terrCollision.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #include "platform/platform.h"
  23. #include "terrain/terrCollision.h"
  24. #include "terrain/terrData.h"
  25. #include "collision/abstractPolyList.h"
  26. #include "collision/collision.h"
  27. const F32 TerrainThickness = 0.5f;
  28. static const U32 MaxExtent = 256;
  29. #define MAX_FLOAT 1e20f
  30. //----------------------------------------------------------------------------
  31. Convex sTerrainConvexList;
  32. // Number of vertices followed by point index
  33. S32 sVertexList[5][5] = {
  34. { 3, 1,2,3 }, // 135 B
  35. { 3, 0,1,3 }, // 135 A
  36. { 3, 0,2,3 }, // 45 B
  37. { 3, 0,1,2 }, // 45 A
  38. { 4, 0,1,2,3 } // Convex square
  39. };
  40. // Number of edges followed by edge index pairs
  41. S32 sEdgeList45[16][11] = {
  42. { 0 }, //
  43. { 0 },
  44. { 0 },
  45. { 1, 0,1 }, // 0-1
  46. { 0 },
  47. { 1, 0,1 }, // 0-2
  48. { 1, 0,1 }, // 1-2
  49. { 3, 0,1,1,2,2,0 }, // 0-1,1-2,2-0
  50. { 0 },
  51. { 0,}, //
  52. { 0 },
  53. { 1, 0,1 }, // 0-1,
  54. { 0, }, //
  55. { 1, 0,1 }, // 0-2,
  56. { 1, 0,1 }, // 1-2
  57. { 3, 0,1,1,2,0,2 },
  58. };
  59. S32 sEdgeList135[16][11] = {
  60. { 0 },
  61. { 0 },
  62. { 0 },
  63. { 1, 0,1 }, // 0-1
  64. { 0 },
  65. { 0 },
  66. { 1, 0,1 }, // 1-2
  67. { 2, 0,1,1,2 }, // 0-1,1-2
  68. { 0 },
  69. { 0, }, //
  70. { 1, 0,1 }, // 1-3
  71. { 2, 0,1,1,2 }, // 0-1,1-3,
  72. { 0 }, //
  73. { 0 }, //
  74. { 2, 0,1,2,0 }, // 1-2,3-1
  75. { 3, 0,1,1,2,1,3 },
  76. };
  77. // On split squares, the FaceA diagnal is also removed
  78. S32 sEdgeList45A[16][11] = {
  79. { 0 }, //
  80. { 0 },
  81. { 0 },
  82. { 1, 0,1 }, // 0-1
  83. { 0 },
  84. { 0 }, //
  85. { 1, 0,1 }, // 1-2
  86. { 2, 0,1,1,2 }, // 0-1,1-2
  87. { 0 },
  88. { 0,}, //
  89. { 0 },
  90. { 1, 0,1 }, // 0-1
  91. { 0, }, //
  92. { 0, 0,1 }, //
  93. { 1, 0,1 }, // 1-2
  94. { 3, 0,1,1,2 },
  95. };
  96. S32 sEdgeList135A[16][11] = {
  97. { 0 },
  98. { 0 },
  99. { 0 },
  100. { 1, 0,1 }, // 0-1
  101. { 0 },
  102. { 0 },
  103. { 1, 0,1 }, // 1-2
  104. { 2, 0,1,1,2 }, // 0-1,1-2
  105. { 0 },
  106. { 0 }, //
  107. { 0 }, //
  108. { 1, 0,1 }, // 0-1
  109. { 0 }, //
  110. { 0 }, //
  111. { 1, 0,1 }, // 1-2
  112. { 3, 0,1,1,2 },
  113. };
  114. // Number of faces followed by normal index and vertices
  115. S32 sFaceList45[16][9] = {
  116. { 0 },
  117. { 0 },
  118. { 0 },
  119. { 0 },
  120. { 0 },
  121. { 0 },
  122. { 0 },
  123. { 1, 0,0,1,2 },
  124. { 0 },
  125. { 0 },
  126. { 0 },
  127. { 0 },
  128. { 0 },
  129. { 1, 1,0,1,2 },
  130. { 0 },
  131. { 2, 0,0,1,2, 1,0,2,3 },
  132. };
  133. S32 sFaceList135[16][9] = {
  134. { 0 },
  135. { 0 },
  136. { 0 },
  137. { 0 },
  138. { 0 },
  139. { 0 },
  140. { 0 },
  141. { 0 },
  142. { 0 },
  143. { 0 },
  144. { 0 },
  145. { 1, 0,0,1,2 },
  146. { 0 },
  147. { 0 },
  148. { 1, 1,0,1,2 },
  149. { 2, 0,0,1,3, 1,1,2,3 },
  150. };
  151. TerrainConvex::TerrainConvex()
  152. {
  153. mType = TerrainConvexType;
  154. }
  155. TerrainConvex::TerrainConvex( const TerrainConvex &cv )
  156. {
  157. mType = TerrainConvexType;
  158. // Only a partial copy...
  159. mObject = cv.mObject;
  160. split45 = cv.split45;
  161. squareId = cv.squareId;
  162. material = cv.material;
  163. point[0] = cv.point[0];
  164. point[1] = cv.point[1];
  165. point[2] = cv.point[2];
  166. point[3] = cv.point[3];
  167. normal[0] = cv.normal[0];
  168. normal[1] = cv.normal[1];
  169. box = cv.box;
  170. }
  171. Box3F TerrainConvex::getBoundingBox() const
  172. {
  173. return box;
  174. }
  175. Box3F TerrainConvex::getBoundingBox(const MatrixF&, const Point3F& ) const
  176. {
  177. // Function should not be called....
  178. return box;
  179. }
  180. Point3F TerrainConvex::support(const VectorF& v) const
  181. {
  182. S32 *vp;
  183. if (halfA)
  184. vp = square ? sVertexList[(split45 << 1) | 1]: sVertexList[4];
  185. else
  186. vp = square ? sVertexList[(split45 << 1)] : sVertexList[4];
  187. S32 *ve = vp + vp[0] + 1;
  188. const Point3F *bp = &point[vp[1]];
  189. F32 bd = mDot(*bp,v);
  190. for (vp += 2; vp < ve; vp++) {
  191. const Point3F* cp = &point[*vp];
  192. F32 dd = mDot(*cp,v);
  193. if (dd > bd) {
  194. bd = dd;
  195. bp = cp;
  196. }
  197. }
  198. return *bp;
  199. }
  200. inline bool isOnPlane(Point3F& p,PlaneF& plane)
  201. {
  202. F32 dist = mDot(plane,p) + plane.d;
  203. return dist < 0.1 && dist > -0.1;
  204. }
  205. void TerrainConvex::getFeatures(const MatrixF& mat,const VectorF& n, ConvexFeature* cf)
  206. {
  207. U32 i;
  208. cf->material = 0;
  209. cf->object = mObject;
  210. // Plane is normal n + support point
  211. PlaneF plane;
  212. plane.set(support(n),n);
  213. S32 vertexCount = cf->mVertexList.size();
  214. // Emit vertices on the plane
  215. S32* vertexListPointer;
  216. if (halfA)
  217. vertexListPointer = square ? sVertexList[(split45 << 1) | 1]: sVertexList[4];
  218. else
  219. vertexListPointer = square ? sVertexList[(split45 << 1)] : sVertexList[4];
  220. S32 pm = 0;
  221. S32 numVerts = *vertexListPointer;
  222. vertexListPointer += 1;
  223. for (i = 0; i < numVerts; i++)
  224. {
  225. Point3F& cp = point[vertexListPointer[i]];
  226. cf->mVertexList.increment();
  227. mat.mulP(cp,&cf->mVertexList.last());
  228. pm |= 1 << vertexListPointer[i];
  229. }
  230. // Emit Edges
  231. S32* ep = (square && halfA)?
  232. (split45 ? sEdgeList45A[pm]: sEdgeList135A[pm]):
  233. (split45 ? sEdgeList45[pm]: sEdgeList135[pm]);
  234. S32 numEdges = *ep;
  235. S32 edgeListStart = cf->mEdgeList.size();
  236. cf->mEdgeList.increment(numEdges);
  237. ep += 1;
  238. for (i = 0; i < numEdges; i++)
  239. {
  240. cf->mEdgeList[edgeListStart + i].vertex[0] = vertexCount + ep[i * 2 + 0];
  241. cf->mEdgeList[edgeListStart + i].vertex[1] = vertexCount + ep[i * 2 + 1];
  242. }
  243. // Emit faces
  244. S32* fp = split45 ? sFaceList45[pm]: sFaceList135[pm];
  245. S32 numFaces = *fp;
  246. fp += 1;
  247. S32 faceListStart = cf->mFaceList.size();
  248. cf->mFaceList.increment(numFaces);
  249. for (i = 0; i < numFaces; i++)
  250. {
  251. cf->mFaceList[faceListStart + i].normal = normal[fp[i * 4 + 0]];
  252. cf->mFaceList[faceListStart + i].vertex[0] = vertexCount + fp[i * 4 + 1];
  253. cf->mFaceList[faceListStart + i].vertex[1] = vertexCount + fp[i * 4 + 2];
  254. cf->mFaceList[faceListStart + i].vertex[2] = vertexCount + fp[i * 4 + 3];
  255. }
  256. }
  257. void TerrainConvex::getPolyList(AbstractPolyList* list)
  258. {
  259. list->setTransform(&mObject->getTransform(), mObject->getScale());
  260. list->setObject(mObject);
  261. // Emit vertices
  262. U32 array[4];
  263. U32 curr = 0;
  264. S32 numVerts;
  265. S32* vertsStart;
  266. if (halfA)
  267. {
  268. numVerts = square ? sVertexList[(split45 << 1) | 1][0] : sVertexList[4][0];
  269. vertsStart = square ? &sVertexList[(split45 << 1) | 1][1] : &sVertexList[4][1];
  270. }
  271. else
  272. {
  273. numVerts = square ? sVertexList[(split45 << 1)][0] : sVertexList[4][0];
  274. vertsStart = square ? &sVertexList[(split45 << 1)][1] : &sVertexList[4][1];
  275. }
  276. S32 pointMask = 0;
  277. for (U32 i = 0; i < numVerts; i++) {
  278. const Point3F& cp = point[vertsStart[i]];
  279. array[curr++] = list->addPoint(cp);
  280. pointMask |= (1 << vertsStart[i]);
  281. }
  282. S32 numFaces = split45 ? sFaceList45[pointMask][0] : sFaceList135[pointMask][0];
  283. S32* faceStart = split45 ? &sFaceList45[pointMask][1] : &sFaceList135[pointMask][1];
  284. for (U32 j = 0; j < numFaces; j++) {
  285. S32 plane = faceStart[0];
  286. S32 v0 = faceStart[1];
  287. S32 v1 = faceStart[2];
  288. S32 v2 = faceStart[3];
  289. list->begin(0, plane);
  290. list->vertex(array[v0]);
  291. list->vertex(array[v1]);
  292. list->vertex(array[v2]);
  293. list->plane(array[v0], array[v1], array[v2]);
  294. list->end();
  295. faceStart += 4;
  296. }
  297. }
  298. //----------------------------------------------------------------------------
  299. void TerrainBlock::buildConvex(const Box3F& box,Convex* convex)
  300. {
  301. PROFILE_SCOPE( TerrainBlock_buildConvex );
  302. sTerrainConvexList.collectGarbage();
  303. // First check to see if the query misses the
  304. // terrain elevation range.
  305. const Point3F &terrainPos = getPosition();
  306. if ( box.maxExtents.z - terrainPos.z < -TerrainThickness ||
  307. box.minExtents.z - terrainPos.z > fixedToFloat( mFile->getMaxHeight() ) )
  308. return;
  309. // Transform the bounding sphere into the object's coord space. Note that this
  310. // not really optimal.
  311. Box3F osBox = box;
  312. mWorldToObj.mul(osBox);
  313. AssertWarn(mObjScale == Point3F(1, 1, 1), "Error, handle the scale transform on the terrain");
  314. S32 xStart = (S32)mFloor( osBox.minExtents.x / mSquareSize );
  315. S32 xEnd = (S32)mCeil ( osBox.maxExtents.x / mSquareSize );
  316. S32 yStart = (S32)mFloor( osBox.minExtents.y / mSquareSize );
  317. S32 yEnd = (S32)mCeil ( osBox.maxExtents.y / mSquareSize );
  318. S32 xExt = xEnd - xStart;
  319. if (xExt > MaxExtent)
  320. xExt = MaxExtent;
  321. U16 heightMax = floatToFixed(osBox.maxExtents.z);
  322. U16 heightMin = (osBox.minExtents.z < 0)? 0: floatToFixed(osBox.minExtents.z);
  323. const U32 BlockMask = mFile->mSize - 1;
  324. for ( S32 y = yStart; y < yEnd; y++ )
  325. {
  326. S32 yi = y & BlockMask;
  327. //
  328. for ( S32 x = xStart; x < xEnd; x++ )
  329. {
  330. S32 xi = x & BlockMask;
  331. const TerrainSquare *sq = mFile->findSquare( 0, xi, yi );
  332. if ( x != xi || y != yi )
  333. continue;
  334. // holes only in the primary terrain block
  335. if ( ( ( sq->flags & TerrainSquare::Empty ) && x == xi && y == yi ) ||
  336. sq->minHeight > heightMax ||
  337. sq->maxHeight < heightMin )
  338. continue;
  339. U32 sid = (x << 16) + (y & ((1 << 16) - 1));
  340. Convex *cc = 0;
  341. // See if the square already exists as part of the working set.
  342. CollisionWorkingList& wl = convex->getWorkingList();
  343. for (CollisionWorkingList* itr = wl.wLink.mNext; itr != &wl; itr = itr->wLink.mNext)
  344. if (itr->mConvex->getType() == TerrainConvexType &&
  345. static_cast<TerrainConvex*>(itr->mConvex)->squareId == sid) {
  346. cc = itr->mConvex;
  347. break;
  348. }
  349. if (cc)
  350. continue;
  351. // Create a new convex.
  352. TerrainConvex* cp = new TerrainConvex;
  353. sTerrainConvexList.registerObject(cp);
  354. convex->addToWorkingList(cp);
  355. cp->halfA = true;
  356. cp->square = 0;
  357. cp->mObject = this;
  358. cp->squareId = sid;
  359. cp->material = mFile->getLayerIndex( xi, yi );
  360. cp->box.minExtents.set((F32)(x * mSquareSize), (F32)(y * mSquareSize), fixedToFloat( sq->minHeight ));
  361. cp->box.maxExtents.x = cp->box.minExtents.x + mSquareSize;
  362. cp->box.maxExtents.y = cp->box.minExtents.y + mSquareSize;
  363. cp->box.maxExtents.z = fixedToFloat( sq->maxHeight );
  364. mObjToWorld.mul(cp->box);
  365. // Build points
  366. Point3F* pos = cp->point;
  367. for (int i = 0; i < 4 ; i++,pos++) {
  368. S32 dx = i >> 1;
  369. S32 dy = dx ^ (i & 1);
  370. pos->x = (F32)((x + dx) * mSquareSize);
  371. pos->y = (F32)((y + dy) * mSquareSize);
  372. pos->z = fixedToFloat( mFile->getHeight(xi + dx, yi + dy) );
  373. }
  374. // Build normals, then split into two Convex objects if the
  375. // square is concave
  376. if ((cp->split45 = sq->flags & TerrainSquare::Split45) == true) {
  377. VectorF *vp = cp->point;
  378. mCross(vp[0] - vp[1],vp[2] - vp[1],&cp->normal[0]);
  379. cp->normal[0].normalize();
  380. mCross(vp[2] - vp[3],vp[0] - vp[3],&cp->normal[1]);
  381. cp->normal[1].normalize();
  382. if (mDot(vp[3] - vp[1],cp->normal[0]) > 0) {
  383. TerrainConvex* nc = new TerrainConvex(*cp);
  384. sTerrainConvexList.registerObject(nc);
  385. convex->addToWorkingList(nc);
  386. nc->halfA = false;
  387. nc->square = cp;
  388. cp->square = nc;
  389. }
  390. }
  391. else {
  392. VectorF *vp = cp->point;
  393. mCross(vp[3] - vp[0],vp[1] - vp[0],&cp->normal[0]);
  394. cp->normal[0].normalize();
  395. mCross(vp[1] - vp[2],vp[3] - vp[2],&cp->normal[1]);
  396. cp->normal[1].normalize();
  397. if (mDot(vp[2] - vp[0],cp->normal[0]) > 0) {
  398. TerrainConvex* nc = new TerrainConvex(*cp);
  399. sTerrainConvexList.registerObject(nc);
  400. convex->addToWorkingList(nc);
  401. nc->halfA = false;
  402. nc->square = cp;
  403. cp->square = nc;
  404. }
  405. }
  406. }
  407. }
  408. }
  409. static inline void swap(U32*& a,U32*& b)
  410. {
  411. U32* t = b;
  412. b = a;
  413. a = t;
  414. }
  415. static void clrbuf(U32* p, U32 s)
  416. {
  417. U32* e = p + s;
  418. while (p != e)
  419. *p++ = U32_MAX;
  420. }
  421. bool TerrainBlock::buildPolyList(PolyListContext, AbstractPolyList* polyList, const Box3F &box, const SphereF&)
  422. {
  423. PROFILE_SCOPE( TerrainBlock_buildPolyList );
  424. // First check to see if the query misses the
  425. // terrain elevation range.
  426. const Point3F &terrainPos = getPosition();
  427. if ( box.maxExtents.z - terrainPos.z < -TerrainThickness ||
  428. box.minExtents.z - terrainPos.z > fixedToFloat( mFile->getMaxHeight() ) )
  429. return false;
  430. // Transform the bounding sphere into the object's coord
  431. // space. Note that this is really optimal.
  432. Box3F osBox = box;
  433. mWorldToObj.mul(osBox);
  434. AssertWarn(mObjScale == Point3F::One, "Error, handle the scale transform on the terrain");
  435. // Setup collision state data
  436. polyList->setTransform(&getTransform(), getScale());
  437. polyList->setObject(this);
  438. S32 xStart = (S32)mFloor( osBox.minExtents.x / mSquareSize );
  439. S32 xEnd = (S32)mCeil ( osBox.maxExtents.x / mSquareSize );
  440. S32 yStart = (S32)mFloor( osBox.minExtents.y / mSquareSize );
  441. S32 yEnd = (S32)mCeil ( osBox.maxExtents.y / mSquareSize );
  442. if ( xStart < 0 )
  443. xStart = 0;
  444. S32 xExt = xEnd - xStart;
  445. if ( xExt > MaxExtent )
  446. xExt = MaxExtent;
  447. xEnd = xStart + xExt;
  448. U32 heightMax = floatToFixed(osBox.maxExtents.z);
  449. U32 heightMin = (osBox.minExtents.z < 0.0f)? 0.0f: floatToFixed(osBox.minExtents.z);
  450. // Index of shared points
  451. U32 bp[(MaxExtent + 1) * 2],*vb[2];
  452. vb[0] = &bp[0];
  453. vb[1] = &bp[xExt + 1];
  454. clrbuf(vb[1],xExt + 1);
  455. const U32 BlockMask = mFile->mSize - 1;
  456. bool emitted = false;
  457. for (S32 y = yStart; y < yEnd; y++)
  458. {
  459. S32 yi = y & BlockMask;
  460. swap(vb[0],vb[1]);
  461. clrbuf(vb[1],xExt + 1);
  462. //
  463. for (S32 x = xStart; x < xEnd; x++)
  464. {
  465. S32 xi = x & BlockMask;
  466. const TerrainSquare *sq = mFile->findSquare( 0, xi, yi );
  467. if ( x != xi || y != yi )
  468. continue;
  469. // holes only in the primary terrain block
  470. if ( ( ( sq->flags & TerrainSquare::Empty ) && x == xi && y == yi ) ||
  471. sq->minHeight > heightMax ||
  472. sq->maxHeight < heightMin )
  473. continue;
  474. emitted = true;
  475. // Add the missing points
  476. U32 vi[5];
  477. for (int i = 0; i < 4 ; i++)
  478. {
  479. S32 dx = i >> 1;
  480. S32 dy = dx ^ (i & 1);
  481. U32* vp = &vb[dy][x - xStart + dx];
  482. if (*vp == U32_MAX)
  483. {
  484. Point3F pos;
  485. pos.x = (F32)((x + dx) * mSquareSize);
  486. pos.y = (F32)((y + dy) * mSquareSize);
  487. pos.z = fixedToFloat( mFile->getHeight(xi + dx, yi + dy) );
  488. *vp = polyList->addPoint(pos);
  489. }
  490. vi[i] = *vp;
  491. }
  492. U32* vp = &vi[0];
  493. if ( !( sq->flags & TerrainSquare::Split45 ) )
  494. vi[4] = vi[0], vp++;
  495. BaseMatInstance *material = NULL; //getMaterialInst( xi, yi );
  496. U32 surfaceKey = ((xi << 16) + yi) << 1;
  497. polyList->begin(material,surfaceKey);
  498. polyList->vertex(vp[0]);
  499. polyList->vertex(vp[1]);
  500. polyList->vertex(vp[2]);
  501. polyList->plane(vp[0],vp[1],vp[2]);
  502. polyList->end();
  503. polyList->begin(material,surfaceKey + 1);
  504. polyList->vertex(vp[0]);
  505. polyList->vertex(vp[2]);
  506. polyList->vertex(vp[3]);
  507. polyList->plane(vp[0],vp[2],vp[3]);
  508. polyList->end();
  509. }
  510. }
  511. return emitted;
  512. }
  513. //----------------------------------------------------------------------------
  514. static F32 calcInterceptV(F32 vStart, F32 invDeltaV, F32 intercept)
  515. {
  516. return (intercept - vStart) * invDeltaV;
  517. }
  518. static F32 calcInterceptNone(F32, F32, F32)
  519. {
  520. return MAX_FLOAT;
  521. }
  522. static F32 (*calcInterceptX)(F32, F32, F32);
  523. static F32 (*calcInterceptY)(F32, F32, F32);
  524. static U32 lineCount;
  525. static Point3F lineStart, lineEnd;
  526. bool TerrainBlock::castRay(const Point3F &start, const Point3F &end, RayInfo *info)
  527. {
  528. PROFILE_SCOPE( TerrainBlock_castRay );
  529. if ( !castRayI(start, end, info, false) )
  530. return false;
  531. // Set intersection point.
  532. info->setContactPoint( start, end );
  533. getTransform().mulP( info->point ); // transform to world coordinates for getGridPos
  534. // Set material at contact point.
  535. Point2I gridPos = getGridPos( info->point );
  536. U8 layer = mFile->getLayerIndex( gridPos.x, gridPos.y );
  537. info->material = mFile->getMaterialMapping( layer );
  538. return true;
  539. }
  540. bool TerrainBlock::castRayI(const Point3F &start, const Point3F &end, RayInfo *info, bool collideEmpty)
  541. {
  542. lineCount = 0;
  543. lineStart = start;
  544. lineEnd = end;
  545. info->object = this;
  546. if(start.x == end.x && start.y == end.y)
  547. {
  548. if (end.z == start.z)
  549. return false;
  550. F32 height;
  551. if(!getNormalAndHeight(Point2F(start.x, start.y), &info->normal, &height, true))
  552. return false;
  553. F32 t = (height - start.z) / (end.z - start.z);
  554. if(t < 0 || t > 1)
  555. return false;
  556. info->t = t;
  557. return true;
  558. }
  559. F32 invBlockWorldSize = 1 / getWorldBlockSize();
  560. Point3F pStart(start.x * invBlockWorldSize, start.y * invBlockWorldSize, start.z);
  561. Point3F pEnd(end.x * invBlockWorldSize, end.y * invBlockWorldSize, end.z);
  562. int blockX = (S32)mFloor(pStart.x);
  563. int blockY = (S32)mFloor(pStart.y);
  564. int dx, dy;
  565. F32 invDeltaX;
  566. if(pEnd.x == pStart.x)
  567. {
  568. calcInterceptX = calcInterceptNone;
  569. invDeltaX = 0;
  570. dx = 0;
  571. }
  572. else
  573. {
  574. invDeltaX = 1 / (pEnd.x - pStart.x);
  575. calcInterceptX = calcInterceptV;
  576. if(pEnd.x < pStart.x)
  577. dx = -1;
  578. else
  579. dx = 1;
  580. }
  581. F32 invDeltaY;
  582. if(pEnd.y == pStart.y)
  583. {
  584. calcInterceptY = calcInterceptNone;
  585. invDeltaY = 0;
  586. dy = 0;
  587. }
  588. else
  589. {
  590. invDeltaY = 1 / (pEnd.y - pStart.y);
  591. calcInterceptY = calcInterceptV;
  592. if(pEnd.y < pStart.y)
  593. dy = -1;
  594. else
  595. dy = 1;
  596. }
  597. const U32 BlockSquareWidth = mFile->mSize;
  598. const U32 GridLevels = mFile->mGridLevels;
  599. F32 startT = 0;
  600. for(;;)
  601. {
  602. F32 nextXInt = calcInterceptX(pStart.x, invDeltaX, (F32)(blockX + (dx == 1)));
  603. F32 nextYInt = calcInterceptY(pStart.y, invDeltaY, (F32)(blockY + (dy == 1)));
  604. F32 intersectT = 1;
  605. if(nextXInt < intersectT)
  606. intersectT = nextXInt;
  607. if(nextYInt < intersectT)
  608. intersectT = nextYInt;
  609. if ( castRayBlock( pStart,
  610. pEnd,
  611. Point2I( blockX * BlockSquareWidth,
  612. blockY * BlockSquareWidth ),
  613. GridLevels,
  614. invDeltaX,
  615. invDeltaY,
  616. startT,
  617. intersectT,
  618. info,
  619. collideEmpty ) )
  620. {
  621. info->normal.z *= BlockSquareWidth * mSquareSize;
  622. info->normal.normalize();
  623. return true;
  624. }
  625. startT = intersectT;
  626. if(intersectT >= 1)
  627. break;
  628. if(nextXInt < nextYInt)
  629. blockX += dx;
  630. else if(nextYInt < nextXInt)
  631. blockY += dy;
  632. else
  633. {
  634. blockX += dx;
  635. blockY += dy;
  636. }
  637. }
  638. return false;
  639. }
  640. struct TerrLOSStackNode
  641. {
  642. F32 startT;
  643. F32 endT;
  644. Point2I blockPos;
  645. U32 level;
  646. };
  647. bool TerrainBlock::castRayBlock( const Point3F &pStart,
  648. const Point3F &pEnd,
  649. const Point2I &aBlockPos,
  650. U32 aLevel,
  651. F32 invDeltaX,
  652. F32 invDeltaY,
  653. F32 aStartT,
  654. F32 aEndT,
  655. RayInfo *info,
  656. bool collideEmpty )
  657. {
  658. const U32 BlockSquareWidth = mFile->mSize;
  659. const U32 GridLevels = mFile->mGridLevels;
  660. const U32 BlockMask = mFile->mSize - 1;
  661. F32 invBlockSize = 1 / F32( BlockSquareWidth );
  662. static Vector<TerrLOSStackNode> stack;
  663. stack.setSize( GridLevels * 3 + 1 );
  664. U32 stackSize = 1;
  665. stack[0].startT = aStartT;
  666. stack[0].endT = aEndT;
  667. stack[0].blockPos = aBlockPos;
  668. stack[0].level = aLevel;
  669. if( !aBlockPos.isZero() )
  670. return false;
  671. while(stackSize--)
  672. {
  673. TerrLOSStackNode *sn = stack.address() + stackSize;
  674. U32 level = sn->level;
  675. F32 startT = sn->startT;
  676. F32 endT = sn->endT;
  677. Point2I blockPos = sn->blockPos;
  678. const TerrainSquare *sq = mFile->findSquare( level, blockPos.x, blockPos.y );
  679. F32 startZ = startT * (pEnd.z - pStart.z) + pStart.z;
  680. F32 endZ = endT * (pEnd.z - pStart.z) + pStart.z;
  681. F32 minHeight = fixedToFloat(sq->minHeight);
  682. if(startZ <= minHeight && endZ <= minHeight)
  683. continue;
  684. F32 maxHeight = fixedToFloat(sq->maxHeight);
  685. if(startZ >= maxHeight && endZ >= maxHeight)
  686. continue;
  687. if ( !collideEmpty && ( sq->flags & TerrainSquare::Empty ) &&
  688. blockPos.x == ( blockPos.x & BlockMask ) && blockPos.y == ( blockPos.y & BlockMask ))
  689. continue;
  690. if(level == 0)
  691. {
  692. F32 xs = blockPos.x * invBlockSize;
  693. F32 ys = blockPos.y * invBlockSize;
  694. F32 zBottomLeft = fixedToFloat( mFile->getHeight(blockPos.x, blockPos.y) );
  695. F32 zBottomRight= fixedToFloat( mFile->getHeight(blockPos.x + 1, blockPos.y) );
  696. F32 zTopLeft = fixedToFloat( mFile->getHeight(blockPos.x, blockPos.y + 1) );
  697. F32 zTopRight = fixedToFloat( mFile->getHeight(blockPos.x + 1, blockPos.y + 1) );
  698. PlaneF p1, p2;
  699. PlaneF divider;
  700. Point3F planePoint;
  701. if(sq->flags & TerrainSquare::Split45)
  702. {
  703. p1.set(zBottomLeft - zBottomRight, zBottomRight - zTopRight, invBlockSize);
  704. p2.set(zTopLeft - zTopRight, zBottomLeft - zTopLeft, invBlockSize);
  705. planePoint.set(xs, ys, zBottomLeft);
  706. divider.x = 1;
  707. divider.y = -1;
  708. divider.z = 0;
  709. }
  710. else
  711. {
  712. p1.set(zTopLeft - zTopRight, zBottomRight - zTopRight, invBlockSize);
  713. p2.set(zBottomLeft - zBottomRight, zBottomLeft - zTopLeft, invBlockSize);
  714. planePoint.set(xs + invBlockSize, ys, zBottomRight);
  715. divider.x = 1;
  716. divider.y = 1;
  717. divider.z = 0;
  718. }
  719. p1.setPoint(planePoint);
  720. p2.setPoint(planePoint);
  721. divider.setPoint(planePoint);
  722. F32 t1 = p1.intersect(pStart, pEnd);
  723. F32 t2 = p2.intersect(pStart, pEnd);
  724. F32 td = divider.intersect(pStart, pEnd);
  725. F32 dStart = divider.distToPlane(pStart);
  726. F32 dEnd = divider.distToPlane(pEnd);
  727. // see if the line crosses the divider
  728. if((dStart >= 0 && dEnd < 0) || (dStart < 0 && dEnd >= 0))
  729. {
  730. if(dStart < 0)
  731. {
  732. F32 temp = t1;
  733. t1 = t2;
  734. t2 = temp;
  735. }
  736. if(t1 >= startT && t1 && t1 <= td && t1 <= endT)
  737. {
  738. info->t = t1;
  739. info->normal = p1;
  740. return true;
  741. }
  742. if(t2 >= td && t2 >= startT && t2 <= endT)
  743. {
  744. info->t = t2;
  745. info->normal = p2;
  746. return true;
  747. }
  748. }
  749. else
  750. {
  751. F32 t;
  752. if(dStart >= 0) {
  753. t = t1;
  754. info->normal = p1;
  755. }
  756. else {
  757. t = t2;
  758. info->normal = p2;
  759. }
  760. if(t >= startT && t <= endT)
  761. {
  762. info->t = t;
  763. return true;
  764. }
  765. }
  766. continue;
  767. }
  768. int subSqWidth = 1 << (level - 1);
  769. F32 xIntercept = (blockPos.x + subSqWidth) * invBlockSize;
  770. F32 xInt = calcInterceptX(pStart.x, invDeltaX, xIntercept);
  771. F32 yIntercept = (blockPos.y + subSqWidth) * invBlockSize;
  772. F32 yInt = calcInterceptY(pStart.y, invDeltaY, yIntercept);
  773. F32 startX = startT * (pEnd.x - pStart.x) + pStart.x;
  774. F32 startY = startT * (pEnd.y - pStart.y) + pStart.y;
  775. if(xInt < startT)
  776. xInt = MAX_FLOAT;
  777. if(yInt < startT)
  778. yInt = MAX_FLOAT;
  779. U32 x0 = (startX > xIntercept) * subSqWidth;
  780. U32 y0 = (startY > yIntercept) * subSqWidth;
  781. U32 x1 = subSqWidth - x0;
  782. U32 y1 = subSqWidth - y0;
  783. U32 nextLevel = level - 1;
  784. // push the items on the stack in reverse order of processing
  785. if(xInt > endT && yInt > endT)
  786. {
  787. // only test the square the point started in:
  788. stack[stackSize].blockPos.set(blockPos.x + x0, blockPos.y + y0);
  789. stack[stackSize].level = nextLevel;
  790. stackSize++;
  791. }
  792. else if(xInt < yInt)
  793. {
  794. F32 nextIntersect = endT;
  795. if(yInt <= endT)
  796. {
  797. stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y1);
  798. stack[stackSize].startT = yInt;
  799. stack[stackSize].endT = endT;
  800. stack[stackSize].level = nextLevel;
  801. nextIntersect = yInt;
  802. stackSize++;
  803. }
  804. stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y0);
  805. stack[stackSize].startT = xInt;
  806. stack[stackSize].endT = nextIntersect;
  807. stack[stackSize].level = nextLevel;
  808. stack[stackSize+1].blockPos.set(blockPos.x + x0, blockPos.y + y0);
  809. stack[stackSize+1].startT = startT;
  810. stack[stackSize+1].endT = xInt;
  811. stack[stackSize+1].level = nextLevel;
  812. stackSize += 2;
  813. }
  814. else if(yInt < xInt)
  815. {
  816. F32 nextIntersect = endT;
  817. if(xInt <= endT)
  818. {
  819. stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y1);
  820. stack[stackSize].startT = xInt;
  821. stack[stackSize].endT = endT;
  822. stack[stackSize].level = nextLevel;
  823. nextIntersect = xInt;
  824. stackSize++;
  825. }
  826. stack[stackSize].blockPos.set(blockPos.x + x0, blockPos.y + y1);
  827. stack[stackSize].startT = yInt;
  828. stack[stackSize].endT = nextIntersect;
  829. stack[stackSize].level = nextLevel;
  830. stack[stackSize+1].blockPos.set(blockPos.x + x0, blockPos.y + y0);
  831. stack[stackSize+1].startT = startT;
  832. stack[stackSize+1].endT = yInt;
  833. stack[stackSize+1].level = nextLevel;
  834. stackSize += 2;
  835. }
  836. else
  837. {
  838. stack[stackSize].blockPos.set(blockPos.x + x1, blockPos.y + y1);
  839. stack[stackSize].startT = xInt;
  840. stack[stackSize].endT = endT;
  841. stack[stackSize].level = nextLevel;
  842. stack[stackSize+1].blockPos.set(blockPos.x + x0, blockPos.y + y0);
  843. stack[stackSize+1].startT = startT;
  844. stack[stackSize+1].endT = xInt;
  845. stack[stackSize+1].level = nextLevel;
  846. stackSize += 2;
  847. }
  848. }
  849. return false;
  850. }