processedMaterial.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #include "platform/platform.h"
  23. #include "materials/processedMaterial.h"
  24. #include "materials/sceneData.h"
  25. #include "materials/materialParameters.h"
  26. #include "materials/matTextureTarget.h"
  27. #include "materials/materialFeatureTypes.h"
  28. #include "materials/materialManager.h"
  29. #include "scene/sceneRenderState.h"
  30. #include "gfx/gfxPrimitiveBuffer.h"
  31. #include "gfx/gfxTextureManager.h"
  32. #include "gfx/sim/cubemapData.h"
  33. RenderPassData::RenderPassData()
  34. {
  35. reset();
  36. }
  37. void RenderPassData::reset()
  38. {
  39. for( U32 i = 0; i < Material::MAX_TEX_PER_PASS; ++ i )
  40. {
  41. destructInPlace( &mTexSlot[ i ] );
  42. mSamplerNames[ i ].clear();
  43. }
  44. dMemset( &mTexSlot, 0, sizeof(mTexSlot) );
  45. dMemset( &mTexType, 0, sizeof(mTexType) );
  46. mCubeMap = NULL;
  47. mNumTex = mNumTexReg = mStageNum = 0;
  48. mGlow = false;
  49. mBlendOp = Material::None;
  50. mFeatureData.clear();
  51. for (U32 i = 0; i < STATE_MAX; i++)
  52. mRenderStates[i] = NULL;
  53. }
  54. String RenderPassData::describeSelf() const
  55. {
  56. String desc;
  57. // Now write all the textures.
  58. String texName;
  59. for ( U32 i=0; i < Material::MAX_TEX_PER_PASS; i++ )
  60. {
  61. if ( mTexType[i] == Material::TexTarget )
  62. texName = ( mTexSlot[i].texTarget ) ? mTexSlot[i].texTarget->getName() : "null_texTarget";
  63. else if ( mTexType[i] == Material::Cube && mCubeMap )
  64. texName = mCubeMap->getPath();
  65. else if ( mTexSlot[i].texObject )
  66. texName = mTexSlot[i].texObject->getPath();
  67. else
  68. continue;
  69. desc += String::ToString( "TexSlot %d: %d, %s\n", i, mTexType[i], texName.c_str() );
  70. }
  71. // Write out the first render state which is the
  72. // basis for all the other states and shoud be
  73. // enough to define the pass uniquely.
  74. desc += mRenderStates[0]->getDesc().describeSelf();
  75. return desc;
  76. }
  77. ProcessedMaterial::ProcessedMaterial()
  78. : mMaterial( NULL ),
  79. mCurrentParams( NULL ),
  80. mHasSetStageData( false ),
  81. mHasGlow( false ),
  82. mMaxStages( 0 ),
  83. mVertexFormat( NULL ),
  84. mUserObject( NULL )
  85. {
  86. VECTOR_SET_ASSOCIATION( mPasses );
  87. }
  88. ProcessedMaterial::~ProcessedMaterial()
  89. {
  90. for_each( mPasses.begin(), mPasses.end(), delete_pointer() );
  91. }
  92. void ProcessedMaterial::_setBlendState(Material::BlendOp blendOp, GFXStateBlockDesc& desc )
  93. {
  94. switch( blendOp )
  95. {
  96. case Material::Add:
  97. {
  98. desc.blendSrc = GFXBlendOne;
  99. desc.blendDest = GFXBlendOne;
  100. break;
  101. }
  102. case Material::AddAlpha:
  103. {
  104. desc.blendSrc = GFXBlendSrcAlpha;
  105. desc.blendDest = GFXBlendOne;
  106. break;
  107. }
  108. case Material::Mul:
  109. {
  110. desc.blendSrc = GFXBlendDestColor;
  111. desc.blendDest = GFXBlendZero;
  112. break;
  113. }
  114. case Material::LerpAlpha:
  115. {
  116. desc.blendSrc = GFXBlendSrcAlpha;
  117. desc.blendDest = GFXBlendInvSrcAlpha;
  118. break;
  119. }
  120. default:
  121. {
  122. // default to LerpAlpha
  123. desc.blendSrc = GFXBlendSrcAlpha;
  124. desc.blendDest = GFXBlendInvSrcAlpha;
  125. break;
  126. }
  127. }
  128. }
  129. void ProcessedMaterial::setBuffers(GFXVertexBufferHandleBase* vertBuffer, GFXPrimitiveBufferHandle* primBuffer)
  130. {
  131. GFX->setVertexBuffer( *vertBuffer );
  132. GFX->setPrimitiveBuffer( *primBuffer );
  133. }
  134. bool ProcessedMaterial::stepInstance()
  135. {
  136. AssertFatal( false, "ProcessedMaterial::stepInstance() - This type of material doesn't support instancing!" );
  137. return false;
  138. }
  139. String ProcessedMaterial::_getTexturePath(const String& filename)
  140. {
  141. // if '/', then path is specified, use it.
  142. if( filename.find('/') != String::NPos )
  143. {
  144. return filename;
  145. }
  146. // otherwise, construct path
  147. return mMaterial->getPath() + filename;
  148. }
  149. GFXTexHandle ProcessedMaterial::_createTexture( const char* filename, GFXTextureProfile *profile)
  150. {
  151. return GFXTexHandle( _getTexturePath(filename), profile, avar("%s() - NA (line %d)", __FUNCTION__, __LINE__) );
  152. }
  153. void ProcessedMaterial::addStateBlockDesc(const GFXStateBlockDesc& sb)
  154. {
  155. mUserDefined = sb;
  156. }
  157. void ProcessedMaterial::_initStateBlockTemplates(GFXStateBlockDesc& stateTranslucent, GFXStateBlockDesc& stateGlow, GFXStateBlockDesc& stateReflect)
  158. {
  159. // Translucency
  160. stateTranslucent.blendDefined = true;
  161. stateTranslucent.blendEnable = mMaterial->mTranslucentBlendOp != Material::None;
  162. _setBlendState(mMaterial->mTranslucentBlendOp, stateTranslucent);
  163. stateTranslucent.zDefined = true;
  164. stateTranslucent.zWriteEnable = mMaterial->mTranslucentZWrite;
  165. stateTranslucent.alphaDefined = true;
  166. stateTranslucent.alphaTestEnable = mMaterial->mAlphaTest;
  167. stateTranslucent.alphaTestRef = mMaterial->mAlphaRef;
  168. stateTranslucent.alphaTestFunc = GFXCmpGreaterEqual;
  169. stateTranslucent.samplersDefined = true;
  170. stateTranslucent.samplers[0].textureColorOp = GFXTOPModulate;
  171. stateTranslucent.samplers[0].alphaOp = GFXTOPModulate;
  172. stateTranslucent.samplers[0].alphaArg1 = GFXTATexture;
  173. stateTranslucent.samplers[0].alphaArg2 = GFXTADiffuse;
  174. // Glow
  175. stateGlow.zDefined = true;
  176. stateGlow.zWriteEnable = false;
  177. // Reflect
  178. stateReflect.cullDefined = true;
  179. stateReflect.cullMode = mMaterial->mDoubleSided ? GFXCullNone : GFXCullCW;
  180. }
  181. void ProcessedMaterial::_initRenderPassDataStateBlocks()
  182. {
  183. for (U32 pass = 0; pass < mPasses.size(); pass++)
  184. _initRenderStateStateBlocks( mPasses[pass] );
  185. }
  186. void ProcessedMaterial::_initPassStateBlock( RenderPassData *rpd, GFXStateBlockDesc &result )
  187. {
  188. if ( rpd->mBlendOp != Material::None )
  189. {
  190. result.blendDefined = true;
  191. result.blendEnable = true;
  192. _setBlendState( rpd->mBlendOp, result );
  193. }
  194. if (mMaterial && mMaterial->isDoubleSided())
  195. {
  196. result.cullDefined = true;
  197. result.cullMode = GFXCullNone;
  198. }
  199. if(mMaterial && mMaterial->mAlphaTest)
  200. {
  201. result.alphaDefined = true;
  202. result.alphaTestEnable = mMaterial->mAlphaTest;
  203. result.alphaTestRef = mMaterial->mAlphaRef;
  204. result.alphaTestFunc = GFXCmpGreaterEqual;
  205. }
  206. result.samplersDefined = true;
  207. NamedTexTarget *texTarget;
  208. U32 maxAnisotropy = 1;
  209. if (mMaterial && mMaterial->mUseAnisotropic[ rpd->mStageNum ] )
  210. maxAnisotropy = MATMGR->getDefaultAnisotropy();
  211. for( U32 i=0; i < rpd->mNumTex; i++ )
  212. {
  213. U32 currTexFlag = rpd->mTexType[i];
  214. switch( currTexFlag )
  215. {
  216. default:
  217. {
  218. result.samplers[i].textureColorOp = GFXTOPModulate;
  219. result.samplers[i].addressModeU = GFXAddressWrap;
  220. result.samplers[i].addressModeV = GFXAddressWrap;
  221. if ( maxAnisotropy > 1 )
  222. {
  223. result.samplers[i].minFilter = GFXTextureFilterAnisotropic;
  224. result.samplers[i].magFilter = GFXTextureFilterAnisotropic;
  225. result.samplers[i].maxAnisotropy = maxAnisotropy;
  226. }
  227. else
  228. {
  229. result.samplers[i].minFilter = GFXTextureFilterLinear;
  230. result.samplers[i].magFilter = GFXTextureFilterLinear;
  231. }
  232. break;
  233. }
  234. case Material::Cube:
  235. case Material::SGCube:
  236. case Material::NormalizeCube:
  237. {
  238. result.samplers[i].addressModeU = GFXAddressClamp;
  239. result.samplers[i].addressModeV = GFXAddressClamp;
  240. result.samplers[i].addressModeW = GFXAddressClamp;
  241. break;
  242. }
  243. case Material::TexTarget:
  244. {
  245. texTarget = mPasses[0]->mTexSlot[i].texTarget;
  246. if ( texTarget )
  247. texTarget->setupSamplerState( &result.samplers[i] );
  248. break;
  249. }
  250. }
  251. }
  252. // The prepass will take care of writing to the
  253. // zbuffer, so we don't have to by default.
  254. // The prepass can't write to the backbuffer's zbuffer in OpenGL.
  255. if ( MATMGR->getPrePassEnabled() &&
  256. !GFX->getAdapterType() == OpenGL &&
  257. !mFeatures.hasFeature(MFT_ForwardShading))
  258. result.setZReadWrite( result.zEnable, false );
  259. result.addDesc(mUserDefined);
  260. }
  261. /// Creates the default state blocks for a list of render states
  262. void ProcessedMaterial::_initRenderStateStateBlocks( RenderPassData *rpd )
  263. {
  264. GFXStateBlockDesc stateTranslucent;
  265. GFXStateBlockDesc stateGlow;
  266. GFXStateBlockDesc stateReflect;
  267. GFXStateBlockDesc statePass;
  268. _initStateBlockTemplates( stateTranslucent, stateGlow, stateReflect );
  269. _initPassStateBlock( rpd, statePass );
  270. // Ok, we've got our templates set up, let's combine them together based on state and
  271. // create our state blocks.
  272. for (U32 i = 0; i < RenderPassData::STATE_MAX; i++)
  273. {
  274. GFXStateBlockDesc stateFinal;
  275. if (i & RenderPassData::STATE_REFLECT)
  276. stateFinal.addDesc(stateReflect);
  277. if (i & RenderPassData::STATE_TRANSLUCENT)
  278. stateFinal.addDesc(stateTranslucent);
  279. if (i & RenderPassData::STATE_GLOW)
  280. stateFinal.addDesc(stateGlow);
  281. stateFinal.addDesc(statePass);
  282. if (i & RenderPassData::STATE_WIREFRAME)
  283. stateFinal.fillMode = GFXFillWireframe;
  284. GFXStateBlockRef sb = GFX->createStateBlock(stateFinal);
  285. rpd->mRenderStates[i] = sb;
  286. }
  287. }
  288. U32 ProcessedMaterial::_getRenderStateIndex( const SceneRenderState *sceneState,
  289. const SceneData &sgData )
  290. {
  291. // Based on what the state of the world is, get our render state block
  292. U32 currState = 0;
  293. // NOTE: We should only use per-material or per-pass hints to
  294. // change the render state. This is importaint because we
  295. // only change the state blocks between material passes.
  296. //
  297. // For example sgData.visibility would be bad to use
  298. // in here without changing how RenderMeshMgr works.
  299. if ( sgData.binType == SceneData::GlowBin )
  300. currState |= RenderPassData::STATE_GLOW;
  301. if ( sceneState && sceneState->isReflectPass() )
  302. currState |= RenderPassData::STATE_REFLECT;
  303. if ( sgData.binType != SceneData::PrePassBin &&
  304. mMaterial->isTranslucent() )
  305. currState |= RenderPassData::STATE_TRANSLUCENT;
  306. if ( sgData.wireframe )
  307. currState |= RenderPassData::STATE_WIREFRAME;
  308. return currState;
  309. }
  310. void ProcessedMaterial::_setRenderState( const SceneRenderState *state,
  311. const SceneData& sgData,
  312. U32 pass )
  313. {
  314. // Make sure we have the pass
  315. if ( pass >= mPasses.size() )
  316. return;
  317. U32 currState = _getRenderStateIndex( state, sgData );
  318. GFX->setStateBlock(mPasses[pass]->mRenderStates[currState]);
  319. }
  320. void ProcessedMaterial::_setStageData()
  321. {
  322. // Only do this once
  323. if ( mHasSetStageData )
  324. return;
  325. mHasSetStageData = true;
  326. U32 i;
  327. // Load up all the textures for every possible stage
  328. for( i=0; i<Material::MAX_STAGES; i++ )
  329. {
  330. // DiffuseMap
  331. if( mMaterial->mDiffuseMapFilename[i].isNotEmpty() )
  332. {
  333. mStages[i].setTex( MFT_DiffuseMap, _createTexture( mMaterial->mDiffuseMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  334. if (!mStages[i].getTex( MFT_DiffuseMap ))
  335. {
  336. mMaterial->logError("Failed to load diffuse map %s for stage %i", _getTexturePath(mMaterial->mDiffuseMapFilename[i]).c_str(), i);
  337. // Load a debug texture to make it clear to the user
  338. // that the texture for this stage was missing.
  339. mStages[i].setTex( MFT_DiffuseMap, _createTexture( GFXTextureManager::getMissingTexturePath().c_str(), &GFXDefaultStaticDiffuseProfile ) );
  340. }
  341. }
  342. // OverlayMap
  343. if( mMaterial->mOverlayMapFilename[i].isNotEmpty() )
  344. {
  345. mStages[i].setTex( MFT_OverlayMap, _createTexture( mMaterial->mOverlayMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  346. if(!mStages[i].getTex( MFT_OverlayMap ))
  347. mMaterial->logError("Failed to load overlay map %s for stage %i", _getTexturePath(mMaterial->mOverlayMapFilename[i]).c_str(), i);
  348. }
  349. // LightMap
  350. if( mMaterial->mLightMapFilename[i].isNotEmpty() )
  351. {
  352. mStages[i].setTex( MFT_LightMap, _createTexture( mMaterial->mLightMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  353. if(!mStages[i].getTex( MFT_LightMap ))
  354. mMaterial->logError("Failed to load light map %s for stage %i", _getTexturePath(mMaterial->mLightMapFilename[i]).c_str(), i);
  355. }
  356. // ToneMap
  357. if( mMaterial->mToneMapFilename[i].isNotEmpty() )
  358. {
  359. mStages[i].setTex( MFT_ToneMap, _createTexture( mMaterial->mToneMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  360. if(!mStages[i].getTex( MFT_ToneMap ))
  361. mMaterial->logError("Failed to load tone map %s for stage %i", _getTexturePath(mMaterial->mToneMapFilename[i]).c_str(), i);
  362. }
  363. // DetailMap
  364. if( mMaterial->mDetailMapFilename[i].isNotEmpty() )
  365. {
  366. mStages[i].setTex( MFT_DetailMap, _createTexture( mMaterial->mDetailMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  367. if(!mStages[i].getTex( MFT_DetailMap ))
  368. mMaterial->logError("Failed to load detail map %s for stage %i", _getTexturePath(mMaterial->mDetailMapFilename[i]).c_str(), i);
  369. }
  370. // NormalMap
  371. if( mMaterial->mNormalMapFilename[i].isNotEmpty() )
  372. {
  373. mStages[i].setTex( MFT_NormalMap, _createTexture( mMaterial->mNormalMapFilename[i], &GFXDefaultStaticNormalMapProfile ) );
  374. if(!mStages[i].getTex( MFT_NormalMap ))
  375. mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mNormalMapFilename[i]).c_str(), i);
  376. }
  377. // Detail Normal Map
  378. if( mMaterial->mDetailNormalMapFilename[i].isNotEmpty() )
  379. {
  380. mStages[i].setTex( MFT_DetailNormalMap, _createTexture( mMaterial->mDetailNormalMapFilename[i], &GFXDefaultStaticNormalMapProfile ) );
  381. if(!mStages[i].getTex( MFT_DetailNormalMap ))
  382. mMaterial->logError("Failed to load normal map %s for stage %i", _getTexturePath(mMaterial->mDetailNormalMapFilename[i]).c_str(), i);
  383. }
  384. // SpecularMap
  385. if( mMaterial->mSpecularMapFilename[i].isNotEmpty() )
  386. {
  387. mStages[i].setTex( MFT_SpecularMap, _createTexture( mMaterial->mSpecularMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  388. if(!mStages[i].getTex( MFT_SpecularMap ))
  389. mMaterial->logError("Failed to load specular map %s for stage %i", _getTexturePath(mMaterial->mSpecularMapFilename[i]).c_str(), i);
  390. }
  391. // EnironmentMap
  392. if( mMaterial->mEnvMapFilename[i].isNotEmpty() )
  393. {
  394. mStages[i].setTex( MFT_EnvMap, _createTexture( mMaterial->mEnvMapFilename[i], &GFXDefaultStaticDiffuseProfile ) );
  395. if(!mStages[i].getTex( MFT_EnvMap ))
  396. mMaterial->logError("Failed to load environment map %s for stage %i", _getTexturePath(mMaterial->mEnvMapFilename[i]).c_str(), i);
  397. }
  398. }
  399. mMaterial->mCubemapData = dynamic_cast<CubemapData*>(Sim::findObject( mMaterial->mCubemapName ));
  400. if( !mMaterial->mCubemapData )
  401. mMaterial->mCubemapData = NULL;
  402. // If we have a cubemap put it on stage 0 (cubemaps only supported on stage 0)
  403. if( mMaterial->mCubemapData )
  404. {
  405. mMaterial->mCubemapData->createMap();
  406. mStages[0].setCubemap( mMaterial->mCubemapData->mCubemap );
  407. if ( !mStages[0].getCubemap() )
  408. mMaterial->logError("Failed to load cubemap");
  409. }
  410. }