meshRenderSystem.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. #include "T3D/systems/render/meshRenderSystem.h"
  2. #include "gfx/gfxTransformSaver.h"
  3. #include "lighting/lightQuery.h"
  4. #include "renderInstance/renderPassManager.h"
  5. #include "materials/materialManager.h"
  6. #include "materials/baseMatInstance.h"
  7. Vector<MeshRenderSystem::BufferMaterials> MeshRenderSystem::mBufferMaterials(0);
  8. Vector<MeshRenderSystem::BufferSet> MeshRenderSystem::mStaticBuffers(0);
  9. void MeshRenderSystem::render(SceneManager *sceneManager, SceneRenderState* state)
  10. {
  11. if (sceneManager == nullptr || state == nullptr)
  12. return;
  13. Frustum viewFrustum = state->getCullingFrustum();
  14. MatrixF camTransform = state->getCameraTransform();
  15. U32 count = MeshRenderSystemInterface::all.size();
  16. for (U32 i = 0; i < count; i++)
  17. {
  18. //Server side items exist for data, but we don't actually render them
  19. if (!MeshRenderSystemInterface::all[i]->mIsClient)
  20. continue;
  21. if (MeshRenderSystemInterface::all[i]->mStatic)
  22. continue;
  23. //First, do frustum culling
  24. if (viewFrustum.isCulled(MeshRenderSystemInterface::all[i]->mBounds))
  25. continue;
  26. // Set the query box for the container query. Never
  27. // make it larger than the frustum's AABB. In the editor,
  28. // always query the full frustum as that gives objects
  29. // the opportunity to render editor visualizations even if
  30. // they are otherwise not in view.
  31. if (!state->getCullingFrustum().getBounds().isOverlapped(state->getRenderArea()))
  32. {
  33. // This handles fringe cases like flying backwards into a zone where you
  34. // end up pretty much standing on a zone border and looking directly into
  35. // its "walls". In that case the traversal area will be behind the frustum
  36. // (remember that the camera isn't where visibility starts, it's the near
  37. // distance).
  38. continue;
  39. }
  40. //We can then sort our objects by range since we have it already, so we can do occlusion culling be rendering front-to-back
  41. //if we've made it this far, call down to the render function to actually display our stuff
  42. renderInterface(i, state);
  43. }
  44. //Static Batch rendering
  45. if ( /*!mMaterialInst ||*/ !state)
  46. return;
  47. BaseMatInstance *matInst = MATMGR->getWarningMatInstance();
  48. // Get a handy pointer to our RenderPassmanager
  49. RenderPassManager *renderPass = state->getRenderPass();
  50. for (U32 i = 0; i < mStaticBuffers.size(); i++)
  51. {
  52. for (U32 b = 0; b < mStaticBuffers[i].buffers.size(); b++)
  53. {
  54. if (mStaticBuffers[i].buffers[b].vertData.empty())
  55. continue;
  56. MeshRenderInst *ri = renderPass->allocInst<MeshRenderInst>();
  57. // Set our RenderInst as a standard mesh render
  58. ri->type = RenderPassManager::RIT_Mesh;
  59. //If our material has transparency set on this will redirect it to proper render bin
  60. if (matInst->getMaterial()->isTranslucent())
  61. {
  62. ri->type = RenderPassManager::RIT_Translucent;
  63. ri->translucentSort = true;
  64. }
  65. // Calculate our sorting point
  66. if (state)
  67. {
  68. // Calculate our sort point manually.
  69. const Box3F& rBox = Box3F(1000);// getRenderWorldBox();
  70. ri->sortDistSq = rBox.getSqDistanceToPoint(state->getCameraPosition());
  71. }
  72. else
  73. ri->sortDistSq = 0.0f;
  74. // Set up our transforms
  75. MatrixF objectToWorld = MatrixF::Identity;//getRenderTransform();
  76. //objectToWorld.scale(getScale());
  77. ri->objectToWorld = renderPass->allocUniqueXform(objectToWorld);
  78. ri->worldToCamera = renderPass->allocSharedXform(RenderPassManager::View);
  79. ri->projection = renderPass->allocSharedXform(RenderPassManager::Projection);
  80. // If our material needs lights then fill the RIs
  81. // light vector with the best lights.
  82. /*if (matInst->isForwardLit())
  83. {
  84. LightQuery query;
  85. query.init(getWorldSphere());
  86. query.getLights(ri->lights, 8);
  87. }*/
  88. // Make sure we have an up-to-date backbuffer in case
  89. // our Material would like to make use of it
  90. // NOTICE: SFXBB is removed and refraction is disabled!
  91. //ri->backBuffTex = GFX->getSfxBackBuffer();
  92. // Set our Material
  93. ri->matInst = matInst;
  94. // Set up our vertex buffer and primitive buffer
  95. ri->vertBuff = &mStaticBuffers[i].buffers[b].vertexBuffer;
  96. ri->primBuff = &mStaticBuffers[i].buffers[b].primitiveBuffer;
  97. ri->prim = renderPass->allocPrim();
  98. ri->prim->type = GFXTriangleList;
  99. ri->prim->minIndex = 0;
  100. ri->prim->startIndex = 0;
  101. ri->prim->numPrimitives = mStaticBuffers[i].buffers[b].primData.size();
  102. ri->prim->startVertex = 0;
  103. ri->prim->numVertices = mStaticBuffers[i].buffers[b].vertData.size();
  104. // We sort by the material then vertex buffer
  105. ri->defaultKey = matInst->getStateHint();
  106. ri->defaultKey2 = (uintptr_t)ri->vertBuff;
  107. // Submit our RenderInst to the RenderPassManager
  108. state->getRenderPass()->addInst(ri);
  109. }
  110. }
  111. }
  112. void MeshRenderSystem::renderInterface(U32 interfaceIndex, SceneRenderState* state)
  113. {
  114. //Fetch
  115. MeshRenderSystemInterface* interface = MeshRenderSystemInterface::all[interfaceIndex];
  116. if (interface->mShapeInstance == nullptr)
  117. return;
  118. Point3F cameraOffset;
  119. interface->mTransform.getColumn(3, &cameraOffset);
  120. cameraOffset -= state->getDiffuseCameraPosition();
  121. F32 dist = cameraOffset.len();
  122. if (dist < 0.01f)
  123. dist = 0.01f;
  124. Point3F objScale = interface->mScale;
  125. F32 invScale = (1.0f / getMax(getMax(objScale.x, objScale.y), objScale.z));
  126. interface->mShapeInstance->setDetailFromDistance(state, dist * invScale);
  127. if (interface->mShapeInstance->getCurrentDetail() < 0)
  128. return;
  129. GFXTransformSaver saver;
  130. // Set up our TS render state.
  131. TSRenderState rdata;
  132. rdata.setSceneState(state);
  133. rdata.setFadeOverride(1.0f);
  134. rdata.setOriginSort(false);
  135. // We might have some forward lit materials
  136. // so pass down a query to gather lights.
  137. LightQuery query;
  138. query.init(interface->mSphere);
  139. rdata.setLightQuery(&query);
  140. MatrixF mat = interface->mTransform;
  141. mat.scale(objScale);
  142. GFX->setWorldMatrix(mat);
  143. interface->mShapeInstance->render(rdata);
  144. }
  145. void MeshRenderSystem::rebuildBuffers()
  146. {
  147. U32 BUFFER_SIZE = 65000;
  148. Vector<U32> tempIndices;
  149. tempIndices.reserve(4);
  150. Box3F newBounds = Box3F::Zero;
  151. mStaticBuffers.clear();
  152. for (U32 i = 0; i < MeshRenderSystemInterface::all.size(); i++)
  153. {
  154. if (!MeshRenderSystemInterface::all[i]->mIsEnabled)
  155. continue;
  156. if (!MeshRenderSystemInterface::all[i]->mIsClient || !MeshRenderSystemInterface::all[i]->mStatic)
  157. continue;
  158. //TODO: Properly re-implement StaticElements to container owner interfaces and buffer sets
  159. for (U32 j = 0; j < MeshRenderSystemInterface::all[i]->mGeometry.mPolyList.size(); j++)
  160. {
  161. const OptimizedPolyList::Poly& poly = MeshRenderSystemInterface::all[i]->mGeometry.mPolyList[j];
  162. if (poly.vertexCount < 3)
  163. continue;
  164. tempIndices.setSize(poly.vertexCount);
  165. dMemset(tempIndices.address(), 0, poly.vertexCount);
  166. if (poly.type == OptimizedPolyList::TriangleStrip ||
  167. poly.type == OptimizedPolyList::TriangleFan)
  168. {
  169. tempIndices[0] = 0;
  170. U32 idx = 1;
  171. for (U32 k = 1; k < poly.vertexCount; k += 2)
  172. tempIndices[idx++] = k;
  173. for (U32 k = ((poly.vertexCount - 1) & (~0x1)); k > 0; k -= 2)
  174. tempIndices[idx++] = k;
  175. }
  176. else if (poly.type == OptimizedPolyList::TriangleList)
  177. {
  178. for (U32 k = 0; k < poly.vertexCount; k++)
  179. tempIndices[k] = k;
  180. }
  181. else
  182. continue;
  183. //got our data, now insert it into the correct buffer!
  184. S32 bufferId = findBufferSetByMaterial(poly.material);
  185. if (bufferId == -1)
  186. {
  187. //add a new buffer set if we didn't get a match!
  188. BufferSet newSet;
  189. newSet.surfaceMaterialId = poly.material;
  190. mStaticBuffers.push_back(newSet);
  191. bufferId = mStaticBuffers.size() - 1;
  192. }
  193. //see if this would push us over our buffer size limit, if it is, make a new buffer for this set
  194. if (mStaticBuffers[bufferId].buffers.last().vertData.size() + 3 > BUFFER_SIZE
  195. || mStaticBuffers[bufferId].buffers.last().primData.size() + 1 > BUFFER_SIZE)
  196. {
  197. //yep, we'll overstep with this, so spool up a new buffer in this set
  198. BufferSet::Buffers newBuffer = BufferSet::Buffers();
  199. mStaticBuffers[bufferId].buffers.push_back(newBuffer);
  200. }
  201. const U32& firstIdx = MeshRenderSystemInterface::all[i]->mGeometry.mIndexList[poly.vertexStart];
  202. const OptimizedPolyList::VertIndex& firstVertIdx = MeshRenderSystemInterface::all[i]->mGeometry.mVertexList[firstIdx];
  203. //Vector<Point3F> geomPoints = MeshRenderSystemInterface::all[i]->mGeometry.mPoints;
  204. //Vector<Point3F> geomNormals = MeshRenderSystemInterface::all[i]->mGeometry.mNormals;
  205. //Vector<Point2F> geoUVs = MeshRenderSystemInterface::all[i]->mGeometry.mUV0s;
  206. for (U32 k = 1; k < poly.vertexCount - 1; k++)
  207. {
  208. const U32& secondIdx = MeshRenderSystemInterface::all[i]->mGeometry.mIndexList[poly.vertexStart + tempIndices[k]];
  209. const U32& thirdIdx = MeshRenderSystemInterface::all[i]->mGeometry.mIndexList[poly.vertexStart + tempIndices[k + 1]];
  210. const OptimizedPolyList::VertIndex& secondVertIdx = MeshRenderSystemInterface::all[i]->mGeometry.mVertexList[secondIdx];
  211. const OptimizedPolyList::VertIndex& thirdVertIdx = MeshRenderSystemInterface::all[i]->mGeometry.mVertexList[thirdIdx];
  212. Point3F points[3];
  213. points[0] = MeshRenderSystemInterface::all[i]->mGeometry.mPoints[firstVertIdx.vertIdx];
  214. points[1] = MeshRenderSystemInterface::all[i]->mGeometry.mPoints[secondVertIdx.vertIdx];
  215. points[2] = MeshRenderSystemInterface::all[i]->mGeometry.mPoints[thirdVertIdx.vertIdx];
  216. Point3F normals[3];
  217. normals[0] = MeshRenderSystemInterface::all[i]->mGeometry.mNormals[firstVertIdx.normalIdx];
  218. normals[1] = MeshRenderSystemInterface::all[i]->mGeometry.mNormals[secondVertIdx.normalIdx];
  219. normals[2] = MeshRenderSystemInterface::all[i]->mGeometry.mNormals[thirdVertIdx.normalIdx];
  220. Point3F tangents[3];
  221. tangents[0] = mCross(points[1] - points[0], normals[0]);
  222. tangents[1] = mCross(points[2] - points[1], normals[1]);
  223. tangents[2] = mCross(points[0] - points[2], normals[2]);
  224. Point2F uvs[3];
  225. uvs[0] = MeshRenderSystemInterface::all[i]->mGeometry.mUV0s[firstVertIdx.uv0Idx];
  226. uvs[1] = MeshRenderSystemInterface::all[i]->mGeometry.mUV0s[secondVertIdx.uv0Idx];
  227. uvs[2] = MeshRenderSystemInterface::all[i]->mGeometry.mUV0s[thirdVertIdx.uv0Idx];
  228. mStaticBuffers[bufferId].vertCount += 3;
  229. mStaticBuffers[bufferId].primCount += 1;
  230. for (U32 v = 0; v < 3; ++v)
  231. {
  232. //Build the vert and store it to the buffers!
  233. GFXVertexPNTT bufVert;
  234. bufVert.point = points[v];
  235. bufVert.normal = normals[v];
  236. bufVert.tangent = tangents[v];
  237. bufVert.texCoord = uvs[v];
  238. newBounds.extend(points[v]);
  239. mStaticBuffers[bufferId].buffers.last().vertData.push_back(bufVert);
  240. U32 vertPrimId = mStaticBuffers[bufferId].buffers.last().vertData.size() - 1;
  241. mStaticBuffers[bufferId].buffers.last().primData.push_back(vertPrimId);
  242. mStaticBuffers[bufferId].center += points[v];
  243. }
  244. }
  245. }
  246. }
  247. //Now, iterate through the organized data and turn them into renderable buffers
  248. for (U32 i = 0; i < mStaticBuffers.size(); i++)
  249. {
  250. for (U32 b = 0; b < mStaticBuffers[i].buffers.size(); b++)
  251. {
  252. BufferSet::Buffers& buffers = mStaticBuffers[i].buffers[b];
  253. //if there's no data to be had in this buffer, just skip it
  254. if (buffers.vertData.empty())
  255. continue;
  256. buffers.vertexBuffer.set(GFX, buffers.vertData.size(), GFXBufferTypeStatic);
  257. GFXVertexPNTT *pVert = buffers.vertexBuffer.lock();
  258. for (U32 v = 0; v < buffers.vertData.size(); v++)
  259. {
  260. pVert->normal = buffers.vertData[v].normal;
  261. pVert->tangent = buffers.vertData[v].tangent;
  262. //pVert->color = buffers.vertData[v].color;
  263. pVert->point = buffers.vertData[v].point;
  264. pVert->texCoord = buffers.vertData[v].texCoord;
  265. pVert++;
  266. }
  267. buffers.vertexBuffer.unlock();
  268. // Allocate PB
  269. buffers.primitiveBuffer.set(GFX, buffers.primData.size(), buffers.primData.size() / 3, GFXBufferTypeStatic);
  270. U16 *pIndex;
  271. buffers.primitiveBuffer.lock(&pIndex);
  272. for (U16 primDataIDx = 0; primDataIDx < buffers.primData.size(); primDataIDx++)
  273. {
  274. *pIndex = primDataIDx;
  275. pIndex++;
  276. }
  277. buffers.primitiveBuffer.unlock();
  278. }
  279. mStaticBuffers[i].center /= mStaticBuffers[i].vertCount;
  280. }
  281. //mObjBox = newBounds;
  282. //resetWorldBox();
  283. }
  284. U32 MeshRenderSystem::findBufferSetByMaterial(U32 matId)
  285. {
  286. for (U32 i = 0; i < mStaticBuffers.size(); i++)
  287. {
  288. if (mStaticBuffers[i].surfaceMaterialId == matId)
  289. return i;
  290. }
  291. return -1;
  292. }