| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053 | //-----------------------------------------------------------------------------// Copyright (c) 2012 GarageGames, LLC//// Permission is hereby granted, free of charge, to any person obtaining a copy// of this software and associated documentation files (the "Software"), to// deal in the Software without restriction, including without limitation the// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or// sell copies of the Software, and to permit persons to whom the Software is// furnished to do so, subject to the following conditions://// The above copyright notice and this permission notice shall be included in// all copies or substantial portions of the Software.//// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS// IN THE SOFTWARE.//-----------------------------------------------------------------------------#ifndef _MMATRIX_H_#define _MMATRIX_H_#include <algorithm>#ifndef _MPLANE_H_#include "math/mPlane.h"#endif#ifndef _MBOX_H_#include "math/mBox.h"#endif#ifndef _MPOINT4_H_#include "math/mPoint4.h"#endif#ifndef _ENGINETYPEINFO_H_#include "console/engineTypeInfo.h"#endif#ifndef _FRAMEALLOCATOR_H_#include "core/frameAllocator.h"#endif#ifndef _STRINGFUNCTIONS_H_#include "core/strings/stringFunctions.h"#endif#ifndef _CONSOLE_H_#include "console/console.h"#endif#ifndef USE_TEMPLATE_MATRIX/// 4x4 Matrix Class////// This runs at F32 precision.class MatrixF{   friend class MatrixFEngineExport;private:   F32 m[16];     ///< Note: Torque uses row-major matricespublic:   /// Create an uninitialized matrix.   ///   /// @param   identity    If true, initialize to the identity matrix.   explicit MatrixF(bool identity=false);   /// Create a matrix to rotate about origin by e.   /// @see set   explicit MatrixF( const EulerF &e);   /// Create a matrix to rotate about p by e.   /// @see set   MatrixF( const EulerF &e, const Point3F& p);   /// Get the index in m to element in column i, row j   ///   /// This is necessary as we have m as a one dimensional array.   ///   /// @param   i   Column desired.   /// @param   j   Row desired.   static U32 idx(U32 i, U32 j) { return (i + j*4); }   /// Initialize matrix to rotate about origin by e.   MatrixF& set( const EulerF &e);   /// Initialize matrix to rotate about p by e.   MatrixF& set( const EulerF &e, const Point3F& p);   /// Initialize matrix with a cross product of p.   MatrixF& setCrossProduct( const Point3F &p);   /// Initialize matrix with a tensor product of p.   MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);   operator F32*() { return (m); }              ///< Allow people to get at m.   operator const F32*() const { return (F32*)(m); }  ///< Allow people to get at m.   bool isAffine() const;                       ///< Check to see if this is an affine matrix.   bool isIdentity() const;                     ///< Checks for identity matrix.   /// Make this an identity matrix.   MatrixF& identity();   /// Invert m.   MatrixF& inverse();   /// Copy the inversion of this into out matrix.   void invertTo( MatrixF *out );   /// Take inverse of matrix assuming it is affine (rotation,   /// scale, sheer, translation only).   MatrixF& affineInverse();              /// Swap rows and columns.   MatrixF& transpose();   /// M * Matrix(p) -> M   MatrixF& scale( const Point3F &s );               MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); }   /// Return scale assuming scale was applied via mat.scale(s).   Point3F getScale() const;   EulerF toEuler() const;   F32 determinant() const {      return m_matF_determinant(*this);   }   /// Compute the inverse of the matrix.   ///   /// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if   /// the determinant is 0.   ///   /// Note: In most cases you want to use the normal inverse function.  This method should   ///       be used if the matrix has something other than (0,0,0,1) in the bottom row.   bool fullInverse();   /// Reverse depth for projection matrix   /// Simplifies reversal matrix mult to 4 subtractions   void reverseProjection();   /// Swaps rows and columns into matrix.   void transposeTo(F32 *matrix) const;   /// Normalize the matrix.   void normalize();   /// Copy the requested column into a Point4F.   void getColumn(S32 col, Point4F *cptr) const;   Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; }   /// Copy the requested column into a Point3F.   ///   /// This drops the bottom-most row.   void getColumn(S32 col, Point3F *cptr) const;   Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; }   /// Set the specified column from a Point4F.   void setColumn(S32 col, const Point4F& cptr);   /// Set the specified column from a Point3F.   ///   /// The bottom-most row is not set.   void setColumn(S32 col, const Point3F& cptr);   /// Copy the specified row into a Point4F.   void getRow(S32 row, Point4F *cptr) const;   Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; }   /// Copy the specified row into a Point3F.   ///   /// Right-most item is dropped.   void getRow(S32 row, Point3F *cptr) const;   Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; }   /// Set the specified row from a Point4F.   void setRow(S32 row, const Point4F& cptr);   /// Set the specified row from a Point3F.   ///   /// The right-most item is not set.   void setRow(S32 row, const Point3F& cptr);   /// Get the position of the matrix.   ///   /// This is the 4th column of the matrix.   Point3F getPosition() const;   /// Set the position of the matrix.   ///   /// This is the 4th column of the matrix.   void setPosition( const Point3F &pos ) { setColumn( 3, pos ); }   /// Add the passed delta to the matrix position.   void displace( const Point3F &delta );   /// Get the x axis of the matrix.   ///   /// This is the 1st column of the matrix and is   /// normally considered the right vector.   VectorF getRightVector() const;   /// Get the y axis of the matrix.   ///   /// This is the 2nd column of the matrix and is   /// normally considered the forward vector.      VectorF getForwardVector() const;      /// Get the z axis of the matrix.   ///   /// This is the 3rd column of the matrix and is   /// normally considered the up vector.      VectorF getUpVector() const;   MatrixF&  mul(const MatrixF &a);                    ///< M * a -> M   MatrixF&  mulL(const MatrixF &a);                   ///< a * M -> M   MatrixF&  mul(const MatrixF &a, const MatrixF &b);  ///< a * b -> M   // Scalar multiplies   MatrixF&  mul(const F32 a);                         ///< M * a -> M   MatrixF&  mul(const MatrixF &a, const F32 b);       ///< a * b -> M   void mul( Point4F& p ) const;                       ///< M * p -> p (full [4x4] * [1x4])   void mulP( Point3F& p ) const;                      ///< M * p -> p (assume w = 1.0f)   void mulP( const Point3F &p, Point3F *d) const;     ///< M * p -> d (assume w = 1.0f)   void mulV( VectorF& p ) const;                      ///< M * v -> v (assume w = 0.0f)   void mulV( const VectorF &p, Point3F *d) const;     ///< M * v -> d (assume w = 0.0f)   void mul(Box3F& b) const;                           ///< Axial box -> Axial Box      MatrixF& add( const MatrixF& m );   /// <summary>   /// Turns this matrix into a view matrix that looks at target.   /// </summary>   /// <param name="eye">The eye position.</param>   /// <param name="target">The target position/direction.</param>   /// <param name="up">The up direction.</param>   void LookAt(const VectorF& eye, const VectorF& target, const VectorF& up);   /// Convenience function to allow people to treat this like an array.   F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }   F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; }   void dumpMatrix(const char *caption=NULL) const;   // Math operator overloads   //------------------------------------   friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 );   MatrixF& operator *= ( const MatrixF &m );   MatrixF &operator = (const MatrixF &m);   bool isNaN();   // Static identity matrix   const static MatrixF Identity;};class MatrixFEngineExport{public:   static EngineFieldTable::Field getMatrixField();};//--------------------------------------// Inline Functionsinline MatrixF::MatrixF(bool _identity){   if (_identity)      identity();   else      std::fill_n(m, 16, 0);}inline MatrixF::MatrixF( const EulerF &e ){   set(e);}inline MatrixF::MatrixF( const EulerF &e, const Point3F& p ){   set(e,p);}inline MatrixF& MatrixF::set( const EulerF &e){   m_matF_set_euler( e, *this );   return (*this);}inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p){   m_matF_set_euler_point( e, p, *this );   return (*this);}inline MatrixF& MatrixF::setCrossProduct( const Point3F &p){   m[1] = -(m[4] = p.z);   m[8] = -(m[2] = p.y);   m[6] = -(m[9] = p.x);   m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =      m[12] = m[13] = m[14] = 0.0f;   m[15] = 1;   return (*this);}inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q){   m[0] = p.x * q.x;   m[1] = p.x * q.y;   m[2] = p.x * q.z;   m[4] = p.y * q.x;   m[5] = p.y * q.y;   m[6] = p.y * q.z;   m[8] = p.z * q.x;   m[9] = p.z * q.y;   m[10] = p.z * q.z;   m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f;   m[15] = 1.0f;   return (*this);}inline bool MatrixF::isIdentity() const{   return   m[0]  == 1.0f &&   m[1]  == 0.0f &&   m[2]  == 0.0f &&   m[3]  == 0.0f &&   m[4]  == 0.0f &&   m[5]  == 1.0f &&   m[6]  == 0.0f &&   m[7]  == 0.0f &&   m[8]  == 0.0f &&   m[9]  == 0.0f &&   m[10] == 1.0f &&   m[11] == 0.0f &&   m[12] == 0.0f &&   m[13] == 0.0f &&   m[14] == 0.0f &&   m[15] == 1.0f;}inline MatrixF& MatrixF::identity(){   m[0]  = 1.0f;   m[1]  = 0.0f;   m[2]  = 0.0f;   m[3]  = 0.0f;   m[4]  = 0.0f;   m[5]  = 1.0f;   m[6]  = 0.0f;   m[7]  = 0.0f;   m[8]  = 0.0f;   m[9]  = 0.0f;   m[10] = 1.0f;   m[11] = 0.0f;   m[12] = 0.0f;   m[13] = 0.0f;   m[14] = 0.0f;   m[15] = 1.0f;   return (*this);}inline MatrixF& MatrixF::inverse(){   m_matF_inverse(m);   return (*this);}inline void MatrixF::invertTo( MatrixF *out ){   m_matF_invert_to(m,*out);}inline MatrixF& MatrixF::affineInverse(){//   AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");   m_matF_affineInverse(m);   return (*this);}inline MatrixF& MatrixF::transpose(){   m_matF_transpose(m);   return (*this);}inline MatrixF& MatrixF::scale(const Point3F& p){   m_matF_scale(m,p);   return *this;}inline Point3F MatrixF::getScale() const{   Point3F scale;   scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]);   scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]);   scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]);   return scale;}inline void MatrixF::normalize(){   m_matF_normalize(m);}inline MatrixF& MatrixF::mul( const MatrixF &a ){  // M * a -> M   AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!");   MatrixF tempThis(*this);   m_matF_x_matF(tempThis, a, *this);   return (*this);}inline MatrixF& MatrixF::mulL( const MatrixF &a ){  // a * M -> M   AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!");   MatrixF tempThis(*this);   m_matF_x_matF(a, tempThis, *this);   return (*this);}inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b ){  // a * b -> M   AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!");   m_matF_x_matF(a, b, *this);   return (*this);}inline MatrixF& MatrixF::mul(const F32 a){   for (U32 i = 0; i < 16; i++)      m[i] *= a;   return *this;}inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b){   *this = a;   mul(b);   return *this;}inline void MatrixF::mul( Point4F& p ) const{   Point4F temp;   m_matF_x_point4F(*this, &p.x, &temp.x);   p = temp;}inline void MatrixF::mulP( Point3F& p) const{   // M * p -> d   Point3F d;   m_matF_x_point3F(*this, &p.x, &d.x);   p = d;}inline void MatrixF::mulP( const Point3F &p, Point3F *d) const{   // M * p -> d   m_matF_x_point3F(*this, &p.x, &d->x);}inline void MatrixF::mulV( VectorF& v) const{   // M * v -> v   VectorF temp;   m_matF_x_vectorF(*this, &v.x, &temp.x);   v = temp;}inline void MatrixF::mulV( const VectorF &v, Point3F *d) const{   // M * v -> d   m_matF_x_vectorF(*this, &v.x, &d->x);}inline void MatrixF::mul(Box3F& b) const{   m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x);}inline MatrixF& MatrixF::add( const MatrixF& a ){   for( U32 i = 0; i < 16; ++ i )      m[ i ] += a.m[ i ];         return *this;}inline void MatrixF::LookAt(const VectorF& eye, const VectorF& target, const VectorF& up){   // Calculate the forward vector (camera direction).   VectorF zAxis = target; // Camera looks towards the target   zAxis.normalize();   // Calculate the right vector.   VectorF xAxis = mCross(up, zAxis);   xAxis.normalize();   // Recalculate the up vector.   VectorF yAxis = mCross(zAxis, xAxis);   // Set the rotation part of the matrix (camera axes).   setColumn(0, xAxis); // Right   setColumn(1, zAxis); // Forward   setColumn(2, yAxis); // Up   // Set the translation part (camera position).   setPosition(eye);}inline void MatrixF::getColumn(S32 col, Point4F *cptr) const{   cptr->x = m[col];   cptr->y = m[col+4];   cptr->z = m[col+8];   cptr->w = m[col+12];}inline void MatrixF::getColumn(S32 col, Point3F *cptr) const{   cptr->x = m[col];   cptr->y = m[col+4];   cptr->z = m[col+8];}inline void MatrixF::setColumn(S32 col, const Point4F &cptr){   m[col]   = cptr.x;   m[col+4] = cptr.y;   m[col+8] = cptr.z;   m[col+12]= cptr.w;}inline void MatrixF::setColumn(S32 col, const Point3F &cptr){   m[col]   = cptr.x;   m[col+4] = cptr.y;   m[col+8] = cptr.z;}inline void MatrixF::getRow(S32 col, Point4F *cptr) const{   col *= 4;   cptr->x = m[col++];   cptr->y = m[col++];   cptr->z = m[col++];   cptr->w = m[col];}inline void MatrixF::getRow(S32 col, Point3F *cptr) const{   col *= 4;   cptr->x = m[col++];   cptr->y = m[col++];   cptr->z = m[col];}inline void MatrixF::setRow(S32 col, const Point4F &cptr){   col *= 4;   m[col++] = cptr.x;   m[col++] = cptr.y;   m[col++] = cptr.z;   m[col]   = cptr.w;}inline void MatrixF::setRow(S32 col, const Point3F &cptr){   col *= 4;   m[col++] = cptr.x;   m[col++] = cptr.y;   m[col]   = cptr.z;}inline Point3F MatrixF::getPosition() const{   return Point3F( m[3], m[3+4], m[3+8] );}inline void MatrixF::displace( const Point3F &delta ){   m[3]   += delta.x;   m[3+4] += delta.y;   m[3+8] += delta.z;}inline VectorF MatrixF::getForwardVector() const{   VectorF vec;   getColumn( 1, &vec );   return vec;}inline VectorF MatrixF::getRightVector() const{   VectorF vec;   getColumn( 0, &vec );   return vec;}inline VectorF MatrixF::getUpVector() const{   VectorF vec;   getColumn( 2, &vec );   return vec;}//------------------------------------// Math operator overloads//------------------------------------inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 ){   // temp = m1 * m2   MatrixF temp;   m_matF_x_matF(m1, m2, temp);   return temp;}inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 ){   MatrixF tempThis(*this);   m_matF_x_matF(tempThis, m1, *this);   return (*this);}inline MatrixF &MatrixF::operator = (const MatrixF &m1){   for (U32 i=0;i<16;i++)   this->m[i] = m1.m[i];   return (*this);}inline bool MatrixF::isNaN(){   bool isaNaN = false;   for (U32 i = 0; i < 16; i++)      if (mIsNaN_F(m[i]))         isaNaN = true;   return isaNaN;}//------------------------------------// Non-member methods//------------------------------------inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF&  plane, PlaneF * result){   m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x);}#else // !USE_TEMPLATE_MATRIX//------------------------------------// Templatized matrix class to replace MATRIXF above//------------------------------------template<typename DATA_TYPE, U32 rows, U32 cols>class Matrix {   friend class MatrixTemplateExport;private:   DATA_TYPE data[rows * cols];public:   static_assert(rows >= 2 && cols >= 2, "Matrix must have at least 2 rows and 2 cols.");   // ------ Setters and initializers ------   explicit Matrix(bool identity = false) {      std::fill(data, data + (rows * cols), DATA_TYPE(0));      if (identity) {         for (U32 i = 0; i < rows; i++) {            for (U32 j = 0; j < cols; j++) {               // others already get filled with 0               if (j == i)                  (*this)(i, j) = static_cast<DATA_TYPE>(1);            }         }      }   }   explicit Matrix(const EulerF& e) {      set(e);   }   ~Matrix() = default;   /// Make this an identity matrix.   Matrix<DATA_TYPE, rows, cols>& identity();   void reverseProjection();   void normalize();   Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e);   Matrix(const EulerF& e, const Point3F p);   Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e, const Point3F p);   Matrix<DATA_TYPE, rows, cols>& inverse();   Matrix<DATA_TYPE, rows, cols>& transpose();   void invert();   Matrix<DATA_TYPE, rows, cols>& setCrossProduct(const Point3F& p);   Matrix<DATA_TYPE, rows, cols>& setTensorProduct(const Point3F& p, const Point3F& q);   /// M * Matrix(p) -> M   Matrix<DATA_TYPE, rows, cols>& scale(const Point3F& s);   Matrix<DATA_TYPE, rows, cols>& scale(DATA_TYPE s) { return scale(Point3F(s, s, s)); }   void setColumn(S32 col, const Point4F& cptr);   void setColumn(S32 col, const Point3F& cptr);   void setRow(S32 row, const Point4F& cptr);   void setRow(S32 row, const Point3F& cptr);   void displace(const Point3F& delta);   bool fullInverse();   void setPosition(const Point3F& pos) { setColumn(3, pos); }   DATA_TYPE determinant() const {      AssertFatal(rows == cols, "Determinant is only defined for square matrices.");      // For simplicity, only implement for 3x3 matrices      AssertFatal(rows >= 3 && cols >= 3, "Determinant only for 3x3 or more"); // Ensure the matrix is 3x3      return (*this)(0, 0) * ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) +             (*this)(1, 0) * ((*this)(0, 2) * (*this)(2, 1) - (*this)(0, 1) * (*this)(2, 2)) +             (*this)(2, 0) * ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1));   }   ///< M * a -> M   Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a)   { return *this = *this * a; }   ///< a * M -> M   Matrix<DATA_TYPE, rows, cols>& mulL(const Matrix<DATA_TYPE, rows, cols>& a)   { return *this = a * *this; }   ///< a * b -> M   Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const Matrix<DATA_TYPE, rows, cols>& b)   { return *this = a * b; }   ///< M * a -> M   Matrix<DATA_TYPE, rows, cols>& mul(const F32 a)   { return *this = *this * a; }   ///< a * b -> M   Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const F32 b)   { return *this = a * b; }   Matrix<DATA_TYPE, rows, cols>& add(const Matrix<DATA_TYPE, rows, cols>& a)   {      return *this = *this += a;   }   ///< M * p -> p (full [4x4] * [1x4])   void mul(Point4F& p) const { p = *this * p; }   ///< M * p -> p (assume w = 1.0f)   void mulP(Point3F& p) const {      Point3F result;      result.x = (*this)(0, 0) * p.x + (*this)(0, 1) * p.y + (*this)(0, 2) * p.z + (*this)(0, 3);      result.y = (*this)(1, 0) * p.x + (*this)(1, 1) * p.y + (*this)(1, 2) * p.z + (*this)(1, 3);      result.z = (*this)(2, 0) * p.x + (*this)(2, 1) * p.y + (*this)(2, 2) * p.z + (*this)(2, 3);      p = result;   }   ///< M * p -> d (assume w = 1.0f)   void mulP(const Point3F& p, Point3F* d) const { *d = *this * p; }   ///< M * v -> v (assume w = 0.0f)   void mulV(VectorF& v) const   {      AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");      VectorF result(         (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,         (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,         (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z      );      v = result;   }   ///< M * v -> d (assume w = 0.0f)   void mulV(const VectorF& v, Point3F* d) const   {      AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");      VectorF result(         (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,         (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,         (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z      );      d->x = result.x;      d->y = result.y;      d->z = result.z;   }   ///< Axial box -> Axial Box (too big a function to be inline)   void mul(Box3F& box) const;   // ------ Getters ------   bool isNaN() {      for (U32 i = 0; i < rows; i++) {         for (U32 j = 0; j < cols; j++) {            if (mIsNaN_F((*this)(i, j)))               return true;         }      }      return false;   }   // row + col * cols   static U32 idx(U32 i, U32 j) { return (i + j * cols); }   bool isAffine() const;   bool isIdentity() const;   /// Take inverse of matrix assuming it is affine (rotation,   /// scale, sheer, translation only).   Matrix<DATA_TYPE, rows, cols>& affineInverse();   Point3F getScale() const;      EulerF toEuler() const;   Point3F getPosition() const;   void getColumn(S32 col, Point4F* cptr) const;   Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col, &ret); return ret; }   void getColumn(S32 col, Point3F* cptr) const;   Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col, &ret); return ret; }   void getRow(S32 row, Point4F* cptr) const;   Point4F getRow4F(S32 row) const { Point4F ret; getRow(row, &ret); return ret; }   void getRow(S32 row, Point3F* cptr) const;   Point3F getRow3F(S32 row) const { Point3F ret; getRow(row, &ret); return ret; }   VectorF getRightVector() const;   VectorF getForwardVector() const;   VectorF getUpVector() const;   DATA_TYPE* getData() {      return data;   }   const DATA_TYPE* getData() const {      return data;   }   void transposeTo(Matrix<DATA_TYPE, cols, rows>& matrix) const {      for (U32 i = 0; i < rows; ++i) {         for (U32 j = 0; j < cols; ++j) {            matrix(j, i) = (*this)(i, j);         }      }   }   void swap(DATA_TYPE& a, DATA_TYPE& b) {      DATA_TYPE temp = a;      a = b;      b = temp;   }   void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const;   void dumpMatrix(const char* caption = NULL) const;   // Static identity matrix   static const Matrix Identity;   // ------ Operators ------   friend Matrix<DATA_TYPE, rows, cols> operator*(const Matrix<DATA_TYPE, rows, cols>& m1, const Matrix<DATA_TYPE, rows, cols>& m2) {      Matrix<DATA_TYPE, rows, cols> result;      for (U32 i = 0; i < rows; ++i) {        for (U32 j = 0; j < cols; ++j)        {            result(i, j) = static_cast<DATA_TYPE>(0);            for (U32 k = 0; k < cols; ++k)            {                result(i, j) += m1(i, k) * m2(k, j);            }         }      }      return result;   }   Matrix<DATA_TYPE, rows, cols> operator *= (const Matrix<DATA_TYPE, rows, cols>& other) {      *this = *this * other;      return *this;   }   Matrix<DATA_TYPE, rows, cols> operator+(const Matrix<DATA_TYPE, rows, cols>& m2) {      Matrix<DATA_TYPE, rows, cols> result;      for (U32 i = 0; i < rows; ++i)      {         for (U32 j = 0; j < cols; ++j)         {            result(i, j) = 0; // Initialize result element to 0            result(i, j) = (*this)(i, j) + m2(i, j);         }      }      return result;   }   Matrix<DATA_TYPE, rows, cols> operator+=(const Matrix<DATA_TYPE, rows, cols>& m2) {      for (U32 i = 0; i < rows; ++i)      {         for (U32 j = 0; j < cols; ++j)         {            (*this)(i, j) += m2(i, j);         }      }      return (*this);   }   Matrix<DATA_TYPE, rows, cols> operator * (const DATA_TYPE scalar) const {      Matrix<DATA_TYPE, rows, cols> result;      for (U32 i = 0; i < rows; i++)      {         for (U32 j = 0; j < cols; j++)         {            result(i, j) = (*this)(i, j) * scalar;         }      }      return result;   }   Matrix<DATA_TYPE, rows, cols>& operator *= (const DATA_TYPE scalar) {      for (U32 i = 0; i < rows; i++)      {         for (U32 j = 0; j < cols; j++)         {            (*this)(i, j) *= scalar;         }      }      return *this;   }   Point3F operator*(const Point3F& point) const {      AssertFatal(rows == 4 && cols == 4, "Multiplying point3 with matrix requires 4x4");      Point3F result;      result.x = (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3);      result.y = (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3);      result.z = (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3);      return result;   }      Point4F operator*(const Point4F& point) const {      AssertFatal(rows == 4 && cols == 4, "Multiplying point4 with matrix requires 4x4");      return Point4F(         (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3) * point.w,         (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3) * point.w,         (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3) * point.w,         (*this)(3, 0) * point.x + (*this)(3, 1) * point.y + (*this)(3, 2) * point.z + (*this)(3, 3) * point.w      );   }   Matrix<DATA_TYPE, rows, cols>& operator = (const Matrix<DATA_TYPE, rows, cols>& other) {      if (this != &other) {         std::copy(other.data, other.data + rows * cols, this->data);      }      return *this;   }   bool operator == (const Matrix<DATA_TYPE, rows, cols>& other) const {      for (U32 i = 0; i < rows; i++)      {         for (U32 j = 0; j < cols; j++)         {            if ((*this)(i, j) != other(i, j))               return false;         }      }      return true;   }   bool operator != (const Matrix<DATA_TYPE, rows, cols>& other) const {      return !(*this == other);   }   operator DATA_TYPE* () { return (data); }   operator const DATA_TYPE* () const { return (DATA_TYPE*)(data); }   DATA_TYPE& operator () (U32 row, U32 col) {      if (row >= rows || col >= cols)         AssertFatal(false, "Matrix indices out of range");      return data[idx(col,row)];   }   DATA_TYPE operator () (U32 row, U32 col) const {      if (row >= rows || col >= cols)         AssertFatal(false, "Matrix indices out of range");      return data[idx(col, row)];   }};//--------------------------------------------// INLINE FUNCTIONS//--------------------------------------------template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::transpose(){   AssertFatal(rows == cols, "Transpose can only be performed on square matrices.");   swap((*this)(0, 1), (*this)(1, 0));   swap((*this)(0, 2), (*this)(2, 0));   swap((*this)(0, 3), (*this)(3, 0));   swap((*this)(1, 2), (*this)(2, 1));   swap((*this)(1, 3), (*this)(3, 1));   swap((*this)(2, 3), (*this)(3, 2));   return (*this);}template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::identity(){   for (U32 i = 0; i < rows; i++)   {      for (U32 j = 0; j < cols; j++)      {         if (j == i)            (*this)(i, j) = static_cast<DATA_TYPE>(1);         else            (*this)(i, j) = static_cast<DATA_TYPE>(0);      }   }   return (*this);}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::normalize(){   AssertFatal(rows >= 3 && cols >= 3, "Normalize can only be applied 3x3 or more");   Point3F col0, col1, col2;   getColumn(0, &col0);   getColumn(1, &col1);   mCross(col0, col1, &col2);   mCross(col2, col0, &col1);   col0.normalize();   col1.normalize();   col2.normalize();   setColumn(0, col0);   setColumn(1, col1);   setColumn(2, col2);}template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::scale(const Point3F& s){   // torques scale applies directly, does not create another matrix to multiply with the translation matrix.   AssertFatal(rows >= 4 && cols >= 4, "Scale can only be applied 4x4 or more");   (*this)(0, 0) *= s.x;   (*this)(0, 1) *= s.y;   (*this)(0, 2) *= s.z;   (*this)(1, 0) *= s.x;   (*this)(1, 1) *= s.y;   (*this)(1, 2) *= s.z;   (*this)(2, 0) *= s.x;   (*this)(2, 1) *= s.y;   (*this)(2, 2) *= s.z;   (*this)(3, 0) *= s.x;   (*this)(3, 1) *= s.y;   (*this)(3, 2) *= s.z;   return (*this);}template<typename DATA_TYPE, U32 rows, U32 cols>inline bool Matrix<DATA_TYPE, rows, cols>::isIdentity() const {   for (U32 i = 0; i < rows; i++)   {      for (U32 j = 0; j < cols; j++)      {         if (j == i)         {            if((*this)(i, j) != static_cast<DATA_TYPE>(1))            {               return false;            }         }         else         {            if((*this)(i, j) != static_cast<DATA_TYPE>(0))            {               return false;            }         }      }   }      return true;}template<typename DATA_TYPE, U32 rows, U32 cols>inline Point3F Matrix<DATA_TYPE, rows, cols>::getScale() const{   // this function assumes the matrix has scale applied through the scale(const Point3F& s) function.   // for now assume float since we have point3F.   AssertFatal(rows >= 4 && cols >= 4, "Scale can only be applied 4x4 or more");   Point3F scale;   scale.x = mSqrt((*this)(0, 0) * (*this)(0, 0) + (*this)(1, 0) * (*this)(1, 0) + (*this)(2, 0) * (*this)(2, 0));   scale.y = mSqrt((*this)(0, 1) * (*this)(0, 1) + (*this)(1, 1) * (*this)(1, 1) + (*this)(2, 1) * (*this)(2, 1));   scale.z = mSqrt((*this)(0, 2) * (*this)(0, 2) + (*this)(1, 2) * (*this)(1, 2) + (*this)(2, 2) * (*this)(2, 2));   return scale;}template<typename DATA_TYPE, U32 rows, U32 cols>inline Point3F Matrix<DATA_TYPE, rows, cols>::getPosition() const{   Point3F pos;   getColumn(3, &pos);   return pos;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point4F* cptr) const{   if (rows >= 2)   {      cptr->x = (*this)(0, col);      cptr->y = (*this)(1, col);   }   if (rows >= 3)      cptr->z = (*this)(2, col);   else      cptr->z = 0.0f;   if (rows >= 4)      cptr->w = (*this)(3, col);   else      cptr->w = 0.0f;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point3F* cptr) const{   if (rows >= 2)   {      cptr->x = (*this)(0, col);      cptr->y = (*this)(1, col);   }   if (rows >= 3)      cptr->z = (*this)(2, col);   else      cptr->z = 0.0f;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point4F &cptr) {   if(rows >= 2)   {      (*this)(0, col) = cptr.x;      (*this)(1, col) = cptr.y;   }      if(rows >= 3)      (*this)(2, col) = cptr.z;      if(rows >= 4)      (*this)(3, col) = cptr.w;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point3F &cptr) {   if(rows >= 2)   {      (*this)(0, col) = cptr.x;      (*this)(1, col) = cptr.y;   }      if(rows >= 3)      (*this)(2, col) = cptr.z;   }template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point4F* cptr) const{   if (cols >= 2)   {      cptr->x = (*this)(row, 0);      cptr->y = (*this)(row, 1);   }   if (cols >= 3)      cptr->z = (*this)(row, 2);   else      cptr->z = 0.0f;   if (cols >= 4)      cptr->w = (*this)(row, 3);   else      cptr->w = 0.0f;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point3F* cptr) const{   if (cols >= 2)   {      cptr->x = (*this)(row, 0);      cptr->y = (*this)(row, 1);   }   if (cols >= 3)      cptr->z = (*this)(row, 2);   else      cptr->z = 0.0f;}template<typename DATA_TYPE, U32 rows, U32 cols>inline VectorF Matrix<DATA_TYPE, rows, cols>::getRightVector() const{   VectorF vec;   getColumn(0, &vec);   return vec;}template<typename DATA_TYPE, U32 rows, U32 cols>inline VectorF Matrix<DATA_TYPE, rows, cols>::getForwardVector() const{   VectorF vec;   getColumn(1, &vec);   return vec;}template<typename DATA_TYPE, U32 rows, U32 cols>inline VectorF Matrix<DATA_TYPE, rows, cols>::getUpVector() const{   VectorF vec;   getColumn(2, &vec);   return vec;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const{   Matrix<DATA_TYPE, rows, cols> invMatrix;   for (U32 i = 0; i < rows; ++i)   {      for (U32 j = 0; j < cols; ++j)      {         invMatrix(i, j) = (*this)(i, j);      }   }   invMatrix.inverse();   for (U32 i = 0; i < rows; ++i)   {      for (U32 j = 0; j < cols; ++j)      {         (*matrix)(i, j) = invMatrix(i, j);      }   }}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point4F& cptr) {   if(cols >= 2)   {      (*this)(row, 0) = cptr.x;      (*this)(row, 1) = cptr.y;   }      if(cols >= 3)      (*this)(row, 2) = cptr.z;      if(cols >= 4)      (*this)(row, 3) = cptr.w;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point3F& cptr) {   if(cols >= 2)   {      (*this)(row, 0) = cptr.x;      (*this)(row, 1) = cptr.y;   }      if(cols >= 3)      (*this)(row, 2) = cptr.z;   }template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::displace(const Point3F& delta){   (*this)(0, 3) += delta.x;   (*this)(1, 3) += delta.y;   (*this)(2, 3) += delta.z;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::reverseProjection(){   AssertFatal(rows == 4 && cols == 4, "reverseProjection requires a 4x4 matrix.");   (*this)(2, 0) = (*this)(3, 0) - (*this)(2, 0);   (*this)(2, 1) = (*this)(3, 1) - (*this)(2, 1);   (*this)(2, 2) = (*this)(3, 2) - (*this)(2, 2);   (*this)(2, 3) = (*this)(3, 3) - (*this)(2, 3);}template<typename DATA_TYPE, U32 rows, U32 cols>const Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::Identity = []() {   Matrix<DATA_TYPE, rows, cols> identity(true);   return identity;}();template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e){   // when the template refactor is done, euler will be able to be setup in different ways   AssertFatal(rows >= 3 && cols >= 3, "EulerF can only initialize 3x3 or more");   static_assert(std::is_same<DATA_TYPE, float>::value, "Can only initialize eulers with floats for now");   F32 cosPitch, sinPitch;   mSinCos(e.x, sinPitch, cosPitch);   F32 cosYaw, sinYaw;   mSinCos(e.y, sinYaw, cosYaw);   F32 cosRoll, sinRoll;   mSinCos(e.z, sinRoll, cosRoll);   enum {      AXIS_X = (1 << 0),      AXIS_Y = (1 << 1),      AXIS_Z = (1 << 2)   };   U32 axis = 0;   if (e.x != 0.0f) axis |= AXIS_X;   if (e.y != 0.0f) axis |= AXIS_Y;   if (e.z != 0.0f) axis |= AXIS_Z;   switch (axis) {   case 0:      (*this) = Matrix<DATA_TYPE, rows, cols>(true);      break;   case AXIS_X:      (*this)(0, 0) = 1.0f; (*this)(0, 1) = 0.0f;      (*this)(0, 2) = 0.0f;      (*this)(1, 0) = 0.0f; (*this)(1, 1) = cosPitch;  (*this)(1, 2) = sinPitch;       (*this)(2, 0) = 0.0f; (*this)(2, 1) = -sinPitch; (*this)(2, 2) = cosPitch;      break;   case AXIS_Y:      (*this)(0, 0) = cosYaw;    (*this)(1, 0) = 0.0f;   (*this)(2, 0) = sinYaw;      (*this)(0, 1) = 0.0f;      (*this)(1, 1) = 1.0f;   (*this)(2, 1) = 0.0f;      (*this)(0, 2) = -sinYaw;   (*this)(1, 2) = 0.0f;   (*this)(2, 2) = cosYaw;      break;   case AXIS_Z:      (*this)(0, 0) = cosRoll;  (*this)(0, 1) = sinRoll; (*this)(0, 2) = 0.0f;         (*this)(1, 0) = -sinRoll; (*this)(1, 1) = cosRoll; (*this)(1, 2) = 0.0f;       (*this)(2, 0) = 0.0f;     (*this)(2, 1) = 0.0f;    (*this)(2, 2) = 1.0f;      break;   default:      F32 r1 = cosYaw * cosRoll;      F32 r2 = cosYaw * sinRoll;      F32 r3 = sinYaw * cosRoll;      F32 r4 = sinYaw * sinRoll;      // the matrix looks like this:      //  r1 - (r4 * sin(x))     r2 + (r3 * sin(x))   -cos(x) * sin(y)      //  -cos(x) * sin(z)       cos(x) * cos(z)      sin(x)      //  r3 + (r2 * sin(x))     r4 - (r1 * sin(x))   cos(x) * cos(y)      //      // where:      //  r1 = cos(y) * cos(z)      //  r2 = cos(y) * sin(z)      //  r3 = sin(y) * cos(z)      //  r4 = sin(y) * sin(z)      // init the euler 3x3 rotation matrix.      (*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(0, 2) = -cosPitch * sinYaw;        (*this)(1, 0) = -cosPitch * sinRoll;  (*this)(1, 1) = cosPitch * cosRoll;   (*this)(1, 2) = sinPitch;          (*this)(2, 0) = r3 + (r2 * sinPitch); (*this)(2, 1) = r4 - (r1 * sinPitch); (*this)(2, 2) = cosPitch * cosYaw;      break;   }   if (rows == 4)   {      (*this)(3, 0) = 0.0f;      (*this)(3, 1) = 0.0f;      (*this)(3, 2) = 0.0f;   }   if (cols == 4)   {      (*this)(0, 3) = 0.0f;      (*this)(1, 3) = 0.0f;      (*this)(2, 3) = 0.0f;   }   if (rows == 4 && cols == 4)   {      (*this)(3, 3) = 1.0f;   }   return(*this);}template<typename DATA_TYPE, U32 rows, U32 cols>Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e, const Point3F p){   set(e, p);}template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e, const Point3F p){   AssertFatal(rows >= 3 && cols >= 4, "Euler and Point can only initialize 3x4 or more");   // call set euler, this already sets the last row if it exists.   set(e);   // does this need to multiply with the result of the euler? or are we just setting position.   (*this)(0, 3) = p.x;   (*this)(1, 3) = p.y;   (*this)(2, 3) = p.z;   return (*this);}template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse(){#if 1   // NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and   // numbers near 0.0   //    AssertFatal(rows == cols, "Can only perform inverse on square matrices.");   const U32 size = rows - 1;   const DATA_TYPE pivot_eps = static_cast<DATA_TYPE>(1e-20);  // Smaller epsilon to handle numerical precision   // Create augmented matrix [this | I]   Matrix<DATA_TYPE, size, rows + size> augmentedMatrix;   for (U32 i = 0; i < size; i++)   {      for (U32 j = 0; j < size; j++)      {         augmentedMatrix(i, j) = (*this)(i, j);         augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);      }   }   // Apply gauss-joran elimination   for (U32 i = 0; i < size; i++)   {      U32 pivotRow = i;      DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i));      for (U32 k = i + 1; k < size; k++)      {         DATA_TYPE curValue = std::abs(augmentedMatrix(k, i));         if (curValue > pivotValue) {            pivotRow = k;            pivotValue = curValue;         }      }      // Swap if needed.      if (i != pivotRow)      {         for (U32 j = 0; j < 2 * size; j++)         {            DATA_TYPE temp = augmentedMatrix(i, j);            augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j);            augmentedMatrix(pivotRow, j) = temp;         }      }      // Early out if pivot is 0, return identity matrix.      if (std::abs(augmentedMatrix(i, i)) < pivot_eps)      {         return *this;      }      DATA_TYPE pivotVal = static_cast<DATA_TYPE>(1.0) / augmentedMatrix(i, i);      // scale the pivot      for (U32 j = 0; j < 2 * size; j++)      {         augmentedMatrix(i, j) *= pivotVal;      }      // Eliminate the current column in all other rows      for (U32 k = 0; k < size; k++)      {         if (k != i)         {            DATA_TYPE factor = augmentedMatrix(k, i);            for (U32 j = 0; j < 2 * size; j++)            {               augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);            }         }      }   }   for (U32 i = 0; i < size; i++)   {      for (U32 j = 0; j < size; j++)      {         (*this)(i, j) = augmentedMatrix(i, j + size);      }   }#else   AssertFatal(rows == cols, "Can only perform inverse on square matrices.");   AssertFatal(rows >= 3 && cols >= 3, "Must be at least a 3x3 matrix");   DATA_TYPE det = determinant();   // Check if the determinant is non-zero   if (std::abs(det) < static_cast<DATA_TYPE>(1e-10)) {      this->identity(); // Return the identity matrix if the determinant is zero      return *this;   }   DATA_TYPE invDet = DATA_TYPE(1) / det;   Matrix<DATA_TYPE, rows, cols> temp;   // Calculate the inverse of the 3x3 upper-left submatrix using Cramer's rule   temp(0, 0) = ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) * invDet;   temp(0, 1) = ((*this)(2, 1) * (*this)(0, 2) - (*this)(2, 2) * (*this)(0, 1)) * invDet;   temp(0, 2) = ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1)) * invDet;   temp(1, 0) = ((*this)(1, 2) * (*this)(2, 0) - (*this)(1, 0) * (*this)(2, 2)) * invDet;   temp(1, 1) = ((*this)(2, 2) * (*this)(0, 0) - (*this)(2, 0) * (*this)(0, 2)) * invDet;   temp(1, 2) = ((*this)(0, 2) * (*this)(1, 0) - (*this)(0, 0) * (*this)(1, 2)) * invDet;   temp(2, 0) = ((*this)(1, 0) * (*this)(2, 1) - (*this)(1, 1) * (*this)(2, 0)) * invDet;   temp(2, 1) = ((*this)(2, 0) * (*this)(0, 1) - (*this)(2, 1) * (*this)(0, 0)) * invDet;   temp(2, 2) = ((*this)(0, 0) * (*this)(1, 1) - (*this)(0, 1) * (*this)(1, 0)) * invDet;   // Copy the 3x3 inverse back into this matrix   for (U32 i = 0; i < 3; ++i)   {      for (U32 j = 0; j < 3; ++j)      {         (*this)(i, j) = temp(i, j);      }   }#endif   Point3F pos = -this->getPosition();   mulV(pos);   this->setPosition(pos);   return (*this);}template<typename DATA_TYPE, U32 rows, U32 cols>inline bool Matrix<DATA_TYPE, rows, cols>::fullInverse(){#if 1   // NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and   // numbers near 0.0   AssertFatal(rows == cols, "Can only perform inverse on square matrices.");   const U32 size = rows;   const DATA_TYPE pivot_eps = static_cast<DATA_TYPE>(1e-20);  // Smaller epsilon to handle numerical precision   // Create augmented matrix [this | I]   Matrix<DATA_TYPE, size, rows + size> augmentedMatrix;   for (U32 i = 0; i < size; i++)   {      for (U32 j = 0; j < size; j++)      {         augmentedMatrix(i, j) = (*this)(i, j);         augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);      }   }   // Apply gauss-joran elimination   for (U32 i = 0; i < size; i++)   {      U32 pivotRow = i;      DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i));      for (U32 k = i + 1; k < size; k++)      {         DATA_TYPE curValue = std::abs(augmentedMatrix(k, i));         if (curValue > pivotValue) {            pivotRow = k;            pivotValue = curValue;         }      }      // Swap if needed.      if (i != pivotRow)      {         for (U32 j = 0; j < 2 * size; j++)         {            DATA_TYPE temp = augmentedMatrix(i, j);            augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j);            augmentedMatrix(pivotRow, j) = temp;         }      }      // Early out if pivot is 0, return identity matrix.      if (std::abs(augmentedMatrix(i, i)) < pivot_eps)      {         return false;      }      DATA_TYPE pivotVal = static_cast<DATA_TYPE>(1.0) / augmentedMatrix(i, i);      // scale the pivot      for (U32 j = 0; j < 2 * size; j++)      {         augmentedMatrix(i, j) *= pivotVal;      }      // Eliminate the current column in all other rows      for (U32 k = 0; k < size; k++)      {         if (k != i)         {            DATA_TYPE factor = augmentedMatrix(k, i);            for (U32 j = 0; j < 2 * size; j++)            {               augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);            }         }      }   }   for (U32 i = 0; i < size; i++)   {      for (U32 j = 0; j < size; j++)      {         (*this)(i, j) = augmentedMatrix(i, j + size);      }   }#else   AssertFatal(rows == cols, "Can only perform inverse on square matrices.");   AssertFatal(rows >= 4 && cols >= 4, "Can only perform fullInverse on minimum 4x4 matrix");   Point4F a, b, c, d;   getRow(0, &a);   getRow(1, &b);   getRow(2, &c);   getRow(3, &d);   F32 det = a.x * b.y * c.z * d.w - a.x * b.y * c.w * d.z - a.x * c.y * b.z * d.w + a.x * c.y * b.w * d.z + a.x * d.y * b.z * c.w - a.x * d.y * b.w * c.z      - b.x * a.y * c.z * d.w + b.x * a.y * c.w * d.z + b.x * c.y * a.z * d.w - b.x * c.y * a.w * d.z - b.x * d.y * a.z * c.w + b.x * d.y * a.w * c.z      + c.x * a.y * b.z * d.w - c.x * a.y * b.w * d.z - c.x * b.y * a.z * d.w + c.x * b.y * a.w * d.z + c.x * d.y * a.z * b.w - c.x * d.y * a.w * b.z      - d.x * a.y * b.z * c.w + d.x * a.y * b.w * c.z + d.x * b.y * a.z * c.w - d.x * b.y * a.w * c.z - d.x * c.y * a.z * b.w + d.x * c.y * a.w * b.z;   if (mFabs(det) < 0.00001f)      return false;   Point4F aa, bb, cc, dd;   aa.x = b.y * c.z * d.w - b.y * c.w * d.z - c.y * b.z * d.w + c.y * b.w * d.z + d.y * b.z * c.w - d.y * b.w * c.z;   aa.y = -a.y * c.z * d.w + a.y * c.w * d.z + c.y * a.z * d.w - c.y * a.w * d.z - d.y * a.z * c.w + d.y * a.w * c.z;   aa.z = a.y * b.z * d.w - a.y * b.w * d.z - b.y * a.z * d.w + b.y * a.w * d.z + d.y * a.z * b.w - d.y * a.w * b.z;   aa.w = -a.y * b.z * c.w + a.y * b.w * c.z + b.y * a.z * c.w - b.y * a.w * c.z - c.y * a.z * b.w + c.y * a.w * b.z;   bb.x = -b.x * c.z * d.w + b.x * c.w * d.z + c.x * b.z * d.w - c.x * b.w * d.z - d.x * b.z * c.w + d.x * b.w * c.z;   bb.y = a.x * c.z * d.w - a.x * c.w * d.z - c.x * a.z * d.w + c.x * a.w * d.z + d.x * a.z * c.w - d.x * a.w * c.z;   bb.z = -a.x * b.z * d.w + a.x * b.w * d.z + b.x * a.z * d.w - b.x * a.w * d.z - d.x * a.z * b.w + d.x * a.w * b.z;   bb.w = a.x * b.z * c.w - a.x * b.w * c.z - b.x * a.z * c.w + b.x * a.w * c.z + c.x * a.z * b.w - c.x * a.w * b.z;   cc.x = b.x * c.y * d.w - b.x * c.w * d.y - c.x * b.y * d.w + c.x * b.w * d.y + d.x * b.y * c.w - d.x * b.w * c.y;   cc.y = -a.x * c.y * d.w + a.x * c.w * d.y + c.x * a.y * d.w - c.x * a.w * d.y - d.x * a.y * c.w + d.x * a.w * c.y;   cc.z = a.x * b.y * d.w - a.x * b.w * d.y - b.x * a.y * d.w + b.x * a.w * d.y + d.x * a.y * b.w - d.x * a.w * b.y;   cc.w = -a.x * b.y * c.w + a.x * b.w * c.y + b.x * a.y * c.w - b.x * a.w * c.y - c.x * a.y * b.w + c.x * a.w * b.y;   dd.x = -b.x * c.y * d.z + b.x * c.z * d.y + c.x * b.y * d.z - c.x * b.z * d.y - d.x * b.y * c.z + d.x * b.z * c.y;   dd.y = a.x * c.y * d.z - a.x * c.z * d.y - c.x * a.y * d.z + c.x * a.z * d.y + d.x * a.y * c.z - d.x * a.z * c.y;   dd.z = -a.x * b.y * d.z + a.x * b.z * d.y + b.x * a.y * d.z - b.x * a.z * d.y - d.x * a.y * b.z + d.x * a.z * b.y;   dd.w = a.x * b.y * c.z - a.x * b.z * c.y - b.x * a.y * c.z + b.x * a.z * c.y + c.x * a.y * b.z - c.x * a.z * b.y;   setRow(0, aa);   setRow(1, bb);   setRow(2, cc);   setRow(3, dd);   mul(1.0f / det);#endif   return true;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::invert(){   (*this) = inverse();}template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setCrossProduct(const Point3F& p){   AssertFatal(rows == 4 && cols == 4, "Cross product only supported on 4x4 for now");   (*this)(0, 0) = 0;   (*this)(0, 1) = -p.z;   (*this)(0, 2) = p.y;   (*this)(0, 3) = 0;   (*this)(1, 0) = p.z;   (*this)(1, 1) = 0;   (*this)(1, 2) = -p.x;   (*this)(1, 3) = 0;   (*this)(2, 0) = -p.y;   (*this)(2, 1) = p.x;   (*this)(2, 2) = 0;   (*this)(2, 3) = 0;   (*this)(3, 0) = 0;   (*this)(3, 1) = 0;   (*this)(3, 2) = 0;   (*this)(3, 3) = 1;   return (*this);}template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setTensorProduct(const Point3F& p, const Point3F& q){   AssertFatal(rows == 4 && cols == 4, "Tensor product only supported on 4x4 for now");   (*this)(0, 0) = p.x * q.x;   (*this)(0, 1) = p.x * q.y;   (*this)(0, 2) = p.x * q.z;   (*this)(0, 3) = 0;   (*this)(1, 0) = p.y * q.x;   (*this)(1, 1) = p.y * q.y;   (*this)(1, 2) = p.y * q.z;   (*this)(1, 3) = 0;   (*this)(2, 0) = p.z * q.x;   (*this)(2, 1) = p.z * q.y;   (*this)(2, 2) = p.z * q.z;   (*this)(2, 3) = 0;   (*this)(3, 0) = 0;   (*this)(3, 1) = 0;   (*this)(3, 2) = 0;   (*this)(3, 3) = 1;   return (*this);}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::mul(Box3F& box) const{   AssertFatal(rows == 4 && cols == 4, "Multiplying Box3F with matrix requires 4x4");   // Extract the min and max extents   const Point3F& originalMin = box.minExtents;   const Point3F& originalMax = box.maxExtents;   // Array to store transformed corners   Point3F transformedCorners[8];   // Compute all 8 corners of the box   Point3F corners[8] = {       {originalMin.x, originalMin.y, originalMin.z},       {originalMax.x, originalMin.y, originalMin.z},       {originalMin.x, originalMax.y, originalMin.z},       {originalMax.x, originalMax.y, originalMin.z},       {originalMin.x, originalMin.y, originalMax.z},       {originalMax.x, originalMin.y, originalMax.z},       {originalMin.x, originalMax.y, originalMax.z},       {originalMax.x, originalMax.y, originalMax.z}   };   // Transform each corner   for (U32 i = 0; i < 8; ++i)   {      const Point3F& corner = corners[i];      transformedCorners[i].x = (*this)(0, 0) * corner.x + (*this)(0, 1) * corner.y + (*this)(0, 2) * corner.z + (*this)(0, 3);      transformedCorners[i].y = (*this)(1, 0) * corner.x + (*this)(1, 1) * corner.y + (*this)(1, 2) * corner.z + (*this)(1, 3);      transformedCorners[i].z = (*this)(2, 0) * corner.x + (*this)(2, 1) * corner.y + (*this)(2, 2) * corner.z + (*this)(2, 3);   }   // Initialize min and max extents to the transformed values   Point3F newMin = transformedCorners[0];   Point3F newMax = transformedCorners[0];   // Compute the new min and max extents from the transformed corners   for (U32 i = 1; i < 8; ++i)   {      const Point3F& corner = transformedCorners[i];      if (corner.x < newMin.x) newMin.x = corner.x;      if (corner.y < newMin.y) newMin.y = corner.y;      if (corner.z < newMin.z) newMin.z = corner.z;      if (corner.x > newMax.x) newMax.x = corner.x;      if (corner.y > newMax.y) newMax.y = corner.y;      if (corner.z > newMax.z) newMax.z = corner.z;   }   // Update the box with the new min and max extents   box.minExtents = newMin;   box.maxExtents = newMax;}template<typename DATA_TYPE, U32 rows, U32 cols>inline bool Matrix<DATA_TYPE, rows, cols>::isAffine() const{   if ((*this)(3, 3) != 1.0f)   {      return false;   }   for (U32 col = 0; col < cols - 1; ++col)   {      if ((*this)(3, col) != 0.0f)      {         return false;      }   }   Point3F one, two, three;   getColumn(0, &one);   getColumn(1, &two);   getColumn(2, &three);   // check columns   {      if (mDot(one, two) > 0.0001f ||         mDot(one, three) > 0.0001f ||         mDot(two, three) > 0.0001f)         return false;      if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||         mFabs(1.0f - two.lenSquared()) > 0.0001f ||         mFabs(1.0f - three.lenSquared()) > 0.0001f)         return false;   }   getRow(0, &one);   getRow(1, &two);   getRow(2, &three);   // check rows   {      if (mDot(one, two) > 0.0001f ||         mDot(one, three) > 0.0001f ||         mDot(two, three) > 0.0001f)         return false;      if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||         mFabs(1.0f - two.lenSquared()) > 0.0001f ||         mFabs(1.0f - three.lenSquared()) > 0.0001f)         return false;   }   return true;}template<typename DATA_TYPE, U32 rows, U32 cols>inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::affineInverse(){   AssertFatal(rows >= 4 && cols >= 4, "affineInverse requires at least 4x4");   Matrix<DATA_TYPE, rows, cols> temp = *this;   // Transpose rotation part   (*this)(0, 1) = temp(1, 0);   (*this)(0, 2) = temp(2, 0);   (*this)(1, 0) = temp(0, 1);   (*this)(1, 2) = temp(2, 1);   (*this)(2, 0) = temp(0, 2);   (*this)(2, 1) = temp(1, 2);   // Adjust translation part   (*this)(0, 3) = -(temp(0, 0) * temp(0, 3) + temp(1, 0) * temp(1, 3) + temp(2, 0) * temp(2, 3));   (*this)(1, 3) = -(temp(0, 1) * temp(0, 3) + temp(1, 1) * temp(1, 3) + temp(2, 1) * temp(2, 3));   (*this)(2, 3) = -(temp(0, 2) * temp(0, 3) + temp(1, 2) * temp(1, 3) + temp(2, 2) * temp(2, 3));   return *this;}template<typename DATA_TYPE, U32 rows, U32 cols>inline EulerF Matrix<DATA_TYPE, rows, cols>::toEuler() const{   AssertFatal(rows >= 3 && cols >= 3, "Euler rotations require at least a 3x3 matrix.");   // like all others assume float for now.   EulerF r;   r.x = mAsin(mClampF((*this)(1,2), -1.0, 1.0));   if (mCos(r.x) != 0.0f)   {      r.y = mAtan2(-(*this)(0, 2), (*this)(2, 2)); // yaw      r.z = mAtan2(-(*this)(1, 0), (*this)(1, 1)); // roll   }   else   {      r.y = 0.0f;      r.z = mAtan2((*this)(0, 1), (*this)(0, 0)); // this rolls when pitch is +90 degrees   }   return r;}template<typename DATA_TYPE, U32 rows, U32 cols>inline void Matrix<DATA_TYPE, rows, cols>::dumpMatrix(const char* caption) const{   U32 size = (caption == NULL) ? 0 : dStrlen(caption);   FrameTemp<char> spacer(size + 1);   char* spacerRef = spacer;   // is_floating_point should return true for floats and doubles.   const char* formatSpec = std::is_floating_point_v<DATA_TYPE> ? " %-8.4f" : " %d";   dMemset(spacerRef, ' ', size);   // null terminate.   spacerRef[size] = '\0';   /*Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0, 0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);   Con::printf("%s   | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1, 0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);   Con::printf("%s   | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2, 0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);   Con::printf("%s   | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3, 0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);*/   StringBuilder str;   str.format("%s = |", caption);   for (U32 i = 0; i < rows; i++)   {      if (i > 0)      {         str.append(spacerRef);      }      for (U32 j = 0; j < cols; j++)      {         str.format(formatSpec, (*this)(i, j));      }      str.append(" |\n");   }   Con::printf("%s", str.end().c_str());}//------------------------------------// Non-member methods//------------------------------------inline void mTransformPlane(   const MatrixF& mat,   const Point3F& scale,   const PlaneF& plane,   PlaneF* result) {   // Create the inverse scale matrix   MatrixF invScale(true);   invScale(0, 0) = 1.0f / scale.x;   invScale(1, 1) = 1.0f / scale.y;   invScale(2, 2) = 1.0f / scale.z;   const Point3F shear(mat(0, 3), mat(1, 3), mat(2, 3));   const Point3F row0 = mat.getRow3F(0);   const Point3F row1 = mat.getRow3F(1);   const Point3F row2 = mat.getRow3F(2);   const F32 A = -mDot(row0, shear);   const F32 B = -mDot(row1, shear);   const F32 C = -mDot(row2, shear);   // Compute the inverse transpose of the matrix   MatrixF invTrMatrix(true);   invTrMatrix(0, 0) = mat(0, 0);   invTrMatrix(0, 1) = mat(0, 1);   invTrMatrix(0, 2) = mat(0, 2);   invTrMatrix(1, 0) = mat(1, 0);   invTrMatrix(1, 1) = mat(1, 1);   invTrMatrix(1, 2) = mat(1, 2);   invTrMatrix(2, 0) = mat(2, 0);   invTrMatrix(2, 1) = mat(2, 1);   invTrMatrix(2, 2) = mat(2, 2);   invTrMatrix(3, 0) = A;   invTrMatrix(3, 1) = B;   invTrMatrix(3, 2) = C;   invTrMatrix.mul(invScale);   // Transform the plane normal   Point3F norm(plane.x, plane.y, plane.z);   invTrMatrix.mulP(norm);   norm.normalize();   // Transform the plane point   Point3F point = norm * -plane.d;   MatrixF temp = mat;   point.x *= scale.x;   point.y *= scale.y;   point.z *= scale.z;   temp.mulP(point);   // Recompute the plane distance   PlaneF resultPlane(point, norm);   result->x = resultPlane.x;   result->y = resultPlane.y;   result->z = resultPlane.z;   result->d = resultPlane.d;}//--------------------------------------------// INLINE FUNCTIONS END//--------------------------------------------typedef Matrix<F32, 4, 4> MatrixF;class MatrixTemplateExport{public:   template <typename T, U32 rows, U32 cols>   static EngineFieldTable::Field getMatrixField();};template<typename T, U32 rows, U32 cols>inline EngineFieldTable::Field MatrixTemplateExport::getMatrixField(){   typedef Matrix<T, rows, cols> ThisType;   return _FIELD_AS(T, data, data, rows * cols, "");}#endif // !USE_TEMPLATE_MATRIX#endif //_MMATRIX_H_
 |