MinitaurSetup.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286
  1. #include "MinitaurSetup.h"
  2. #include "b3RobotSimulatorClientAPI_NoGUI.h"
  3. #include "Bullet3Common/b3HashMap.h"
  4. struct MinitaurSetupInternalData
  5. {
  6. int m_quadrupedUniqueId;
  7. MinitaurSetupInternalData()
  8. : m_quadrupedUniqueId(-1)
  9. {
  10. }
  11. b3HashMap<b3HashString, int> m_jointNameToId;
  12. };
  13. MinitaurSetup::MinitaurSetup()
  14. {
  15. m_data = new MinitaurSetupInternalData();
  16. }
  17. MinitaurSetup::~MinitaurSetup()
  18. {
  19. delete m_data;
  20. }
  21. void MinitaurSetup::setDesiredMotorAngle(class b3RobotSimulatorClientAPI_NoGUI* sim, const char* motorName, double desiredAngle, double maxTorque, double kp, double kd)
  22. {
  23. b3RobotSimulatorJointMotorArgs controlArgs(CONTROL_MODE_POSITION_VELOCITY_PD);
  24. controlArgs.m_maxTorqueValue = maxTorque;
  25. controlArgs.m_kd = kd;
  26. controlArgs.m_kp = kp;
  27. controlArgs.m_targetPosition = desiredAngle;
  28. sim->setJointMotorControl(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorName], controlArgs);
  29. }
  30. //pick exactly 1 configuration of the following
  31. #define MINITAUR_RAINBOWDASH_V1
  32. //#define MINITAUR_RAINBOWDASH_V0
  33. //#define MINITAUR_V0
  34. #if defined(MINITAUR_RAINBOWDASH_V1)
  35. #define MINITAUR_HAS_DEFORMABLE_BRACKETS
  36. static const char* minitaurURDF = "quadruped/minitaur_rainbow_dash_v1.urdf";
  37. static const char* kneeNames[] = {
  38. "knee_front_leftL_joint", //1
  39. "knee_front_leftR_joint", //3
  40. "knee_back_leftL_joint", //5
  41. "knee_back_leftR_joint", //7
  42. "knee_front_rightL_joint", //9
  43. "knee_back_rightL_joint", //10
  44. "knee_back_rightR_joint", //13
  45. "knee_front_rightR_joint", //15
  46. };
  47. static const char* motorNames[] = {
  48. "motor_front_leftL_joint", //0
  49. "knee_front_leftL_joint", //1
  50. "motor_front_leftR_joint", //2
  51. "knee_front_leftR_joint", //3
  52. "motor_back_leftL_joint", //4
  53. "knee_back_leftL_joint", //5
  54. "motor_back_leftR_joint", //6
  55. "knee_back_leftR_joint", //7
  56. "motor_front_rightL_joint", //8
  57. "knee_front_rightL_joint", //9
  58. "knee_back_rightL_joint", //10
  59. "motor_back_rightL_joint", //11
  60. "motor_back_rightR_joint", //12
  61. "knee_back_rightR_joint", //13
  62. "motor_front_rightR_joint", //14
  63. "knee_front_rightR_joint", //15
  64. };
  65. static const char* bracketNames[] = {
  66. "motor_front_rightR_bracket_joint",
  67. "motor_front_leftL_bracket_joint",
  68. "motor_back_rightR_bracket_joint",
  69. "motor_back_leftL_bracket_joint",
  70. };
  71. static btVector3 KNEE_CONSTRAINT_POINT_LONG = btVector3(0, 0.0045, 0.088);
  72. static btVector3 KNEE_CONSTRAINT_POINT_SHORT = btVector3(0, 0.0045, 0.100);
  73. #elif defined(MINITAUR_RAINBOWDASH_V0)
  74. static const char* minitaurURDF = "quadruped/minitaur_rainbow_dash.urdf";
  75. static const char* kneeNames[] = {
  76. "knee_front_leftL_joint", //1
  77. "knee_front_leftR_joint", //3
  78. "knee_back_leftL_joint", //5
  79. "knee_back_leftR_joint", //7
  80. "knee_front_rightL_joint", //9
  81. "knee_back_rightL_joint", //10
  82. "knee_back_rightR_joint", //13
  83. "knee_front_rightR_joint", //15
  84. };
  85. static const char* motorNames[] = {
  86. "motor_front_leftL_joint", //0
  87. "knee_front_leftL_joint", //1
  88. "motor_front_leftR_joint", //2
  89. "knee_front_leftR_joint", //3
  90. "motor_back_leftL_joint", //4
  91. "knee_back_leftL_joint", //5
  92. "motor_back_leftR_joint", //6
  93. "knee_back_leftR_joint", //7
  94. "motor_front_rightL_joint", //8
  95. "knee_front_rightL_joint", //9
  96. "knee_back_rightL_joint", //10
  97. "motor_back_rightL_joint", //11
  98. "motor_back_rightR_joint", //12
  99. "knee_back_rightR_joint", //13
  100. "motor_front_rightR_joint", //14
  101. "knee_front_rightR_joint", //15
  102. };
  103. static btVector3 KNEE_CONSTRAINT_POINT_LONG = btVector3(0, 0.0045, 0.088);
  104. static btVector3 KNEE_CONSTRAINT_POINT_SHORT = btVector3(0, 0.0045, 0.100);
  105. #elif defined(MINITAUR_V0)
  106. static const char* minitaurURDF = "quadruped/minitaur.urdf";
  107. static const char* kneeNames[] = {
  108. "knee_front_leftL_link",
  109. "knee_front_leftR_link",
  110. "knee_back_leftL_link",
  111. "knee_back_leftR_link",
  112. "knee_front_rightL_link",
  113. "knee_back_rightL_link",
  114. "knee_back_rightR_link",
  115. "knee_front_rightR_link",
  116. };
  117. static const char* motorNames[] = {
  118. "motor_front_leftL_joint",
  119. "knee_front_leftL_link",
  120. "motor_front_leftR_joint",
  121. "knee_front_leftR_link",
  122. "motor_back_leftL_joint",
  123. "knee_back_leftL_link",
  124. "motor_back_leftR_joint",
  125. "knee_back_leftR_link",
  126. "motor_front_rightL_joint",
  127. "knee_front_rightL_link",
  128. "knee_back_rightL_link",
  129. "motor_back_rightL_joint",
  130. "motor_back_rightR_joint",
  131. "knee_back_rightR_link",
  132. "motor_front_rightR_joint",
  133. "knee_front_rightR_link",
  134. };
  135. static btVector3 KNEE_CONSTRAINT_POINT_LONG = btVector3(0, 0.005, 0.2);
  136. static btVector3 KNEE_CONSTRAINT_POINT_SHORT = btVector3(0, 0.01, 0.2);
  137. #endif
  138. void MinitaurSetup::resetPose(class b3RobotSimulatorClientAPI_NoGUI* sim)
  139. {
  140. //release all motors
  141. int numJoints = sim->getNumJoints(m_data->m_quadrupedUniqueId);
  142. for (int i = 0; i < numJoints; i++)
  143. {
  144. b3RobotSimulatorJointMotorArgs controlArgs(CONTROL_MODE_VELOCITY);
  145. controlArgs.m_maxTorqueValue = 0;
  146. sim->setJointMotorControl(m_data->m_quadrupedUniqueId, i, controlArgs);
  147. }
  148. b3Scalar startAngle = B3_HALF_PI;
  149. b3Scalar upperLegLength = 11.5;
  150. b3Scalar lowerLegLength = 20;
  151. b3Scalar kneeAngle = B3_PI + b3Acos(upperLegLength / lowerLegLength);
  152. b3Scalar motorDirs[8] = {-1, -1, -1, -1, 1, 1, 1, 1};
  153. b3JointInfo jointInfo;
  154. jointInfo.m_jointType = ePoint2PointType;
  155. //left front leg
  156. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[0]], motorDirs[0] * startAngle);
  157. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[0]], motorDirs[0] * kneeAngle);
  158. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[2]], motorDirs[1] * startAngle);
  159. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[1]], motorDirs[1] * kneeAngle);
  160. jointInfo.m_parentFrame[0] = KNEE_CONSTRAINT_POINT_SHORT[0];
  161. jointInfo.m_parentFrame[1] = KNEE_CONSTRAINT_POINT_SHORT[1];
  162. jointInfo.m_parentFrame[2] = KNEE_CONSTRAINT_POINT_SHORT[2];
  163. jointInfo.m_childFrame[0] = KNEE_CONSTRAINT_POINT_LONG[0];
  164. jointInfo.m_childFrame[1] = KNEE_CONSTRAINT_POINT_LONG[1];
  165. jointInfo.m_childFrame[2] = KNEE_CONSTRAINT_POINT_LONG[2];
  166. //jointInfo.m_parentFrame[0] = KNEE_CONSTRAINT_POINT_LONG[0]; jointInfo.m_parentFrame[1] = KNEE_CONSTRAINT_POINT_LONG[1]; jointInfo.m_parentFrame[2] = KNEE_CONSTRAINT_POINT_LONG[2];
  167. //jointInfo.m_childFrame[0] = KNEE_CONSTRAINT_POINT_SHORT[0]; jointInfo.m_childFrame[1] = KNEE_CONSTRAINT_POINT_SHORT[1]; jointInfo.m_childFrame[2] = KNEE_CONSTRAINT_POINT_SHORT[2];
  168. sim->createConstraint(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[1]],
  169. m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[0]], &jointInfo);
  170. setDesiredMotorAngle(sim, motorNames[0], motorDirs[0] * startAngle);
  171. setDesiredMotorAngle(sim, motorNames[2], motorDirs[1] * startAngle);
  172. //left back leg
  173. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[4]], motorDirs[2] * startAngle);
  174. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[2]], motorDirs[2] * kneeAngle);
  175. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[6]], motorDirs[3] * startAngle);
  176. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[3]], motorDirs[3] * kneeAngle);
  177. jointInfo.m_parentFrame[0] = KNEE_CONSTRAINT_POINT_SHORT[0];
  178. jointInfo.m_parentFrame[1] = KNEE_CONSTRAINT_POINT_SHORT[1];
  179. jointInfo.m_parentFrame[2] = KNEE_CONSTRAINT_POINT_SHORT[2];
  180. jointInfo.m_childFrame[0] = KNEE_CONSTRAINT_POINT_LONG[0];
  181. jointInfo.m_childFrame[1] = KNEE_CONSTRAINT_POINT_LONG[1];
  182. jointInfo.m_childFrame[2] = KNEE_CONSTRAINT_POINT_LONG[2];
  183. //jointInfo.m_parentFrame[0] = KNEE_CONSTRAINT_POINT_LONG[0]; jointInfo.m_parentFrame[1] = KNEE_CONSTRAINT_POINT_LONG[1]; jointInfo.m_parentFrame[2] = KNEE_CONSTRAINT_POINT_LONG[2];
  184. //jointInfo.m_childFrame[0] = KNEE_CONSTRAINT_POINT_SHORT[0]; jointInfo.m_childFrame[1] = KNEE_CONSTRAINT_POINT_SHORT[1]; jointInfo.m_childFrame[2] = KNEE_CONSTRAINT_POINT_SHORT[2];
  185. sim->createConstraint(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[3]],
  186. m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[2]], &jointInfo);
  187. setDesiredMotorAngle(sim, motorNames[4], motorDirs[2] * startAngle);
  188. setDesiredMotorAngle(sim, motorNames[6], motorDirs[3] * startAngle);
  189. //right front leg
  190. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[8]], motorDirs[4] * startAngle);
  191. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[4]], motorDirs[4] * kneeAngle);
  192. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[14]], motorDirs[5] * startAngle);
  193. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[7]], motorDirs[5] * kneeAngle);
  194. jointInfo.m_parentFrame[0] = KNEE_CONSTRAINT_POINT_LONG[0];
  195. jointInfo.m_parentFrame[1] = KNEE_CONSTRAINT_POINT_LONG[1];
  196. jointInfo.m_parentFrame[2] = KNEE_CONSTRAINT_POINT_LONG[2];
  197. jointInfo.m_childFrame[0] = KNEE_CONSTRAINT_POINT_SHORT[0];
  198. jointInfo.m_childFrame[1] = KNEE_CONSTRAINT_POINT_SHORT[1];
  199. jointInfo.m_childFrame[2] = KNEE_CONSTRAINT_POINT_SHORT[2];
  200. sim->createConstraint(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[7]],
  201. m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[4]], &jointInfo);
  202. setDesiredMotorAngle(sim, motorNames[8], motorDirs[4] * startAngle);
  203. setDesiredMotorAngle(sim, motorNames[14], motorDirs[5] * startAngle);
  204. //right back leg
  205. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[11]], motorDirs[6] * startAngle);
  206. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[5]], motorDirs[6] * kneeAngle);
  207. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[motorNames[12]], motorDirs[7] * startAngle);
  208. sim->resetJointState(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[6]], motorDirs[7] * kneeAngle);
  209. jointInfo.m_parentFrame[0] = KNEE_CONSTRAINT_POINT_LONG[0];
  210. jointInfo.m_parentFrame[1] = KNEE_CONSTRAINT_POINT_LONG[1];
  211. jointInfo.m_parentFrame[2] = KNEE_CONSTRAINT_POINT_LONG[2];
  212. jointInfo.m_childFrame[0] = KNEE_CONSTRAINT_POINT_SHORT[0];
  213. jointInfo.m_childFrame[1] = KNEE_CONSTRAINT_POINT_SHORT[1];
  214. jointInfo.m_childFrame[2] = KNEE_CONSTRAINT_POINT_SHORT[2];
  215. sim->createConstraint(m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[6]],
  216. m_data->m_quadrupedUniqueId, *m_data->m_jointNameToId[kneeNames[5]], &jointInfo);
  217. setDesiredMotorAngle(sim, motorNames[11], motorDirs[6] * startAngle);
  218. setDesiredMotorAngle(sim, motorNames[12], motorDirs[7] * startAngle);
  219. #ifdef MINITAUR_HAS_DEFORMABLE_BRACKETS
  220. b3RobotSimulatorJointMotorArgs controlArgs(CONTROL_MODE_VELOCITY);
  221. controlArgs.m_maxTorqueValue = 6;
  222. controlArgs.m_kd = 1;
  223. controlArgs.m_kp = 0;
  224. controlArgs.m_targetPosition = 0;
  225. for (int i = 0; i < 4; i++)
  226. {
  227. const char* bracketName = bracketNames[i];
  228. int* bracketId = m_data->m_jointNameToId[bracketName];
  229. sim->setJointMotorControl(m_data->m_quadrupedUniqueId, *bracketId, controlArgs);
  230. }
  231. #endif
  232. }
  233. int MinitaurSetup::setupMinitaur(class b3RobotSimulatorClientAPI_NoGUI* sim, const btVector3& startPos, const btQuaternion& startOrn)
  234. {
  235. b3RobotSimulatorLoadUrdfFileArgs args;
  236. args.m_startPosition = startPos;
  237. args.m_startOrientation = startOrn;
  238. m_data->m_quadrupedUniqueId = sim->loadURDF(minitaurURDF, args);
  239. int numJoints = sim->getNumJoints(m_data->m_quadrupedUniqueId);
  240. for (int i = 0; i < numJoints; i++)
  241. {
  242. b3JointInfo jointInfo;
  243. sim->getJointInfo(m_data->m_quadrupedUniqueId, i, &jointInfo);
  244. if (jointInfo.m_jointName[0])
  245. {
  246. m_data->m_jointNameToId.insert(jointInfo.m_jointName, i);
  247. }
  248. }
  249. resetPose(sim);
  250. return m_data->m_quadrupedUniqueId;
  251. }