MultiBodyConstraintFeedback.cpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. #include "MultiBodyConstraintFeedback.h"
  2. #include "BulletDynamics/Featherstone/btMultiBodyLinkCollider.h"
  3. #include "BulletDynamics/Featherstone/btMultiBodyJointFeedback.h"
  4. #include "BulletDynamics/Featherstone/btMultiBodyJointMotor.h"
  5. #include "../CommonInterfaces/CommonMultiBodyBase.h"
  6. static btScalar radius(0.2);
  7. struct MultiBodyConstraintFeedbackSetup : public CommonMultiBodyBase
  8. {
  9. btMultiBody* m_multiBody;
  10. btAlignedObjectArray<btMultiBodyJointFeedback*> m_jointFeedbacks;
  11. btMultiBodyJointMotor* m_motor;
  12. bool m_once;
  13. public:
  14. MultiBodyConstraintFeedbackSetup(struct GUIHelperInterface* helper);
  15. virtual ~MultiBodyConstraintFeedbackSetup();
  16. virtual void initPhysics();
  17. virtual void stepSimulation(float deltaTime);
  18. virtual void resetCamera()
  19. {
  20. float dist = 5;
  21. float pitch = -21;
  22. float yaw = 270;
  23. float targetPos[3] = {-1.34, 3.4, -0.44};
  24. m_guiHelper->resetCamera(dist, yaw, pitch, targetPos[0], targetPos[1], targetPos[2]);
  25. }
  26. };
  27. MultiBodyConstraintFeedbackSetup::MultiBodyConstraintFeedbackSetup(struct GUIHelperInterface* helper)
  28. : CommonMultiBodyBase(helper),
  29. m_motor(0),
  30. m_once(true)
  31. {
  32. }
  33. MultiBodyConstraintFeedbackSetup::~MultiBodyConstraintFeedbackSetup()
  34. {
  35. }
  36. void MultiBodyConstraintFeedbackSetup::initPhysics()
  37. {
  38. int upAxis = 2;
  39. m_guiHelper->setUpAxis(upAxis);
  40. btVector4 colors[4] =
  41. {
  42. btVector4(1, 0, 0, 1),
  43. btVector4(0, 1, 0, 1),
  44. btVector4(0, 1, 1, 1),
  45. btVector4(1, 1, 0, 1),
  46. };
  47. int curColor = 0;
  48. this->createEmptyDynamicsWorld();
  49. m_guiHelper->createPhysicsDebugDrawer(m_dynamicsWorld);
  50. m_dynamicsWorld->getDebugDrawer()->setDebugMode(
  51. //btIDebugDraw::DBG_DrawConstraints
  52. +btIDebugDraw::DBG_DrawWireframe + btIDebugDraw::DBG_DrawContactPoints + btIDebugDraw::DBG_DrawAabb); //+btIDebugDraw::DBG_DrawConstraintLimits);
  53. m_dynamicsWorld->getSolverInfo().m_jointFeedbackInWorldSpace = true;
  54. m_dynamicsWorld->getSolverInfo().m_jointFeedbackInJointFrame = true;
  55. //create a static ground object
  56. if (1)
  57. {
  58. btVector3 groundHalfExtents(10, 10, 0.2);
  59. btBoxShape* box = new btBoxShape(groundHalfExtents);
  60. box->initializePolyhedralFeatures();
  61. m_guiHelper->createCollisionShapeGraphicsObject(box);
  62. btTransform start;
  63. start.setIdentity();
  64. btVector3 groundOrigin(-0.4f, 3.f, 0.f);
  65. //btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
  66. groundOrigin[upAxis] -= .5;
  67. groundOrigin[2] -= 0.6;
  68. start.setOrigin(groundOrigin);
  69. btQuaternion groundOrn(btVector3(0, 1, 0), 0.25 * SIMD_PI);
  70. // start.setRotation(groundOrn);
  71. btRigidBody* body = createRigidBody(0, start, box);
  72. body->setFriction(0);
  73. btVector4 color = colors[curColor];
  74. curColor++;
  75. curColor &= 3;
  76. m_guiHelper->createRigidBodyGraphicsObject(body, color);
  77. }
  78. {
  79. bool floating = false;
  80. bool damping = false;
  81. bool gyro = false;
  82. int numLinks = 2;
  83. bool spherical = false; //set it ot false -to use 1DoF hinges instead of 3DoF sphericals
  84. bool canSleep = false;
  85. bool selfCollide = false;
  86. btVector3 linkHalfExtents(0.05, 0.5, 0.1);
  87. btVector3 baseHalfExtents(0.05, 0.5, 0.1);
  88. btVector3 basePosition = btVector3(-0.4f, 3.f, 0.f);
  89. //mbC->forceMultiDof(); //if !spherical, you can comment this line to check the 1DoF algorithm
  90. //init the base
  91. btVector3 baseInertiaDiag(0.f, 0.f, 0.f);
  92. float baseMass = 0.01f;
  93. if (baseMass)
  94. {
  95. //btCollisionShape *shape = new btSphereShape(baseHalfExtents[0]);// btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
  96. btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2]));
  97. shape->calculateLocalInertia(baseMass, baseInertiaDiag);
  98. delete shape;
  99. }
  100. btMultiBody* pMultiBody = new btMultiBody(numLinks, baseMass, baseInertiaDiag, !floating, canSleep);
  101. m_multiBody = pMultiBody;
  102. btQuaternion baseOriQuat(0.f, 0.f, 0.f, 1.f);
  103. // baseOriQuat.setEulerZYX(-.25*SIMD_PI,0,-1.75*SIMD_PI);
  104. pMultiBody->setBasePos(basePosition);
  105. pMultiBody->setWorldToBaseRot(baseOriQuat);
  106. btVector3 vel(0, 0, 0);
  107. // pMultiBody->setBaseVel(vel);
  108. //init the links
  109. btVector3 hingeJointAxis(1, 0, 0);
  110. //y-axis assumed up
  111. btVector3 parentComToCurrentCom(0, -linkHalfExtents[1] * 2.f, 0); //par body's COM to cur body's COM offset
  112. btVector3 currentPivotToCurrentCom(0, -linkHalfExtents[1], 0); //cur body's COM to cur body's PIV offset
  113. btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
  114. //////
  115. btScalar q0 = 0.f * SIMD_PI / 180.f;
  116. btQuaternion quat0(btVector3(0, 1, 0).normalized(), q0);
  117. quat0.normalize();
  118. /////
  119. for (int i = 0; i < numLinks; ++i)
  120. {
  121. float linkMass = i == 0 ? 0.0001 : 1.f;
  122. //if (i==3 || i==2)
  123. // linkMass= 1000;
  124. btVector3 linkInertiaDiag(0.f, 0.f, 0.f);
  125. btCollisionShape* shape = 0;
  126. if (i == 0)
  127. {
  128. shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //
  129. }
  130. else
  131. {
  132. shape = new btSphereShape(radius);
  133. }
  134. shape->calculateLocalInertia(linkMass, linkInertiaDiag);
  135. delete shape;
  136. if (!spherical)
  137. {
  138. //pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), hingeJointAxis, parentComToCurrentPivot, currentPivotToCurrentCom, false);
  139. if (i == 0)
  140. {
  141. pMultiBody->setupRevolute(i, linkMass, linkInertiaDiag, i - 1,
  142. btQuaternion(0.f, 0.f, 0.f, 1.f),
  143. hingeJointAxis,
  144. parentComToCurrentPivot,
  145. currentPivotToCurrentCom, false);
  146. }
  147. else
  148. {
  149. btVector3 parentComToCurrentCom(0, -linkHalfExtents[1], 0); //par body's COM to cur body's COM offset
  150. btVector3 currentPivotToCurrentCom(0, 0, 0); //cur body's COM to cur body's PIV offset
  151. //btVector3 parentComToCurrentPivot = parentComToCurrentCom - currentPivotToCurrentCom; //par body's COM to cur body's PIV offset
  152. pMultiBody->setupFixed(i, linkMass, linkInertiaDiag, i - 1,
  153. btQuaternion(0.f, 0.f, 0.f, 1.f),
  154. parentComToCurrentPivot,
  155. currentPivotToCurrentCom);
  156. }
  157. //pMultiBody->setupFixed(i,linkMass,linkInertiaDiag,i-1,btQuaternion(0,0,0,1),parentComToCurrentPivot,currentPivotToCurrentCom,false);
  158. }
  159. else
  160. {
  161. //pMultiBody->setupPlanar(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f)/*quat0*/, btVector3(1, 0, 0), parentComToCurrentPivot*2, false);
  162. pMultiBody->setupSpherical(i, linkMass, linkInertiaDiag, i - 1, btQuaternion(0.f, 0.f, 0.f, 1.f), parentComToCurrentPivot, currentPivotToCurrentCom, false);
  163. }
  164. }
  165. pMultiBody->finalizeMultiDof();
  166. //for (int i=pMultiBody->getNumLinks()-1;i>=0;i--)//
  167. for (int i = 0; i < pMultiBody->getNumLinks(); i++)
  168. {
  169. btMultiBodyJointFeedback* fb = new btMultiBodyJointFeedback();
  170. pMultiBody->getLink(i).m_jointFeedback = fb;
  171. m_jointFeedbacks.push_back(fb);
  172. //break;
  173. }
  174. btMultiBodyDynamicsWorld* world = m_dynamicsWorld;
  175. ///
  176. world->addMultiBody(pMultiBody);
  177. btMultiBody* mbC = pMultiBody;
  178. mbC->setCanSleep(canSleep);
  179. mbC->setHasSelfCollision(selfCollide);
  180. mbC->setUseGyroTerm(gyro);
  181. //
  182. if (!damping)
  183. {
  184. mbC->setLinearDamping(0.f);
  185. mbC->setAngularDamping(0.f);
  186. }
  187. else
  188. {
  189. mbC->setLinearDamping(0.1f);
  190. mbC->setAngularDamping(0.9f);
  191. }
  192. //
  193. m_dynamicsWorld->setGravity(btVector3(0, 0, -10));
  194. //////////////////////////////////////////////
  195. if (/* DISABLES CODE */ (0)) //numLinks > 0)
  196. {
  197. btScalar q0 = 45.f * SIMD_PI / 180.f;
  198. if (!spherical)
  199. {
  200. mbC->setJointPosMultiDof(0, &q0);
  201. }
  202. else
  203. {
  204. btQuaternion quat0(btVector3(1, 1, 0).normalized(), q0);
  205. quat0.normalize();
  206. mbC->setJointPosMultiDof(0, quat0);
  207. }
  208. }
  209. ///
  210. btAlignedObjectArray<btQuaternion> world_to_local;
  211. world_to_local.resize(pMultiBody->getNumLinks() + 1);
  212. btAlignedObjectArray<btVector3> local_origin;
  213. local_origin.resize(pMultiBody->getNumLinks() + 1);
  214. world_to_local[0] = pMultiBody->getWorldToBaseRot();
  215. local_origin[0] = pMultiBody->getBasePos();
  216. // double friction = 1;
  217. {
  218. // float pos[4]={local_origin[0].x(),local_origin[0].y(),local_origin[0].z(),1};
  219. // float quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
  220. if (1)
  221. {
  222. btCollisionShape* shape = new btBoxShape(btVector3(baseHalfExtents[0], baseHalfExtents[1], baseHalfExtents[2])); //new btSphereShape(baseHalfExtents[0]);
  223. m_guiHelper->createCollisionShapeGraphicsObject(shape);
  224. btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, -1);
  225. col->setCollisionShape(shape);
  226. btTransform tr;
  227. tr.setIdentity();
  228. //if we don't set the initial pose of the btCollisionObject, the simulator will do this
  229. //when syncing the btMultiBody link transforms to the btMultiBodyLinkCollider
  230. tr.setOrigin(local_origin[0]);
  231. btQuaternion orn(btVector3(0, 0, 1), 0.25 * 3.1415926538);
  232. tr.setRotation(orn);
  233. col->setWorldTransform(tr);
  234. bool isDynamic = (baseMass > 0 && floating);
  235. int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
  236. int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
  237. world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //, 2,1+2);
  238. btVector3 color(0.0, 0.0, 0.5);
  239. m_guiHelper->createCollisionObjectGraphicsObject(col, color);
  240. // col->setFriction(friction);
  241. pMultiBody->setBaseCollider(col);
  242. }
  243. }
  244. for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
  245. {
  246. const int parent = pMultiBody->getParent(i);
  247. world_to_local[i + 1] = pMultiBody->getParentToLocalRot(i) * world_to_local[parent + 1];
  248. local_origin[i + 1] = local_origin[parent + 1] + (quatRotate(world_to_local[i + 1].inverse(), pMultiBody->getRVector(i)));
  249. }
  250. for (int i = 0; i < pMultiBody->getNumLinks(); ++i)
  251. {
  252. btVector3 posr = local_origin[i + 1];
  253. // float pos[4]={posr.x(),posr.y(),posr.z(),1};
  254. const btScalar quat[4] = {-world_to_local[i + 1].x(), -world_to_local[i + 1].y(), -world_to_local[i + 1].z(), world_to_local[i + 1].w()};
  255. btCollisionShape* shape = 0;
  256. if (i == 0)
  257. {
  258. shape = new btBoxShape(btVector3(linkHalfExtents[0], linkHalfExtents[1], linkHalfExtents[2])); //btSphereShape(linkHalfExtents[0]);
  259. }
  260. else
  261. {
  262. shape = new btSphereShape(radius);
  263. }
  264. m_guiHelper->createCollisionShapeGraphicsObject(shape);
  265. btMultiBodyLinkCollider* col = new btMultiBodyLinkCollider(pMultiBody, i);
  266. col->setCollisionShape(shape);
  267. btTransform tr;
  268. tr.setIdentity();
  269. tr.setOrigin(posr);
  270. tr.setRotation(btQuaternion(quat[0], quat[1], quat[2], quat[3]));
  271. col->setWorldTransform(tr);
  272. // col->setFriction(friction);
  273. bool isDynamic = 1; //(linkMass > 0);
  274. int collisionFilterGroup = isDynamic ? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter);
  275. int collisionFilterMask = isDynamic ? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter);
  276. //if (i==0||i>numLinks-2)
  277. {
  278. world->addCollisionObject(col, collisionFilterGroup, collisionFilterMask); //,2,1+2);
  279. btVector4 color = colors[curColor];
  280. curColor++;
  281. curColor &= 3;
  282. m_guiHelper->createCollisionObjectGraphicsObject(col, color);
  283. pMultiBody->getLink(i).m_collider = col;
  284. }
  285. }
  286. int link = 0;
  287. int targetVelocity = 0.f;
  288. btScalar maxForce = 100000;
  289. m_motor = new btMultiBodyJointMotor(pMultiBody, link, targetVelocity, maxForce);
  290. m_dynamicsWorld->addMultiBodyConstraint(m_motor);
  291. }
  292. }
  293. void MultiBodyConstraintFeedbackSetup::stepSimulation(float deltaTime)
  294. {
  295. //m_multiBody->addLinkForce(0,btVector3(100,100,100));
  296. if (/* DISABLES CODE */ (0)) //m_once)
  297. {
  298. m_once = false;
  299. m_multiBody->addJointTorque(0, 10.0);
  300. btScalar torque = m_multiBody->getJointTorque(0);
  301. b3Printf("t = %f,%f,%f\n", torque, torque, torque); //[0],torque[1],torque[2]);
  302. }
  303. btScalar timeStep = 1. / 240.f;
  304. m_dynamicsWorld->stepSimulation(timeStep, 0);
  305. static int count = 0;
  306. if ((count & 0x0f) == 0)
  307. {
  308. if (m_motor)
  309. {
  310. float force = m_motor->getAppliedImpulse(0) / timeStep;
  311. b3Printf("motor applied force = %f\n", force);
  312. }
  313. for (int i = 0; i < m_jointFeedbacks.size(); i++)
  314. {
  315. b3Printf("F_reaction[%i] linear:%f,%f,%f, angular:%f,%f,%f",
  316. i,
  317. m_jointFeedbacks[i]->m_reactionForces.m_topVec[0],
  318. m_jointFeedbacks[i]->m_reactionForces.m_topVec[1],
  319. m_jointFeedbacks[i]->m_reactionForces.m_topVec[2],
  320. m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[0],
  321. m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[1],
  322. m_jointFeedbacks[i]->m_reactionForces.m_bottomVec[2]
  323. );
  324. }
  325. }
  326. count++;
  327. /*
  328. b3Printf("base angvel = %f,%f,%f",m_multiBody->getBaseOmega()[0],
  329. m_multiBody->getBaseOmega()[1],
  330. m_multiBody->getBaseOmega()[2]
  331. );
  332. */
  333. // btScalar jointVel =m_multiBody->getJointVel(0);
  334. // b3Printf("child angvel = %f",jointVel);
  335. }
  336. class CommonExampleInterface* MultiBodyConstraintFeedbackCreateFunc(struct CommonExampleOptions& options)
  337. {
  338. return new MultiBodyConstraintFeedbackSetup(options.m_guiHelper);
  339. }