(int i = 0; i < 3; i++)
- m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
- }
- void setAngularUpperLimitReversed(const btVector3& angularUpper)
- {
- for(int i = 0; i < 3; i++)
- m_angularLimits[i].m_loLimit = btNormalizeAngle(-angularUpper[i]);
- }
- void getAngularUpperLimit(btVector3& angularUpper)
- {
- for(int i = 0; i < 3; i++)
- angularUpper[i] = m_angularLimits[i].m_hiLimit;
- }
- void getAngularUpperLimitReversed(btVector3& angularUpper)
- {
- for(int i = 0; i < 3; i++)
- angularUpper[i] = -m_angularLimits[i].m_loLimit;
- }
- //first 3 are linear, next 3 are angular
- void setLimit(int axis, btScalar lo, btScalar hi)
- {
- if(axis<3)
- {
- m_linearLimits.m_lowerLimit[axis] = lo;
- m_linearLimits.m_upperLimit[axis] = hi;
- }
- else
- {
- lo = btNormalizeAngle(lo);
- hi = btNormalizeAngle(hi);
- m_angularLimits[axis-3].m_loLimit = lo;
- m_angularLimits[axis-3].m_hiLimit = hi;
- }
- }
- void setLimitReversed(int axis, btScalar lo, btScalar hi)
- {
- if(axis<3)
- {
- m_linearLimits.m_lowerLimit[axis] = lo;
- m_linearLimits.m_upperLimit[axis] = hi;
- }
- else
- {
- lo = btNormalizeAngle(lo);
- hi = btNormalizeAngle(hi);
- m_angularLimits[axis-3].m_hiLimit = -lo;
- m_angularLimits[axis-3].m_loLimit = -hi;
- }
- }
- bool isLimited(int limitIndex)
- {
- if(limitIndex<3)
- {
- return m_linearLimits.isLimited(limitIndex);
- }
- return m_angularLimits[limitIndex-3].isLimited();
- }
- void setRotationOrder(RotateOrder order) { m_rotateOrder = order; }
- RotateOrder getRotationOrder() { return m_rotateOrder; }
- void setAxis( const btVector3& axis1, const btVector3& axis2);
- void setBounce(int index, btScalar bounce);
- void enableMotor(int index, bool onOff);
- void setServo(int index, bool onOff); // set the type of the motor (servo or not) (the motor has to be turned on for servo also)
- void setTargetVelocity(int index, btScalar velocity);
- void setServoTarget(int index, btScalar target);
- void setMaxMotorForce(int index, btScalar force);
- void enableSpring(int index, bool onOff);
- void setStiffness(int index, btScalar stiffness, bool limitIfNeeded = true); // if limitIfNeeded is true the system will automatically limit the stiffness in necessary situations where otherwise the spring would move unrealistically too widely
- void setDamping(int index, btScalar damping, bool limitIfNeeded = true); // if limitIfNeeded is true the system will automatically limit the damping in necessary situations where otherwise the spring would blow up
- void setEquilibriumPoint(); // set the current constraint position/orientation as an equilibrium point for all DOF
- void setEquilibriumPoint(int index); // set the current constraint position/orientation as an equilibrium point for given DOF
- void setEquilibriumPoint(int index, btScalar val);
- //override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
- //If no axis is provided, it uses the default axis for this constraint.
- virtual void setParam(int num, btScalar value, int axis = -1);
- virtual btScalar getParam(int num, int axis = -1) const;
-
- static btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
- static bool matrixToEulerXYZ(const btMatrix3x3& mat,btVector3& xyz);
- static bool matrixToEulerXZY(const btMatrix3x3& mat,btVector3& xyz);
- static bool matrixToEulerYXZ(const btMatrix3x3& mat,btVector3& xyz);
- static bool matrixToEulerYZX(const btMatrix3x3& mat,btVector3& xyz);
- static bool matrixToEulerZXY(const btMatrix3x3& mat,btVector3& xyz);
- static bool matrixToEulerZYX(const btMatrix3x3& mat,btVector3& xyz);
- };
- struct btGeneric6DofSpring2ConstraintData
- {
- btTypedConstraintData m_typeConstraintData;
- btTransformFloatData m_rbAFrame;
- btTransformFloatData m_rbBFrame;
- btVector3FloatData m_linearUpperLimit;
- btVector3FloatData m_linearLowerLimit;
- btVector3FloatData m_linearBounce;
- btVector3FloatData m_linearStopERP;
- btVector3FloatData m_linearStopCFM;
- btVector3FloatData m_linearMotorERP;
- btVector3FloatData m_linearMotorCFM;
- btVector3FloatData m_linearTargetVelocity;
- btVector3FloatData m_linearMaxMotorForce;
- btVector3FloatData m_linearServoTarget;
- btVector3FloatData m_linearSpringStiffness;
- btVector3FloatData m_linearSpringDamping;
- btVector3FloatData m_linearEquilibriumPoint;
- char m_linearEnableMotor[4];
- char m_linearServoMotor[4];
- char m_linearEnableSpring[4];
- char m_linearSpringStiffnessLimited[4];
- char m_linearSpringDampingLimited[4];
- char m_padding1[4];
- btVector3FloatData m_angularUpperLimit;
- btVector3FloatData m_angularLowerLimit;
- btVector3FloatData m_angularBounce;
- btVector3FloatData m_angularStopERP;
- btVector3FloatData m_angularStopCFM;
- btVector3FloatData m_angularMotorERP;
- btVector3FloatData m_angularMotorCFM;
- btVector3FloatData m_angularTargetVelocity;
- btVector3FloatData m_angularMaxMotorForce;
- btVector3FloatData m_angularServoTarget;
- btVector3FloatData m_angularSpringStiffness;
- btVector3FloatData m_angularSpringDamping;
- btVector3FloatData m_angularEquilibriumPoint;
- char m_angularEnableMotor[4];
- char m_angularServoMotor[4];
- char m_angularEnableSpring[4];
- char m_angularSpringStiffnessLimited[4];
- char m_angularSpringDampingLimited[4];
- int m_rotateOrder;
- };
- struct btGeneric6DofSpring2ConstraintDoubleData2
- {
- btTypedConstraintDoubleData m_typeConstraintData;
- btTransformDoubleData m_rbAFrame;
- btTransformDoubleData m_rbBFrame;
- btVector3DoubleData m_linearUpperLimit;
- btVector3DoubleData m_linearLowerLimit;
- btVector3DoubleData m_linearBounce;
- btVector3DoubleData m_linearStopERP;
- btVector3DoubleData m_linearStopCFM;
- btVector3DoubleData m_linearMotorERP;
- btVector3DoubleData m_linearMotorCFM;
- btVector3DoubleData m_linearTargetVelocity;
- btVector3DoubleData m_linearMaxMotorForce;
- btVector3DoubleData m_linearServoTarget;
- btVector3DoubleData m_linearSpringStiffness;
- btVector3DoubleData m_linearSpringDamping;
- btVector3DoubleData m_linearEquilibriumPoint;
- char m_linearEnableMotor[4];
- char m_linearServoMotor[4];
- char m_linearEnableSpring[4];
- char m_linearSpringStiffnessLimited[4];
- char m_linearSpringDampingLimited[4];
- char m_padding1[4];
- btVector3DoubleData m_angularUpperLimit;
- btVector3DoubleData m_angularLowerLimit;
- btVector3DoubleData m_angularBounce;
- btVector3DoubleData m_angularStopERP;
- btVector3DoubleData m_angularStopCFM;
- btVector3DoubleData m_angularMotorERP;
- btVector3DoubleData m_angularMotorCFM;
- btVector3DoubleData m_angularTargetVelocity;
- btVector3DoubleData m_angularMaxMotorForce;
- btVector3DoubleData m_angularServoTarget;
- btVector3DoubleData m_angularSpringStiffness;
- btVector3DoubleData m_angularSpringDamping;
- btVector3DoubleData m_angularEquilibriumPoint;
- char m_angularEnableMotor[4];
- char m_angularServoMotor[4];
- char m_angularEnableSpring[4];
- char m_angularSpringStiffnessLimited[4];
- char m_angularSpringDampingLimited[4];
- int m_rotateOrder;
- };
- SIMD_FORCE_INLINE int btGeneric6DofSpring2Constraint::calculateSerializeBufferSize() const
- {
- return sizeof(btGeneric6DofSpring2ConstraintData2);
- }
- SIMD_FORCE_INLINE const char* btGeneric6DofSpring2Constraint::serialize(void* dataBuffer, btSerializer* serializer) const
- {
- btGeneric6DofSpring2ConstraintData2* dof = (btGeneric6DofSpring2ConstraintData2*)dataBuffer;
- btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
- m_frameInA.serialize(dof->m_rbAFrame);
- m_frameInB.serialize(dof->m_rbBFrame);
- int i;
- for (i=0;i<3;i++)
- {
- dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit;
- dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit;
- dof->m_angularBounce.m_floats[i] = m_angularLimits[i].m_bounce;
- dof->m_angularStopERP.m_floats[i] = m_angularLimits[i].m_stopERP;
- dof->m_angularStopCFM.m_floats[i] = m_angularLimits[i].m_stopCFM;
- dof->m_angularMotorERP.m_floats[i] = m_angularLimits[i].m_motorERP;
- dof->m_angularMotorCFM.m_floats[i] = m_angularLimits[i].m_motorCFM;
- dof->m_angularTargetVelocity.m_floats[i] = m_angularLimits[i].m_targetVelocity;
- dof->m_angularMaxMotorForce.m_floats[i] = m_angularLimits[i].m_maxMotorForce;
- dof->m_angularServoTarget.m_floats[i] = m_angularLimits[i].m_servoTarget;
- dof->m_angularSpringStiffness.m_floats[i] = m_angularLimits[i].m_springStiffness;
- dof->m_angularSpringDamping.m_floats[i] = m_angularLimits[i].m_springDamping;
- dof->m_angularEquilibriumPoint.m_floats[i] = m_angularLimits[i].m_equilibriumPoint;
- }
- dof->m_angularLowerLimit.m_floats[3] = 0;
- dof->m_angularUpperLimit.m_floats[3] = 0;
- dof->m_angularBounce.m_floats[3] = 0;
- dof->m_angularStopERP.m_floats[3] = 0;
- dof->m_angularStopCFM.m_floats[3] = 0;
- dof->m_angularMotorERP.m_floats[3] = 0;
- dof->m_angularMotorCFM.m_floats[3] = 0;
- dof->m_angularTargetVelocity.m_floats[3] = 0;
- dof->m_angularMaxMotorForce.m_floats[3] = 0;
- dof->m_angularServoTarget.m_floats[3] = 0;
- dof->m_angularSpringStiffness.m_floats[3] = 0;
- dof->m_angularSpringDamping.m_floats[3] = 0;
- dof->m_angularEquilibriumPoint.m_floats[3] = 0;
- for (i=0;i<4;i++)
- {
- dof->m_angularEnableMotor[i] = i < 3 ? ( m_angularLimits[i].m_enableMotor ? 1 : 0 ) : 0;
- dof->m_angularServoMotor[i] = i < 3 ? ( m_angularLimits[i].m_servoMotor ? 1 : 0 ) : 0;
- dof->m_angularEnableSpring[i] = i < 3 ? ( m_angularLimits[i].m_enableSpring ? 1 : 0 ) : 0;
- dof->m_angularSpringStiffnessLimited[i] = i < 3 ? ( m_angularLimits[i].m_springStiffnessLimited ? 1 : 0 ) : 0;
- dof->m_angularSpringDampingLimited[i] = i < 3 ? ( m_angularLimits[i].m_springDampingLimited ? 1 : 0 ) : 0;
- }
- m_linearLimits.m_lowerLimit.serialize( dof->m_linearLowerLimit );
- m_linearLimits.m_upperLimit.serialize( dof->m_linearUpperLimit );
- m_linearLimits.m_bounce.serialize( dof->m_linearBounce );
- m_linearLimits.m_stopERP.serialize( dof->m_linearStopERP );
- m_linearLimits.m_stopCFM.serialize( dof->m_linearStopCFM );
- m_linearLimits.m_motorERP.serialize( dof->m_linearMotorERP );
- m_linearLimits.m_motorCFM.serialize( dof->m_linearMotorCFM );
- m_linearLimits.m_targetVelocity.serialize( dof->m_linearTargetVelocity );
- m_linearLimits.m_maxMotorForce.serialize( dof->m_linearMaxMotorForce );
- m_linearLimits.m_servoTarget.serialize( dof->m_linearServoTarget );
- m_linearLimits.m_springStiffness.serialize( dof->m_linearSpringStiffness );
- m_linearLimits.m_springDamping.serialize( dof->m_linearSpringDamping );
- m_linearLimits.m_equilibriumPoint.serialize( dof->m_linearEquilibriumPoint );
- for (i=0;i<4;i++)
- {
- dof->m_linearEnableMotor[i] = i < 3 ? ( m_linearLimits.m_enableMotor[i] ? 1 : 0 ) : 0;
- dof->m_linearServoMotor[i] = i < 3 ? ( m_linearLimits.m_servoMotor[i] ? 1 : 0 ) : 0;
- dof->m_linearEnableSpring[i] = i < 3 ? ( m_linearLimits.m_enableSpring[i] ? 1 : 0 ) : 0;
- dof->m_linearSpringStiffnessLimited[i] = i < 3 ? ( m_linearLimits.m_springStiffnessLimited[i] ? 1 : 0 ) : 0;
- dof->m_linearSpringDampingLimited[i] = i < 3 ? ( m_linearLimits.m_springDampingLimited[i] ? 1 : 0 ) : 0;
- }
- dof->m_rotateOrder = m_rotateOrder;
- dof->m_padding1[0] = 0;
- dof->m_padding1[1] = 0;
- dof->m_padding1[2] = 0;
- dof->m_padding1[3] = 0;
- return btGeneric6DofSpring2ConstraintDataName;
- }
- #endif //BT_GENERIC_6DOF_CONSTRAINT_H
|