advancedLightingFeaturesHLSL.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #include "platform/platform.h"
  23. #include "lighting/advanced/hlsl/advancedLightingFeaturesHLSL.h"
  24. #include "lighting/advanced/advancedLightBinManager.h"
  25. #include "shaderGen/langElement.h"
  26. #include "shaderGen/shaderOp.h"
  27. #include "shaderGen/conditionerFeature.h"
  28. #include "renderInstance/renderPrePassMgr.h"
  29. #include "materials/processedMaterial.h"
  30. #include "materials/materialFeatureTypes.h"
  31. void DeferredRTLightingFeatHLSL::processPixMacros( Vector<GFXShaderMacro> &macros,
  32. const MaterialFeatureData &fd )
  33. {
  34. // Skip deferred features, and use forward shading instead
  35. if ( fd.features[MFT_ForwardShading] )
  36. {
  37. Parent::processPixMacros( macros, fd );
  38. return;
  39. }
  40. // Pull in the uncondition method for the light info buffer
  41. NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
  42. if ( texTarget && texTarget->getConditioner() )
  43. {
  44. ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
  45. unconditionMethod->createMethodMacro( String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition", macros );
  46. addDependency(unconditionMethod);
  47. }
  48. }
  49. void DeferredRTLightingFeatHLSL::processVert( Vector<ShaderComponent*> &componentList,
  50. const MaterialFeatureData &fd )
  51. {
  52. // Skip deferred features, and use forward shading instead
  53. if ( fd.features[MFT_ForwardShading] )
  54. {
  55. Parent::processVert( componentList, fd );
  56. return;
  57. }
  58. // Pass screen space position to pixel shader to compute a full screen buffer uv
  59. ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
  60. Var *ssPos = connectComp->getElement( RT_TEXCOORD );
  61. ssPos->setName( "screenspacePos" );
  62. ssPos->setStructName( "OUT" );
  63. ssPos->setType( "float4" );
  64. Var *outPosition = (Var*) LangElement::find( "hpos" );
  65. AssertFatal( outPosition, "No hpos, ohnoes." );
  66. output = new GenOp( " @ = @;\r\n", ssPos, outPosition );
  67. }
  68. void DeferredRTLightingFeatHLSL::processPix( Vector<ShaderComponent*> &componentList,
  69. const MaterialFeatureData &fd )
  70. {
  71. // Skip deferred features, and use forward shading instead
  72. if ( fd.features[MFT_ForwardShading] )
  73. {
  74. Parent::processPix( componentList, fd );
  75. return;
  76. }
  77. MultiLine *meta = new MultiLine;
  78. ShaderConnector *connectComp = dynamic_cast<ShaderConnector *>( componentList[C_CONNECTOR] );
  79. Var *ssPos = connectComp->getElement( RT_TEXCOORD );
  80. ssPos->setName( "screenspacePos" );
  81. ssPos->setStructName( "IN" );
  82. ssPos->setType( "float4" );
  83. Var *uvScene = new Var;
  84. uvScene->setType( "float2" );
  85. uvScene->setName( "uvScene" );
  86. LangElement *uvSceneDecl = new DecOp( uvScene );
  87. String rtParamName = String::ToString( "rtParams%d", mLastTexIndex );
  88. Var *rtParams = (Var*) LangElement::find( rtParamName );
  89. if( !rtParams )
  90. {
  91. rtParams = new Var;
  92. rtParams->setType( "float4" );
  93. rtParams->setName( rtParamName );
  94. rtParams->uniform = true;
  95. rtParams->constSortPos = cspPass;
  96. }
  97. meta->addStatement( new GenOp( " @ = @.xy / @.w;\r\n", uvSceneDecl, ssPos, ssPos ) ); // get the screen coord... its -1 to +1
  98. meta->addStatement( new GenOp( " @ = ( @ + 1.0 ) / 2.0;\r\n", uvScene, uvScene ) ); // get the screen coord to 0 to 1
  99. meta->addStatement( new GenOp( " @.y = 1.0 - @.y;\r\n", uvScene, uvScene ) ); // flip the y axis
  100. meta->addStatement( new GenOp( " @ = ( @ * @.zw ) + @.xy;\r\n", uvScene, uvScene, rtParams, rtParams) ); // scale it down and offset it to the rt size
  101. Var *lightInfoSamp = new Var;
  102. lightInfoSamp->setType( "float4" );
  103. lightInfoSamp->setName( "lightInfoSample" );
  104. // create texture var
  105. Var *lightInfoBuffer = new Var;
  106. lightInfoBuffer->setType( "sampler2D" );
  107. lightInfoBuffer->setName( "lightInfoBuffer" );
  108. lightInfoBuffer->uniform = true;
  109. lightInfoBuffer->sampler = true;
  110. lightInfoBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
  111. // Declare the RTLighting variables in this feature, they will either be assigned
  112. // in this feature, or in the tonemap/lightmap feature
  113. Var *d_lightcolor = new Var( "d_lightcolor", "float3" );
  114. meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_lightcolor ) ) );
  115. Var *d_NL_Att = new Var( "d_NL_Att", "float" );
  116. meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_NL_Att ) ) );
  117. Var *d_specular = new Var( "d_specular", "float" );
  118. meta->addStatement( new GenOp( " @;\r\n", new DecOp( d_specular ) ) );
  119. // Perform the uncondition here.
  120. String unconditionLightInfo = String::ToLower( AdvancedLightBinManager::smBufferName ) + "Uncondition";
  121. meta->addStatement( new GenOp( avar( " %s(tex2D(@, @), @, @, @);\r\n",
  122. unconditionLightInfo.c_str() ), lightInfoBuffer, uvScene, d_lightcolor, d_NL_Att, d_specular ) );
  123. // If this has an interlaced pre-pass, do averaging here
  124. if( fd.features[MFT_InterlacedPrePass] )
  125. {
  126. Var *oneOverTargetSize = (Var*) LangElement::find( "oneOverTargetSize" );
  127. if( !oneOverTargetSize )
  128. {
  129. oneOverTargetSize = new Var;
  130. oneOverTargetSize->setType( "float2" );
  131. oneOverTargetSize->setName( "oneOverTargetSize" );
  132. oneOverTargetSize->uniform = true;
  133. oneOverTargetSize->constSortPos = cspPass;
  134. }
  135. meta->addStatement( new GenOp( " float id_NL_Att, id_specular;\r\n float3 id_lightcolor;\r\n" ) );
  136. meta->addStatement( new GenOp( avar( " %s(tex2D(@, @ + float2(0.0, @.y)), id_lightcolor, id_NL_Att, id_specular);\r\n",
  137. unconditionLightInfo.c_str() ), lightInfoBuffer, uvScene, oneOverTargetSize ) );
  138. meta->addStatement( new GenOp(" @ = lerp(@, id_lightcolor, 0.5);\r\n", d_lightcolor, d_lightcolor ) );
  139. meta->addStatement( new GenOp(" @ = lerp(@, id_NL_Att, 0.5);\r\n", d_NL_Att, d_NL_Att ) );
  140. meta->addStatement( new GenOp(" @ = lerp(@, id_specular, 0.5);\r\n", d_specular, d_specular ) );
  141. }
  142. // This is kind of weak sauce
  143. if( !fd.features[MFT_VertLit] && !fd.features[MFT_ToneMap] && !fd.features[MFT_LightMap] && !fd.features[MFT_SubSurface] )
  144. meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "float4(@, 1.0)", d_lightcolor ), Material::Mul ) ) );
  145. output = meta;
  146. }
  147. ShaderFeature::Resources DeferredRTLightingFeatHLSL::getResources( const MaterialFeatureData &fd )
  148. {
  149. // Skip deferred features, and use forward shading instead
  150. if ( fd.features[MFT_ForwardShading] )
  151. return Parent::getResources( fd );
  152. // HACK: See DeferredRTLightingFeatHLSL::setTexData.
  153. mLastTexIndex = 0;
  154. Resources res;
  155. res.numTex = 1;
  156. res.numTexReg = 1;
  157. return res;
  158. }
  159. void DeferredRTLightingFeatHLSL::setTexData( Material::StageData &stageDat,
  160. const MaterialFeatureData &fd,
  161. RenderPassData &passData,
  162. U32 &texIndex )
  163. {
  164. // Skip deferred features, and use forward shading instead
  165. if ( fd.features[MFT_ForwardShading] )
  166. {
  167. Parent::setTexData( stageDat, fd, passData, texIndex );
  168. return;
  169. }
  170. NamedTexTarget *texTarget = NamedTexTarget::find( AdvancedLightBinManager::smBufferName );
  171. if( texTarget )
  172. {
  173. // HACK: We store this for use in DeferredRTLightingFeatHLSL::processPix()
  174. // which cannot deduce the texture unit itself.
  175. mLastTexIndex = texIndex;
  176. passData.mTexType[ texIndex ] = Material::TexTarget;
  177. passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
  178. }
  179. }
  180. void DeferredBumpFeatHLSL::processVert( Vector<ShaderComponent*> &componentList,
  181. const MaterialFeatureData &fd )
  182. {
  183. if( fd.features[MFT_PrePassConditioner] )
  184. {
  185. // There is an output conditioner active, so we need to supply a transform
  186. // to the pixel shader.
  187. MultiLine *meta = new MultiLine;
  188. // We need the view to tangent space transform in the pixel shader.
  189. getOutViewToTangent( componentList, meta, fd );
  190. // Make sure there are texcoords
  191. if( !fd.features[MFT_Parallax] && !fd.features[MFT_DiffuseMap] )
  192. {
  193. const bool useTexAnim = fd.features[MFT_TexAnim];
  194. getOutTexCoord( "texCoord",
  195. "float2",
  196. true,
  197. useTexAnim,
  198. meta,
  199. componentList );
  200. if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
  201. addOutDetailTexCoord( componentList,
  202. meta,
  203. useTexAnim );
  204. }
  205. output = meta;
  206. }
  207. else if ( fd.materialFeatures[MFT_NormalsOut] ||
  208. fd.features[MFT_ForwardShading] ||
  209. !fd.features[MFT_RTLighting] )
  210. {
  211. Parent::processVert( componentList, fd );
  212. return;
  213. }
  214. else
  215. {
  216. output = NULL;
  217. }
  218. }
  219. void DeferredBumpFeatHLSL::processPix( Vector<ShaderComponent*> &componentList,
  220. const MaterialFeatureData &fd )
  221. {
  222. // NULL output in case nothing gets handled
  223. output = NULL;
  224. if( fd.features[MFT_PrePassConditioner] )
  225. {
  226. MultiLine *meta = new MultiLine;
  227. Var *viewToTangent = getInViewToTangent( componentList );
  228. // create texture var
  229. Var *bumpMap = getNormalMapTex();
  230. Var *texCoord = getInTexCoord( "texCoord", "float2", true, componentList );
  231. LangElement *texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
  232. // create bump normal
  233. Var *bumpNorm = new Var;
  234. bumpNorm->setName( "bumpNormal" );
  235. bumpNorm->setType( "float4" );
  236. LangElement *bumpNormDecl = new DecOp( bumpNorm );
  237. meta->addStatement( expandNormalMap( texOp, bumpNormDecl, bumpNorm, fd ) );
  238. // If we have a detail normal map we add the xy coords of
  239. // it to the base normal map. This gives us the effect we
  240. // want with few instructions and minial artifacts.
  241. if ( fd.features.hasFeature( MFT_DetailNormalMap ) )
  242. {
  243. bumpMap = new Var;
  244. bumpMap->setType( "sampler2D" );
  245. bumpMap->setName( "detailBumpMap" );
  246. bumpMap->uniform = true;
  247. bumpMap->sampler = true;
  248. bumpMap->constNum = Var::getTexUnitNum();
  249. texCoord = getInTexCoord( "detCoord", "float2", true, componentList );
  250. texOp = new GenOp( "tex2D(@, @)", bumpMap, texCoord );
  251. Var *detailBump = new Var;
  252. detailBump->setName( "detailBump" );
  253. detailBump->setType( "float4" );
  254. meta->addStatement( expandNormalMap( texOp, new DecOp( detailBump ), detailBump, fd ) );
  255. Var *detailBumpScale = new Var;
  256. detailBumpScale->setType( "float" );
  257. detailBumpScale->setName( "detailBumpStrength" );
  258. detailBumpScale->uniform = true;
  259. detailBumpScale->constSortPos = cspPass;
  260. meta->addStatement( new GenOp( " @.xy += @.xy * @;\r\n", bumpNorm, detailBump, detailBumpScale ) );
  261. }
  262. // This var is read from GBufferConditionerHLSL and
  263. // used in the prepass output.
  264. //
  265. // By using the 'half' type here we get a bunch of partial
  266. // precision optimized code on further operations on the normal
  267. // which helps alot on older Geforce cards.
  268. //
  269. Var *gbNormal = new Var;
  270. gbNormal->setName( "gbNormal" );
  271. gbNormal->setType( "half3" );
  272. LangElement *gbNormalDecl = new DecOp( gbNormal );
  273. // Normalize is done later...
  274. // Note: The reverse mul order is intentional. Affine matrix.
  275. meta->addStatement( new GenOp( " @ = (half3)mul( @.xyz, @ );\r\n", gbNormalDecl, bumpNorm, viewToTangent ) );
  276. output = meta;
  277. return;
  278. }
  279. else if ( fd.materialFeatures[MFT_NormalsOut] ||
  280. fd.features[MFT_ForwardShading] ||
  281. !fd.features[MFT_RTLighting] )
  282. {
  283. Parent::processPix( componentList, fd );
  284. return;
  285. }
  286. else if ( fd.features[MFT_PixSpecular] && !fd.features[MFT_SpecularMap] )
  287. {
  288. Var *bumpSample = (Var *)LangElement::find( "bumpSample" );
  289. if( bumpSample == NULL )
  290. {
  291. Var *texCoord = getInTexCoord( "texCoord", "float2", true, componentList );
  292. Var *bumpMap = getNormalMapTex();
  293. bumpSample = new Var;
  294. bumpSample->setType( "float4" );
  295. bumpSample->setName( "bumpSample" );
  296. LangElement *bumpSampleDecl = new DecOp( bumpSample );
  297. output = new GenOp( " @ = tex2D(@, @);\r\n", bumpSampleDecl, bumpMap, texCoord );
  298. return;
  299. }
  300. }
  301. output = NULL;
  302. }
  303. ShaderFeature::Resources DeferredBumpFeatHLSL::getResources( const MaterialFeatureData &fd )
  304. {
  305. if ( fd.materialFeatures[MFT_NormalsOut] ||
  306. fd.features[MFT_ForwardShading] ||
  307. fd.features[MFT_Parallax] ||
  308. !fd.features[MFT_RTLighting] )
  309. return Parent::getResources( fd );
  310. Resources res;
  311. if(!fd.features[MFT_SpecularMap])
  312. {
  313. res.numTex = 1;
  314. res.numTexReg = 1;
  315. if ( fd.features[MFT_PrePassConditioner] &&
  316. fd.features.hasFeature( MFT_DetailNormalMap ) )
  317. {
  318. res.numTex += 1;
  319. if ( !fd.features.hasFeature( MFT_DetailMap ) )
  320. res.numTexReg += 1;
  321. }
  322. }
  323. return res;
  324. }
  325. void DeferredBumpFeatHLSL::setTexData( Material::StageData &stageDat,
  326. const MaterialFeatureData &fd,
  327. RenderPassData &passData,
  328. U32 &texIndex )
  329. {
  330. if ( fd.materialFeatures[MFT_NormalsOut] ||
  331. fd.features[MFT_ForwardShading] ||
  332. !fd.features[MFT_RTLighting] )
  333. {
  334. Parent::setTexData( stageDat, fd, passData, texIndex );
  335. return;
  336. }
  337. if ( !fd.features[MFT_Parallax] && !fd.features[MFT_SpecularMap] &&
  338. ( fd.features[MFT_PrePassConditioner] ||
  339. fd.features[MFT_PixSpecular] ) )
  340. {
  341. passData.mTexType[ texIndex ] = Material::Bump;
  342. passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_NormalMap );
  343. if ( fd.features[MFT_PrePassConditioner] &&
  344. fd.features.hasFeature( MFT_DetailNormalMap ) )
  345. {
  346. passData.mTexType[ texIndex ] = Material::DetailBump;
  347. passData.mTexSlot[ texIndex++ ].texObject = stageDat.getTex( MFT_DetailNormalMap );
  348. }
  349. }
  350. }
  351. void DeferredPixelSpecularHLSL::processVert( Vector<ShaderComponent*> &componentList,
  352. const MaterialFeatureData &fd )
  353. {
  354. if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
  355. {
  356. Parent::processVert( componentList, fd );
  357. return;
  358. }
  359. output = NULL;
  360. }
  361. void DeferredPixelSpecularHLSL::processPix( Vector<ShaderComponent*> &componentList,
  362. const MaterialFeatureData &fd )
  363. {
  364. if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
  365. {
  366. Parent::processPix( componentList, fd );
  367. return;
  368. }
  369. MultiLine *meta = new MultiLine;
  370. Var *specular = new Var;
  371. specular->setType( "float" );
  372. specular->setName( "specular" );
  373. LangElement * specDecl = new DecOp( specular );
  374. Var *specCol = (Var*)LangElement::find( "specularColor" );
  375. if(specCol == NULL)
  376. {
  377. specCol = new Var;
  378. specCol->setType( "float4" );
  379. specCol->setName( "specularColor" );
  380. specCol->uniform = true;
  381. specCol->constSortPos = cspPotentialPrimitive;
  382. }
  383. Var *specPow = new Var;
  384. specPow->setType( "float" );
  385. specPow->setName( "specularPower" );
  386. // If the gloss map flag is set, than the specular power is in the alpha
  387. // channel of the specular map
  388. if( fd.features[ MFT_GlossMap ] )
  389. meta->addStatement( new GenOp( " @ = @.a * 255;\r\n", new DecOp( specPow ), specCol ) );
  390. else
  391. {
  392. specPow->uniform = true;
  393. specPow->constSortPos = cspPotentialPrimitive;
  394. }
  395. Var *specStrength = new Var;
  396. specStrength->setType( "float" );
  397. specStrength->setName( "specularStrength" );
  398. specStrength->uniform = true;
  399. specStrength->constSortPos = cspPotentialPrimitive;
  400. Var *lightInfoSamp = (Var *)LangElement::find( "lightInfoSample" );
  401. Var *d_specular = (Var*)LangElement::find( "d_specular" );
  402. Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
  403. AssertFatal( lightInfoSamp && d_specular && d_NL_Att,
  404. "DeferredPixelSpecularHLSL::processPix - Something hosed the deferred features!" );
  405. // (a^m)^n = a^(m*n)
  406. meta->addStatement( new GenOp( " @ = pow( abs(@), max((@ / AL_ConstantSpecularPower),1.0f)) * @;\r\n",
  407. specDecl, d_specular, specPow, specStrength ) );
  408. LangElement *specMul = new GenOp( "float4( @.rgb, 0 ) * @", specCol, specular );
  409. LangElement *final = specMul;
  410. // We we have a normal map then mask the specular
  411. if( !fd.features[MFT_SpecularMap] && fd.features[MFT_NormalMap] )
  412. {
  413. Var *bumpSample = (Var*)LangElement::find( "bumpSample" );
  414. final = new GenOp( "@ * @.a", final, bumpSample );
  415. }
  416. // add to color
  417. meta->addStatement( new GenOp( " @;\r\n", assignColor( final, Material::Add ) ) );
  418. output = meta;
  419. }
  420. ShaderFeature::Resources DeferredPixelSpecularHLSL::getResources( const MaterialFeatureData &fd )
  421. {
  422. if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
  423. return Parent::getResources( fd );
  424. Resources res;
  425. return res;
  426. }
  427. ShaderFeature::Resources DeferredMinnaertHLSL::getResources( const MaterialFeatureData &fd )
  428. {
  429. Resources res;
  430. if( !fd.features[MFT_ForwardShading] && fd.features[MFT_RTLighting] )
  431. {
  432. res.numTex = 1;
  433. res.numTexReg = 1;
  434. }
  435. return res;
  436. }
  437. void DeferredMinnaertHLSL::setTexData( Material::StageData &stageDat,
  438. const MaterialFeatureData &fd,
  439. RenderPassData &passData,
  440. U32 &texIndex )
  441. {
  442. if( !fd.features[MFT_ForwardShading] && fd.features[MFT_RTLighting] )
  443. {
  444. NamedTexTarget *texTarget = NamedTexTarget::find(RenderPrePassMgr::BufferName);
  445. if ( texTarget )
  446. {
  447. passData.mTexType[ texIndex ] = Material::TexTarget;
  448. passData.mTexSlot[ texIndex++ ].texTarget = texTarget;
  449. }
  450. }
  451. }
  452. void DeferredMinnaertHLSL::processPixMacros( Vector<GFXShaderMacro> &macros,
  453. const MaterialFeatureData &fd )
  454. {
  455. if( !fd.features[MFT_ForwardShading] && fd.features[MFT_RTLighting] )
  456. {
  457. // Pull in the uncondition method for the g buffer
  458. NamedTexTarget *texTarget = NamedTexTarget::find( RenderPrePassMgr::BufferName );
  459. if ( texTarget && texTarget->getConditioner() )
  460. {
  461. ConditionerMethodDependency *unconditionMethod = texTarget->getConditioner()->getConditionerMethodDependency(ConditionerFeature::UnconditionMethod);
  462. unconditionMethod->createMethodMacro( String::ToLower(RenderPrePassMgr::BufferName) + "Uncondition", macros );
  463. addDependency(unconditionMethod);
  464. }
  465. }
  466. }
  467. void DeferredMinnaertHLSL::processVert( Vector<ShaderComponent*> &componentList,
  468. const MaterialFeatureData &fd )
  469. {
  470. // If there is no deferred information, bail on this feature
  471. if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
  472. {
  473. output = NULL;
  474. return;
  475. }
  476. // Make sure we pass the world space position to the
  477. // pixel shader so we can calculate a view vector.
  478. MultiLine *meta = new MultiLine;
  479. addOutWsPosition( componentList, fd.features[MFT_UseInstancing], meta );
  480. output = meta;
  481. }
  482. void DeferredMinnaertHLSL::processPix( Vector<ShaderComponent*> &componentList,
  483. const MaterialFeatureData &fd )
  484. {
  485. // If there is no deferred information, bail on this feature
  486. if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
  487. {
  488. output = NULL;
  489. return;
  490. }
  491. Var *minnaertConstant = new Var;
  492. minnaertConstant->setType( "float" );
  493. minnaertConstant->setName( "minnaertConstant" );
  494. minnaertConstant->uniform = true;
  495. minnaertConstant->constSortPos = cspPotentialPrimitive;
  496. // create texture var
  497. Var *prepassBuffer = new Var;
  498. prepassBuffer->setType( "sampler2D" );
  499. prepassBuffer->setName( "prepassBuffer" );
  500. prepassBuffer->uniform = true;
  501. prepassBuffer->sampler = true;
  502. prepassBuffer->constNum = Var::getTexUnitNum(); // used as texture unit num here
  503. // Texture coord
  504. Var *uvScene = (Var*) LangElement::find( "uvScene" );
  505. AssertFatal(uvScene != NULL, "Unable to find UVScene, no RTLighting feature?");
  506. MultiLine *meta = new MultiLine;
  507. // Get the world space view vector.
  508. Var *wsViewVec = getWsView( getInWsPosition( componentList ), meta );
  509. String unconditionPrePassMethod = String::ToLower(RenderPrePassMgr::BufferName) + "Uncondition";
  510. Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
  511. meta->addStatement( new GenOp( avar( " float4 normalDepth = %s(@, @);\r\n", unconditionPrePassMethod.c_str() ), prepassBuffer, uvScene ) );
  512. meta->addStatement( new GenOp( " float vDotN = dot(normalDepth.xyz, @);\r\n", wsViewVec ) );
  513. meta->addStatement( new GenOp( " float Minnaert = pow( @, @) * pow(vDotN, 1.0 - @);\r\n", d_NL_Att, minnaertConstant, minnaertConstant ) );
  514. meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "float4(Minnaert, Minnaert, Minnaert, 1.0)" ), Material::Mul ) ) );
  515. output = meta;
  516. }
  517. void DeferredSubSurfaceHLSL::processPix( Vector<ShaderComponent*> &componentList,
  518. const MaterialFeatureData &fd )
  519. {
  520. // If there is no deferred information, bail on this feature
  521. if( fd.features[MFT_ForwardShading] || !fd.features[MFT_RTLighting] )
  522. {
  523. output = NULL;
  524. return;
  525. }
  526. Var *subSurfaceParams = new Var;
  527. subSurfaceParams->setType( "float4" );
  528. subSurfaceParams->setName( "subSurfaceParams" );
  529. subSurfaceParams->uniform = true;
  530. subSurfaceParams->constSortPos = cspPotentialPrimitive;
  531. Var *d_lightcolor = (Var*)LangElement::find( "d_lightcolor" );
  532. Var *d_NL_Att = (Var*)LangElement::find( "d_NL_Att" );
  533. MultiLine *meta = new MultiLine;
  534. meta->addStatement( new GenOp( " float subLamb = smoothstep([email protected], 1.0, @) - smoothstep(0.0, 1.0, @);\r\n", subSurfaceParams, d_NL_Att, d_NL_Att ) );
  535. meta->addStatement( new GenOp( " subLamb = max(0.0, subLamb);\r\n" ) );
  536. meta->addStatement( new GenOp( " @;\r\n", assignColor( new GenOp( "float4(@ + (subLamb * @.rgb), 1.0)", d_lightcolor, subSurfaceParams ), Material::Mul ) ) );
  537. output = meta;
  538. }