123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592 |
- /*
- ROBERT PENNER'S MOST EXCELLENT EASING METHODS - ported to Torque C++ by Paul Dana
- Easing Equations v1.5
- May 1, 2003
- (c) 2003 Robert Penner, all rights reserved.
- This work is subject to the terms in http://www.robertpenner.com/easing_terms_of_use.html.
-
- These tweening functions provide different flavors of
- math-based motion under a consistent API.
-
- Types of easing:
-
- Linear
- Quadratic
- Cubic
- Quartic
- Quintic
- Sinusoidal
- Exponential
- Circular
- Elastic
- Back
- Bounce
- Changes:
- 1.5 - added bounce easing
- 1.4 - added elastic and back easing
- 1.3 - tweaked the exponential easing functions to make endpoints exact
- 1.2 - inline optimizations (changing t and multiplying in one step)--thanks to Tatsuo Kato for the idea
-
- Discussed in Chapter 7 of
- Robert Penner's Programming Macromedia Flash MX
- (including graphs of the easing equations)
-
- http://www.robertpenner.com/profmx
- http://www.amazon.com/exec/obidos/ASIN/0072223561/robertpennerc-20
- */
- #ifndef _MEASE_H_
- #define _MEASE_H_
- // the ease methods below all are static and take atomic types as params
- // so they are the most generally useful. for convenience, define here
- // a type that can contain all the params needed for below to make
- // data structures that use these methods cleaner...
- //------------------------------------------------------------------------------
- class Ease
- {
- //-------------------------------------- Public data
- public:
- enum enumDirection
- {
- InOut=0,
- In,
- Out
- };
- enum enumType
- {
- Linear=0,
- Quadratic,
- Cubic,
- Quartic,
- Quintic,
- Sinusoidal,
- Exponential,
- Circular,
- Elastic,
- Back,
- Bounce,
- };
- };
- class EaseF : public Ease
- {
- //-------------------------------------- Public data
- public:
- S32 dir; // inout, in, out
- S32 type; // linear, etc...
- F32 param[2]; // optional params
- //-------------------------------------- Public interface
- public:
- EaseF();
- EaseF(const EaseF &ease);
- EaseF(const S32 dir, const S32 type);
- EaseF(const S32 dir, const S32 type, F32 param[2]);
- //-------------------------------------- Non-math mutators and misc functions
- void set(const S32 dir, const S32 type);
- void set(const S32 dir, const S32 type, F32 param[2]);
- void set(const S32 dir, const S32 type, F32 param0, F32 param1);
- void set(const char *s);
- F32 getValue(F32 t, F32 b, F32 c, F32 d) const;
- F32 getUnitValue(F32 t, bool noExtrapolation) const
- {
- F32 v = getValue(t,0.0f,1.0f,1.0f);
- if (noExtrapolation)
- v = mClampF(v,0.0f,1.0f);
- return v;
- }
- F32 getUnitValue(F32 t) const
- {
- return getValue(t,0.0f,1.0f,1.0f);
- }
- };
- // simple linear tweening - no easing
- // t: current time, b: beginning value, c: change in value, d: duration
- inline F32 mLinearTween(F32 t, F32 b, F32 c, F32 d) {
- return c*t/d + b;
- }
- ///////////// QUADRATIC EASING: t^2 ///////////////////
- // quadratic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be in frames or seconds/milliseconds
- inline F32 mEaseInQuad(F32 t, F32 b, F32 c, F32 d) {
- return c*(t/=d)*t + b;
- };
- // quadratic easing out - decelerating to zero velocity
- inline F32 mEaseOutQuad(F32 t, F32 b, F32 c, F32 d) {
- return -c *(t/=d)*(t-2) + b;
- };
- // quadratic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutQuad(F32 t, F32 b, F32 c, F32 d) {
- if ((t/=d/2) < 1) return c/2*t*t + b;
- return -c/2 * ((--t)*(t-2) - 1) + b;
- };
- ///////////// CUBIC EASING: t^3 ///////////////////////
- // cubic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- inline F32 mEaseInCubic(F32 t, F32 b, F32 c, F32 d) {
- return c*(t/=d)*t*t + b;
- };
- // cubic easing out - decelerating to zero velocity
- inline F32 mEaseOutCubic(F32 t, F32 b, F32 c, F32 d) {
- return c*((t=t/d-1)*t*t + 1) + b;
- };
- // cubic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutCubic(F32 t, F32 b, F32 c, F32 d) {
- if ((t/=d/2) < 1) return c/2*t*t*t + b;
- return c/2*((t-=2)*t*t + 2) + b;
- };
- ///////////// QUARTIC EASING: t^4 /////////////////////
- // quartic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- inline F32 mEaseInQuart(F32 t, F32 b, F32 c, F32 d) {
- return c*(t/=d)*t*t*t + b;
- };
- // quartic easing out - decelerating to zero velocity
- inline F32 mEaseOutQuart(F32 t, F32 b, F32 c, F32 d) {
- return -c * ((t=t/d-1)*t*t*t - 1) + b;
- };
- // quartic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutQuart(F32 t, F32 b, F32 c, F32 d) {
- if ((t/=d/2) < 1) return c/2*t*t*t*t + b;
- return -c/2 * ((t-=2)*t*t*t - 2) + b;
- };
- ///////////// QUINTIC EASING: t^5 ////////////////////
- // quintic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- inline F32 mEaseInQuint(F32 t, F32 b, F32 c, F32 d) {
- return c*(t/=d)*t*t*t*t + b;
- };
- // quintic easing out - decelerating to zero velocity
- inline F32 mEaseOutQuint(F32 t, F32 b, F32 c, F32 d) {
- return c*((t=t/d-1)*t*t*t*t + 1) + b;
- };
- // quintic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutQuint(F32 t, F32 b, F32 c, F32 d) {
- if ((t/=d/2) < 1) return c/2*t*t*t*t*t + b;
- return c/2*((t-=2)*t*t*t*t + 2) + b;
- };
- ///////////// SINUSOIDAL EASING: sin(t) ///////////////
- // sinusoidal easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInSine(F32 t, F32 b, F32 c, F32 d) {
- return -c * mCos(t/d * (M_PI_F/2)) + c + b;
- };
- // sinusoidal easing out - decelerating to zero velocity
- inline F32 mEaseOutSine(F32 t, F32 b, F32 c, F32 d) {
- return c * mSin(t/d * (M_PI_F/2)) + b;
- };
- // sinusoidal easing in/out - accelerating until halfway, then decelerating
- inline F32 mEaseInOutSine(F32 t, F32 b, F32 c, F32 d) {
- return -c/2 * (mCos(M_PI_F*t/d) - 1) + b;
- };
- ///////////// EXPONENTIAL EASING: 2^t /////////////////
- // exponential easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInExpo(F32 t, F32 b, F32 c, F32 d) {
- return (t==0) ? b : c * mPow(2, 10 * (t/d - 1)) + b;
- };
- // exponential easing out - decelerating to zero velocity
- inline F32 mEaseOutExpo(F32 t, F32 b, F32 c, F32 d) {
- return (t==d) ? b+c : c * (-mPow(2, -10 * t/d) + 1) + b;
- };
- // exponential easing in/out - accelerating until halfway, then decelerating
- inline F32 mEaseInOutExpo(F32 t, F32 b, F32 c, F32 d) {
- if (t==0) return b;
- if (t==d) return b+c;
- if ((t/=d/2) < 1) return c/2 * mPow(2, 10 * (t - 1)) + b;
- return c/2 * (-mPow(2, -10 * --t) + 2) + b;
- };
- /////////// CIRCULAR EASING: sqrt(1-t^2) //////////////
- // circular easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInCirc (F32 t, F32 b, F32 c, F32 d) {
- return -c * (mSqrt(1 - (t/=d)*t) - 1) + b;
- };
- // circular easing out - decelerating to zero velocity
- inline F32 mEaseOutCirc (F32 t, F32 b, F32 c, F32 d) {
- return c * mSqrt(1 - (t=t/d-1)*t) + b;
- };
- // circular easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutCirc(F32 t, F32 b, F32 c, F32 d) {
- if ((t/=d/2) < 1) return -c/2 * (mSqrt(1 - t*t) - 1) + b;
- return c/2 * (mSqrt(1 - (t-=2)*t) + 1) + b;
- };
- /////////// ELASTIC EASING: exponentially decaying sine wave //////////////
- // t: current time, b: beginning value, c: change in value, d: duration, a: amplitude (optional), p: period (optional)
- // t and d can be in frames or seconds/milliseconds
- inline F32 mEaseInElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) {
- if (t==0) return b; if ((t/=d)==1) return b+c; if (p<=0) p=d*.3f;
- F32 s;
- if (a < mFabs(c)) { a=c; s=p/4; }
- else s = p/(2*M_PI_F) * mAsin (c/a);
- return -(a*mPow(2,10*(t-=1)) * mSin( (t*d-s)*(2*M_PI_F)/p )) + b;
- };
- inline F32 mEaseOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) {
- if (t==0) return b; if ((t/=d)==1) return b+c; if (p<=0) p=d*.3f;
- F32 s;
- if (a < mFabs(c)) { a=c; s=p/4; }
- else s = p/(2*M_PI_F) * mAsin (c/a);
- return a*mPow(2,-10*t) * mSin( (t*d-s)*(2*M_PI_F)/p ) + c + b;
- };
- inline F32 mEaseInOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p) {
- if (t==0) return b; if ((t/=d/2)==2) return b+c; if (p<=0) p=d*(.3f*1.5f);
- F32 s;
- if (a < mFabs(c)) { a=c; s=p/4; }
- else s = p/(2*M_PI_F) * mAsin (c/a);
- if (t < 1) return -.5f*(a*mPow(2,10*(t-=1)) * mSin( (t*d-s)*(2*M_PI_F)/p )) + b;
- return a*mPow(2,-10*(t-=1)) * mSin( (t*d-s)*(2*M_PI_F)/p )*.5f + c + b;
- };
- /////////// BACK EASING: overshooting cubic easing: (s+1)*t^3 - s*t^2 //////////////
- // back easing in - backtracking slightly, then reversing direction and moving to target
- // t: current time, b: beginning value, c: change in value, d: duration, s: overshoot amount (optional)
- // t and d can be in frames or seconds/milliseconds
- // s controls the amount of overshoot: higher s means greater overshoot
- // s has a default value of 1.70158, which produces an overshoot of 10 percent
- // s==0 produces cubic easing with no overshoot
- inline F32 mEaseInBack(F32 t, F32 b, F32 c, F32 d, F32 s) {
- if (s < 0) s = 1.70158f;
- return c*(t/=d)*t*((s+1)*t - s) + b;
- };
- // back easing out - moving towards target, overshooting it slightly, then reversing and coming back to target
- inline F32 mEaseOutBack(F32 t, F32 b, F32 c, F32 d, F32 s) {
- if (s < 0) s = 1.70158f;
- return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
- };
- // back easing in/out - backtracking slightly, then reversing direction and moving to target,
- // then overshooting target, reversing, and finally coming back to target
- inline F32 mEaseInOutBack(F32 t, F32 b, F32 c, F32 d, F32 s) {
- if (s < 0) s = 1.70158f;
- if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525f))+1)*t - s)) + b;
- return c/2*((t-=2)*t*(((s*=(1.525f))+1)*t + s) + 2) + b;
- };
- /////////// BOUNCE EASING: exponentially decaying parabolic bounce //////////////
- // bounce easing out
- inline F32 mEaseOutBounce(F32 t, F32 b, F32 c, F32 d) {
- if ((t/=d) < (1/2.75f)) {
- return c*(7.5625f*t*t) + b;
- } else if (t < (2/2.75)) {
- return c*(7.5625f*(t-=(1.5f/2.75f))*t + .75f) + b;
- } else if (t < (2.5/2.75)) {
- return c*(7.5625f*(t-=(2.25f/2.75f))*t + .9375f) + b;
- } else {
- return c*(7.5625f*(t-=(2.625f/2.75f))*t + .984375f) + b;
- }
- };
- // bounce easing in
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInBounce(F32 t, F32 b, F32 c, F32 d) {
- return c - mEaseOutBounce (d-t, 0, c, d) + b;
- };
- // bounce easing in/out
- inline F32 mEaseInOutBounce(F32 t, F32 b, F32 c, F32 d) {
- if (t < d/2) return mEaseInBounce (t*2, 0, c, d) * .5f + b;
- return mEaseOutBounce (t*2-d, 0, c, d) * .5f + c*.5f + b;
- };
- #if 0
- // ORIGINAL ACTION SCRIPT CODE:
- // simple linear tweening - no easing
- // t: current time, b: beginning value, c: change in value, d: duration
- Math.linearTween = function (t, b, c, d) {
- return c*t/d + b;
- };
- ///////////// QUADRATIC EASING: t^2 ///////////////////
- // quadratic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be in frames or seconds/milliseconds
- Math.easeInQuad = function (t, b, c, d) {
- return c*(t/=d)*t + b;
- };
- // quadratic easing out - decelerating to zero velocity
- Math.easeOutQuad = function (t, b, c, d) {
- return -c *(t/=d)*(t-2) + b;
- };
- // quadratic easing in/out - acceleration until halfway, then deceleration
- Math.easeInOutQuad = function (t, b, c, d) {
- if ((t/=d/2) < 1) return c/2*t*t + b;
- return -c/2 * ((--t)*(t-2) - 1) + b;
- };
- ///////////// CUBIC EASING: t^3 ///////////////////////
- // cubic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- Math.easeInCubic = function (t, b, c, d) {
- return c*(t/=d)*t*t + b;
- };
- // cubic easing out - decelerating to zero velocity
- Math.easeOutCubic = function (t, b, c, d) {
- return c*((t=t/d-1)*t*t + 1) + b;
- };
- // cubic easing in/out - acceleration until halfway, then deceleration
- Math.easeInOutCubic = function (t, b, c, d) {
- if ((t/=d/2) < 1) return c/2*t*t*t + b;
- return c/2*((t-=2)*t*t + 2) + b;
- };
- ///////////// QUARTIC EASING: t^4 /////////////////////
- // quartic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- Math.easeInQuart = function (t, b, c, d) {
- return c*(t/=d)*t*t*t + b;
- };
- // quartic easing out - decelerating to zero velocity
- Math.easeOutQuart = function (t, b, c, d) {
- return -c * ((t=t/d-1)*t*t*t - 1) + b;
- };
- // quartic easing in/out - acceleration until halfway, then deceleration
- Math.easeInOutQuart = function (t, b, c, d) {
- if ((t/=d/2) < 1) return c/2*t*t*t*t + b;
- return -c/2 * ((t-=2)*t*t*t - 2) + b;
- };
- ///////////// QUINTIC EASING: t^5 ////////////////////
- // quintic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- Math.easeInQuint = function (t, b, c, d) {
- return c*(t/=d)*t*t*t*t + b;
- };
- // quintic easing out - decelerating to zero velocity
- Math.easeOutQuint = function (t, b, c, d) {
- return c*((t=t/d-1)*t*t*t*t + 1) + b;
- };
- // quintic easing in/out - acceleration until halfway, then deceleration
- Math.easeInOutQuint = function (t, b, c, d) {
- if ((t/=d/2) < 1) return c/2*t*t*t*t*t + b;
- return c/2*((t-=2)*t*t*t*t + 2) + b;
- };
- ///////////// SINUSOIDAL EASING: sin(t) ///////////////
- // sinusoidal easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- Math.easeInSine = function (t, b, c, d) {
- return -c * Math.cos(t/d * (Math.PI/2)) + c + b;
- };
- // sinusoidal easing out - decelerating to zero velocity
- Math.easeOutSine = function (t, b, c, d) {
- return c * Math.sin(t/d * (Math.PI/2)) + b;
- };
- // sinusoidal easing in/out - accelerating until halfway, then decelerating
- Math.easeInOutSine = function (t, b, c, d) {
- return -c/2 * (Math.cos(Math.PI*t/d) - 1) + b;
- };
- ///////////// EXPONENTIAL EASING: 2^t /////////////////
- // exponential easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- Math.easeInExpo = function (t, b, c, d) {
- return (t==0) ? b : c * Math.pow(2, 10 * (t/d - 1)) + b;
- };
- // exponential easing out - decelerating to zero velocity
- Math.easeOutExpo = function (t, b, c, d) {
- return (t==d) ? b+c : c * (-Math.pow(2, -10 * t/d) + 1) + b;
- };
- // exponential easing in/out - accelerating until halfway, then decelerating
- Math.easeInOutExpo = function (t, b, c, d) {
- if (t==0) return b;
- if (t==d) return b+c;
- if ((t/=d/2) < 1) return c/2 * Math.pow(2, 10 * (t - 1)) + b;
- return c/2 * (-Math.pow(2, -10 * --t) + 2) + b;
- };
- /////////// CIRCULAR EASING: sqrt(1-t^2) //////////////
- // circular easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- Math.easeInCirc = function (t, b, c, d) {
- return -c * (Math.sqrt(1 - (t/=d)*t) - 1) + b;
- };
- // circular easing out - decelerating to zero velocity
- Math.easeOutCirc = function (t, b, c, d) {
- return c * Math.sqrt(1 - (t=t/d-1)*t) + b;
- };
- // circular easing in/out - acceleration until halfway, then deceleration
- Math.easeInOutCirc = function (t, b, c, d) {
- if ((t/=d/2) < 1) return -c/2 * (Math.sqrt(1 - t*t) - 1) + b;
- return c/2 * (Math.sqrt(1 - (t-=2)*t) + 1) + b;
- };
- /////////// ELASTIC EASING: exponentially decaying sine wave //////////////
- // t: current time, b: beginning value, c: change in value, d: duration, a: amplitude (optional), p: period (optional)
- // t and d can be in frames or seconds/milliseconds
- Math.easeInElastic = function (t, b, c, d, a, p) {
- if (t==0) return b; if ((t/=d)==1) return b+c; if (!p) p=d*.3;
- if (a < Math.abs(c)) { a=c; var s=p/4; }
- else var s = p/(2*Math.PI) * Math.asin (c/a);
- return -(a*Math.pow(2,10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )) + b;
- };
- Math.easeOutElastic = function (t, b, c, d, a, p) {
- if (t==0) return b; if ((t/=d)==1) return b+c; if (!p) p=d*.3;
- if (a < Math.abs(c)) { a=c; var s=p/4; }
- else var s = p/(2*Math.PI) * Math.asin (c/a);
- return a*Math.pow(2,-10*t) * Math.sin( (t*d-s)*(2*Math.PI)/p ) + c + b;
- };
- Math.easeInOutElastic = function (t, b, c, d, a, p) {
- if (t==0) return b; if ((t/=d/2)==2) return b+c; if (!p) p=d*(.3*1.5);
- if (a < Math.abs(c)) { a=c; var s=p/4; }
- else var s = p/(2*Math.PI) * Math.asin (c/a);
- if (t < 1) return -.5*(a*Math.pow(2,10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )) + b;
- return a*Math.pow(2,-10*(t-=1)) * Math.sin( (t*d-s)*(2*Math.PI)/p )*.5 + c + b;
- };
- /////////// BACK EASING: overshooting cubic easing: (s+1)*t^3 - s*t^2 //////////////
- // back easing in - backtracking slightly, then reversing direction and moving to target
- // t: current time, b: beginning value, c: change in value, d: duration, s: overshoot amount (optional)
- // t and d can be in frames or seconds/milliseconds
- // s controls the amount of overshoot: higher s means greater overshoot
- // s has a default value of 1.70158, which produces an overshoot of 10 percent
- // s==0 produces cubic easing with no overshoot
- Math.easeInBack = function (t, b, c, d, s) {
- if (s == undefined) s = 1.70158;
- return c*(t/=d)*t*((s+1)*t - s) + b;
- };
- // back easing out - moving towards target, overshooting it slightly, then reversing and coming back to target
- Math.easeOutBack = function (t, b, c, d, s) {
- if (s == undefined) s = 1.70158;
- return c*((t=t/d-1)*t*((s+1)*t + s) + 1) + b;
- };
- // back easing in/out - backtracking slightly, then reversing direction and moving to target,
- // then overshooting target, reversing, and finally coming back to target
- Math.easeInOutBack = function (t, b, c, d, s) {
- if (s == undefined) s = 1.70158;
- if ((t/=d/2) < 1) return c/2*(t*t*(((s*=(1.525))+1)*t - s)) + b;
- return c/2*((t-=2)*t*(((s*=(1.525))+1)*t + s) + 2) + b;
- };
- /////////// BOUNCE EASING: exponentially decaying parabolic bounce //////////////
- // bounce easing in
- // t: current time, b: beginning value, c: change in position, d: duration
- Math.easeInBounce = function (t, b, c, d) {
- return c - Math.easeOutBounce (d-t, 0, c, d) + b;
- };
- // bounce easing out
- Math.easeOutBounce = function (t, b, c, d) {
- if ((t/=d) < (1/2.75)) {
- return c*(7.5625*t*t) + b;
- } else if (t < (2/2.75)) {
- return c*(7.5625*(t-=(1.5/2.75))*t + .75) + b;
- } else if (t < (2.5/2.75)) {
- return c*(7.5625*(t-=(2.25/2.75))*t + .9375) + b;
- } else {
- return c*(7.5625*(t-=(2.625/2.75))*t + .984375) + b;
- }
- };
- // bounce easing in/out
- Math.easeInOutBounce = function (t, b, c, d) {
- if (t < d/2) return Math.easeInBounce (t*2, 0, c, d) * .5 + b;
- return Math.easeOutBounce (t*2-d, 0, c, d) * .5 + c*.5 + b;
- };
- #endif
- #endif // _MEASE_H_
|