mMatrix.h 58 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038
  1. //-----------------------------------------------------------------------------
  2. // Copyright (c) 2012 GarageGames, LLC
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to
  6. // deal in the Software without restriction, including without limitation the
  7. // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
  8. // sell copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  19. // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  20. // IN THE SOFTWARE.
  21. //-----------------------------------------------------------------------------
  22. #ifndef _MMATRIX_H_
  23. #define _MMATRIX_H_
  24. #include <algorithm>
  25. #ifndef _MPLANE_H_
  26. #include "math/mPlane.h"
  27. #endif
  28. #ifndef _MBOX_H_
  29. #include "math/mBox.h"
  30. #endif
  31. #ifndef _MPOINT4_H_
  32. #include "math/mPoint4.h"
  33. #endif
  34. #ifndef _ENGINETYPEINFO_H_
  35. #include "console/engineTypeInfo.h"
  36. #endif
  37. #ifndef _FRAMEALLOCATOR_H_
  38. #include "core/frameAllocator.h"
  39. #endif
  40. #ifndef _STRINGFUNCTIONS_H_
  41. #include "core/strings/stringFunctions.h"
  42. #endif
  43. #ifndef _CONSOLE_H_
  44. #include "console/console.h"
  45. #endif
  46. #ifndef USE_TEMPLATE_MATRIX
  47. /// 4x4 Matrix Class
  48. ///
  49. /// This runs at F32 precision.
  50. class MatrixF
  51. {
  52. friend class MatrixFEngineExport;
  53. private:
  54. F32 m[16]; ///< Note: Torque uses row-major matrices
  55. public:
  56. /// Create an uninitialized matrix.
  57. ///
  58. /// @param identity If true, initialize to the identity matrix.
  59. explicit MatrixF(bool identity=false);
  60. /// Create a matrix to rotate about origin by e.
  61. /// @see set
  62. explicit MatrixF( const EulerF &e);
  63. /// Create a matrix to rotate about p by e.
  64. /// @see set
  65. MatrixF( const EulerF &e, const Point3F& p);
  66. /// Get the index in m to element in column i, row j
  67. ///
  68. /// This is necessary as we have m as a one dimensional array.
  69. ///
  70. /// @param i Column desired.
  71. /// @param j Row desired.
  72. static U32 idx(U32 i, U32 j) { return (i + j*4); }
  73. /// Initialize matrix to rotate about origin by e.
  74. MatrixF& set( const EulerF &e);
  75. /// Initialize matrix to rotate about p by e.
  76. MatrixF& set( const EulerF &e, const Point3F& p);
  77. /// Initialize matrix with a cross product of p.
  78. MatrixF& setCrossProduct( const Point3F &p);
  79. /// Initialize matrix with a tensor product of p.
  80. MatrixF& setTensorProduct( const Point3F &p, const Point3F& q);
  81. operator F32*() { return (m); } ///< Allow people to get at m.
  82. operator const F32*() const { return (F32*)(m); } ///< Allow people to get at m.
  83. bool isAffine() const; ///< Check to see if this is an affine matrix.
  84. bool isIdentity() const; ///< Checks for identity matrix.
  85. /// Make this an identity matrix.
  86. MatrixF& identity();
  87. /// Invert m.
  88. MatrixF& inverse();
  89. /// Copy the inversion of this into out matrix.
  90. void invertTo( MatrixF *out );
  91. /// Take inverse of matrix assuming it is affine (rotation,
  92. /// scale, sheer, translation only).
  93. MatrixF& affineInverse();
  94. /// Swap rows and columns.
  95. MatrixF& transpose();
  96. /// M * Matrix(p) -> M
  97. MatrixF& scale( const Point3F &s );
  98. MatrixF& scale( F32 s ) { return scale( Point3F( s, s, s ) ); }
  99. /// Return scale assuming scale was applied via mat.scale(s).
  100. Point3F getScale() const;
  101. EulerF toEuler() const;
  102. F32 determinant() const {
  103. return m_matF_determinant(*this);
  104. }
  105. /// Compute the inverse of the matrix.
  106. ///
  107. /// Computes inverse of full 4x4 matrix. Returns false and performs no inverse if
  108. /// the determinant is 0.
  109. ///
  110. /// Note: In most cases you want to use the normal inverse function. This method should
  111. /// be used if the matrix has something other than (0,0,0,1) in the bottom row.
  112. bool fullInverse();
  113. /// Reverse depth for projection matrix
  114. /// Simplifies reversal matrix mult to 4 subtractions
  115. void reverseProjection();
  116. /// Swaps rows and columns into matrix.
  117. void transposeTo(F32 *matrix) const;
  118. /// Normalize the matrix.
  119. void normalize();
  120. /// Copy the requested column into a Point4F.
  121. void getColumn(S32 col, Point4F *cptr) const;
  122. Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col,&ret); return ret; }
  123. /// Copy the requested column into a Point3F.
  124. ///
  125. /// This drops the bottom-most row.
  126. void getColumn(S32 col, Point3F *cptr) const;
  127. Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col,&ret); return ret; }
  128. /// Set the specified column from a Point4F.
  129. void setColumn(S32 col, const Point4F& cptr);
  130. /// Set the specified column from a Point3F.
  131. ///
  132. /// The bottom-most row is not set.
  133. void setColumn(S32 col, const Point3F& cptr);
  134. /// Copy the specified row into a Point4F.
  135. void getRow(S32 row, Point4F *cptr) const;
  136. Point4F getRow4F(S32 row) const { Point4F ret; getRow(row,&ret); return ret; }
  137. /// Copy the specified row into a Point3F.
  138. ///
  139. /// Right-most item is dropped.
  140. void getRow(S32 row, Point3F *cptr) const;
  141. Point3F getRow3F(S32 row) const { Point3F ret; getRow(row,&ret); return ret; }
  142. /// Set the specified row from a Point4F.
  143. void setRow(S32 row, const Point4F& cptr);
  144. /// Set the specified row from a Point3F.
  145. ///
  146. /// The right-most item is not set.
  147. void setRow(S32 row, const Point3F& cptr);
  148. /// Get the position of the matrix.
  149. ///
  150. /// This is the 4th column of the matrix.
  151. Point3F getPosition() const;
  152. /// Set the position of the matrix.
  153. ///
  154. /// This is the 4th column of the matrix.
  155. void setPosition( const Point3F &pos ) { setColumn( 3, pos ); }
  156. /// Add the passed delta to the matrix position.
  157. void displace( const Point3F &delta );
  158. /// Get the x axis of the matrix.
  159. ///
  160. /// This is the 1st column of the matrix and is
  161. /// normally considered the right vector.
  162. VectorF getRightVector() const;
  163. /// Get the y axis of the matrix.
  164. ///
  165. /// This is the 2nd column of the matrix and is
  166. /// normally considered the forward vector.
  167. VectorF getForwardVector() const;
  168. /// Get the z axis of the matrix.
  169. ///
  170. /// This is the 3rd column of the matrix and is
  171. /// normally considered the up vector.
  172. VectorF getUpVector() const;
  173. MatrixF& mul(const MatrixF &a); ///< M * a -> M
  174. MatrixF& mulL(const MatrixF &a); ///< a * M -> M
  175. MatrixF& mul(const MatrixF &a, const MatrixF &b); ///< a * b -> M
  176. // Scalar multiplies
  177. MatrixF& mul(const F32 a); ///< M * a -> M
  178. MatrixF& mul(const MatrixF &a, const F32 b); ///< a * b -> M
  179. void mul( Point4F& p ) const; ///< M * p -> p (full [4x4] * [1x4])
  180. void mulP( Point3F& p ) const; ///< M * p -> p (assume w = 1.0f)
  181. void mulP( const Point3F &p, Point3F *d) const; ///< M * p -> d (assume w = 1.0f)
  182. void mulV( VectorF& p ) const; ///< M * v -> v (assume w = 0.0f)
  183. void mulV( const VectorF &p, Point3F *d) const; ///< M * v -> d (assume w = 0.0f)
  184. void mul(Box3F& b) const; ///< Axial box -> Axial Box
  185. MatrixF& add( const MatrixF& m );
  186. /// Convenience function to allow people to treat this like an array.
  187. F32& operator ()(S32 row, S32 col) { return m[idx(col,row)]; }
  188. F32 operator ()(S32 row, S32 col) const { return m[idx(col,row)]; }
  189. void dumpMatrix(const char *caption=NULL) const;
  190. // Math operator overloads
  191. //------------------------------------
  192. friend MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 );
  193. MatrixF& operator *= ( const MatrixF &m );
  194. MatrixF &operator = (const MatrixF &m);
  195. bool isNaN();
  196. // Static identity matrix
  197. const static MatrixF Identity;
  198. };
  199. class MatrixFEngineExport
  200. {
  201. public:
  202. static EngineFieldTable::Field getMatrixField();
  203. };
  204. //--------------------------------------
  205. // Inline Functions
  206. inline MatrixF::MatrixF(bool _identity)
  207. {
  208. if (_identity)
  209. identity();
  210. else
  211. std::fill_n(m, 16, 0);
  212. }
  213. inline MatrixF::MatrixF( const EulerF &e )
  214. {
  215. set(e);
  216. }
  217. inline MatrixF::MatrixF( const EulerF &e, const Point3F& p )
  218. {
  219. set(e,p);
  220. }
  221. inline MatrixF& MatrixF::set( const EulerF &e)
  222. {
  223. m_matF_set_euler( e, *this );
  224. return (*this);
  225. }
  226. inline MatrixF& MatrixF::set( const EulerF &e, const Point3F& p)
  227. {
  228. m_matF_set_euler_point( e, p, *this );
  229. return (*this);
  230. }
  231. inline MatrixF& MatrixF::setCrossProduct( const Point3F &p)
  232. {
  233. m[1] = -(m[4] = p.z);
  234. m[8] = -(m[2] = p.y);
  235. m[6] = -(m[9] = p.x);
  236. m[0] = m[3] = m[5] = m[7] = m[10] = m[11] =
  237. m[12] = m[13] = m[14] = 0.0f;
  238. m[15] = 1;
  239. return (*this);
  240. }
  241. inline MatrixF& MatrixF::setTensorProduct( const Point3F &p, const Point3F &q)
  242. {
  243. m[0] = p.x * q.x;
  244. m[1] = p.x * q.y;
  245. m[2] = p.x * q.z;
  246. m[4] = p.y * q.x;
  247. m[5] = p.y * q.y;
  248. m[6] = p.y * q.z;
  249. m[8] = p.z * q.x;
  250. m[9] = p.z * q.y;
  251. m[10] = p.z * q.z;
  252. m[3] = m[7] = m[11] = m[12] = m[13] = m[14] = 0.0f;
  253. m[15] = 1.0f;
  254. return (*this);
  255. }
  256. inline bool MatrixF::isIdentity() const
  257. {
  258. return
  259. m[0] == 1.0f &&
  260. m[1] == 0.0f &&
  261. m[2] == 0.0f &&
  262. m[3] == 0.0f &&
  263. m[4] == 0.0f &&
  264. m[5] == 1.0f &&
  265. m[6] == 0.0f &&
  266. m[7] == 0.0f &&
  267. m[8] == 0.0f &&
  268. m[9] == 0.0f &&
  269. m[10] == 1.0f &&
  270. m[11] == 0.0f &&
  271. m[12] == 0.0f &&
  272. m[13] == 0.0f &&
  273. m[14] == 0.0f &&
  274. m[15] == 1.0f;
  275. }
  276. inline MatrixF& MatrixF::identity()
  277. {
  278. m[0] = 1.0f;
  279. m[1] = 0.0f;
  280. m[2] = 0.0f;
  281. m[3] = 0.0f;
  282. m[4] = 0.0f;
  283. m[5] = 1.0f;
  284. m[6] = 0.0f;
  285. m[7] = 0.0f;
  286. m[8] = 0.0f;
  287. m[9] = 0.0f;
  288. m[10] = 1.0f;
  289. m[11] = 0.0f;
  290. m[12] = 0.0f;
  291. m[13] = 0.0f;
  292. m[14] = 0.0f;
  293. m[15] = 1.0f;
  294. return (*this);
  295. }
  296. inline MatrixF& MatrixF::inverse()
  297. {
  298. m_matF_inverse(m);
  299. return (*this);
  300. }
  301. inline void MatrixF::invertTo( MatrixF *out )
  302. {
  303. m_matF_invert_to(m,*out);
  304. }
  305. inline MatrixF& MatrixF::affineInverse()
  306. {
  307. // AssertFatal(isAffine() == true, "Error, this matrix is not an affine transform");
  308. m_matF_affineInverse(m);
  309. return (*this);
  310. }
  311. inline MatrixF& MatrixF::transpose()
  312. {
  313. m_matF_transpose(m);
  314. return (*this);
  315. }
  316. inline MatrixF& MatrixF::scale(const Point3F& p)
  317. {
  318. m_matF_scale(m,p);
  319. return *this;
  320. }
  321. inline Point3F MatrixF::getScale() const
  322. {
  323. Point3F scale;
  324. scale.x = mSqrt(m[0]*m[0] + m[4] * m[4] + m[8] * m[8]);
  325. scale.y = mSqrt(m[1]*m[1] + m[5] * m[5] + m[9] * m[9]);
  326. scale.z = mSqrt(m[2]*m[2] + m[6] * m[6] + m[10] * m[10]);
  327. return scale;
  328. }
  329. inline void MatrixF::normalize()
  330. {
  331. m_matF_normalize(m);
  332. }
  333. inline MatrixF& MatrixF::mul( const MatrixF &a )
  334. { // M * a -> M
  335. AssertFatal(&a != this, "MatrixF::mul - a.mul(a) is invalid!");
  336. MatrixF tempThis(*this);
  337. m_matF_x_matF(tempThis, a, *this);
  338. return (*this);
  339. }
  340. inline MatrixF& MatrixF::mulL( const MatrixF &a )
  341. { // a * M -> M
  342. AssertFatal(&a != this, "MatrixF::mulL - a.mul(a) is invalid!");
  343. MatrixF tempThis(*this);
  344. m_matF_x_matF(a, tempThis, *this);
  345. return (*this);
  346. }
  347. inline MatrixF& MatrixF::mul( const MatrixF &a, const MatrixF &b )
  348. { // a * b -> M
  349. AssertFatal((&a != this) && (&b != this), "MatrixF::mul - a.mul(a, b) a.mul(b, a) a.mul(a, a) is invalid!");
  350. m_matF_x_matF(a, b, *this);
  351. return (*this);
  352. }
  353. inline MatrixF& MatrixF::mul(const F32 a)
  354. {
  355. for (U32 i = 0; i < 16; i++)
  356. m[i] *= a;
  357. return *this;
  358. }
  359. inline MatrixF& MatrixF::mul(const MatrixF &a, const F32 b)
  360. {
  361. *this = a;
  362. mul(b);
  363. return *this;
  364. }
  365. inline void MatrixF::mul( Point4F& p ) const
  366. {
  367. Point4F temp;
  368. m_matF_x_point4F(*this, &p.x, &temp.x);
  369. p = temp;
  370. }
  371. inline void MatrixF::mulP( Point3F& p) const
  372. {
  373. // M * p -> d
  374. Point3F d;
  375. m_matF_x_point3F(*this, &p.x, &d.x);
  376. p = d;
  377. }
  378. inline void MatrixF::mulP( const Point3F &p, Point3F *d) const
  379. {
  380. // M * p -> d
  381. m_matF_x_point3F(*this, &p.x, &d->x);
  382. }
  383. inline void MatrixF::mulV( VectorF& v) const
  384. {
  385. // M * v -> v
  386. VectorF temp;
  387. m_matF_x_vectorF(*this, &v.x, &temp.x);
  388. v = temp;
  389. }
  390. inline void MatrixF::mulV( const VectorF &v, Point3F *d) const
  391. {
  392. // M * v -> d
  393. m_matF_x_vectorF(*this, &v.x, &d->x);
  394. }
  395. inline void MatrixF::mul(Box3F& b) const
  396. {
  397. m_matF_x_box3F(*this, &b.minExtents.x, &b.maxExtents.x);
  398. }
  399. inline MatrixF& MatrixF::add( const MatrixF& a )
  400. {
  401. for( U32 i = 0; i < 16; ++ i )
  402. m[ i ] += a.m[ i ];
  403. return *this;
  404. }
  405. inline void MatrixF::getColumn(S32 col, Point4F *cptr) const
  406. {
  407. cptr->x = m[col];
  408. cptr->y = m[col+4];
  409. cptr->z = m[col+8];
  410. cptr->w = m[col+12];
  411. }
  412. inline void MatrixF::getColumn(S32 col, Point3F *cptr) const
  413. {
  414. cptr->x = m[col];
  415. cptr->y = m[col+4];
  416. cptr->z = m[col+8];
  417. }
  418. inline void MatrixF::setColumn(S32 col, const Point4F &cptr)
  419. {
  420. m[col] = cptr.x;
  421. m[col+4] = cptr.y;
  422. m[col+8] = cptr.z;
  423. m[col+12]= cptr.w;
  424. }
  425. inline void MatrixF::setColumn(S32 col, const Point3F &cptr)
  426. {
  427. m[col] = cptr.x;
  428. m[col+4] = cptr.y;
  429. m[col+8] = cptr.z;
  430. }
  431. inline void MatrixF::getRow(S32 col, Point4F *cptr) const
  432. {
  433. col *= 4;
  434. cptr->x = m[col++];
  435. cptr->y = m[col++];
  436. cptr->z = m[col++];
  437. cptr->w = m[col];
  438. }
  439. inline void MatrixF::getRow(S32 col, Point3F *cptr) const
  440. {
  441. col *= 4;
  442. cptr->x = m[col++];
  443. cptr->y = m[col++];
  444. cptr->z = m[col];
  445. }
  446. inline void MatrixF::setRow(S32 col, const Point4F &cptr)
  447. {
  448. col *= 4;
  449. m[col++] = cptr.x;
  450. m[col++] = cptr.y;
  451. m[col++] = cptr.z;
  452. m[col] = cptr.w;
  453. }
  454. inline void MatrixF::setRow(S32 col, const Point3F &cptr)
  455. {
  456. col *= 4;
  457. m[col++] = cptr.x;
  458. m[col++] = cptr.y;
  459. m[col] = cptr.z;
  460. }
  461. inline Point3F MatrixF::getPosition() const
  462. {
  463. return Point3F( m[3], m[3+4], m[3+8] );
  464. }
  465. inline void MatrixF::displace( const Point3F &delta )
  466. {
  467. m[3] += delta.x;
  468. m[3+4] += delta.y;
  469. m[3+8] += delta.z;
  470. }
  471. inline VectorF MatrixF::getForwardVector() const
  472. {
  473. VectorF vec;
  474. getColumn( 1, &vec );
  475. return vec;
  476. }
  477. inline VectorF MatrixF::getRightVector() const
  478. {
  479. VectorF vec;
  480. getColumn( 0, &vec );
  481. return vec;
  482. }
  483. inline VectorF MatrixF::getUpVector() const
  484. {
  485. VectorF vec;
  486. getColumn( 2, &vec );
  487. return vec;
  488. }
  489. //------------------------------------
  490. // Math operator overloads
  491. //------------------------------------
  492. inline MatrixF operator * ( const MatrixF &m1, const MatrixF &m2 )
  493. {
  494. // temp = m1 * m2
  495. MatrixF temp;
  496. m_matF_x_matF(m1, m2, temp);
  497. return temp;
  498. }
  499. inline MatrixF& MatrixF::operator *= ( const MatrixF &m1 )
  500. {
  501. MatrixF tempThis(*this);
  502. m_matF_x_matF(tempThis, m1, *this);
  503. return (*this);
  504. }
  505. inline MatrixF &MatrixF::operator = (const MatrixF &m1)
  506. {
  507. for (U32 i=0;i<16;i++)
  508. this->m[i] = m1.m[i];
  509. return (*this);
  510. }
  511. inline bool MatrixF::isNaN()
  512. {
  513. bool isaNaN = false;
  514. for (U32 i = 0; i < 16; i++)
  515. if (mIsNaN_F(m[i]))
  516. isaNaN = true;
  517. return isaNaN;
  518. }
  519. //------------------------------------
  520. // Non-member methods
  521. //------------------------------------
  522. inline void mTransformPlane(const MatrixF& mat, const Point3F& scale, const PlaneF& plane, PlaneF * result)
  523. {
  524. m_matF_x_scale_x_planeF(mat, &scale.x, &plane.x, &result->x);
  525. }
  526. #else // !USE_TEMPLATE_MATRIX
  527. //------------------------------------
  528. // Templatized matrix class to replace MATRIXF above
  529. //------------------------------------
  530. template<typename DATA_TYPE, U32 rows, U32 cols>
  531. class Matrix {
  532. friend class MatrixTemplateExport;
  533. private:
  534. DATA_TYPE data[rows * cols];
  535. public:
  536. static_assert(rows >= 2 && cols >= 2, "Matrix must have at least 2 rows and 2 cols.");
  537. // ------ Setters and initializers ------
  538. explicit Matrix(bool identity = false) {
  539. std::fill(data, data + (rows * cols), DATA_TYPE(0));
  540. if (identity) {
  541. for (U32 i = 0; i < rows; i++) {
  542. for (U32 j = 0; j < cols; j++) {
  543. // others already get filled with 0
  544. if (j == i)
  545. (*this)(i, j) = static_cast<DATA_TYPE>(1);
  546. }
  547. }
  548. }
  549. }
  550. explicit Matrix(const EulerF& e) {
  551. set(e);
  552. }
  553. /// Make this an identity matrix.
  554. Matrix<DATA_TYPE, rows, cols>& identity();
  555. void reverseProjection();
  556. void normalize();
  557. Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e);
  558. Matrix(const EulerF& e, const Point3F p);
  559. Matrix<DATA_TYPE, rows, cols>& set(const EulerF& e, const Point3F p);
  560. Matrix<DATA_TYPE, rows, cols>& inverse();
  561. Matrix<DATA_TYPE, rows, cols>& transpose();
  562. void invert();
  563. Matrix<DATA_TYPE, rows, cols>& setCrossProduct(const Point3F& p);
  564. Matrix<DATA_TYPE, rows, cols>& setTensorProduct(const Point3F& p, const Point3F& q);
  565. /// M * Matrix(p) -> M
  566. Matrix<DATA_TYPE, rows, cols>& scale(const Point3F& s);
  567. Matrix<DATA_TYPE, rows, cols>& scale(DATA_TYPE s) { return scale(Point3F(s, s, s)); }
  568. void setColumn(S32 col, const Point4F& cptr);
  569. void setColumn(S32 col, const Point3F& cptr);
  570. void setRow(S32 row, const Point4F& cptr);
  571. void setRow(S32 row, const Point3F& cptr);
  572. void displace(const Point3F& delta);
  573. bool fullInverse();
  574. void setPosition(const Point3F& pos) { setColumn(3, pos); }
  575. DATA_TYPE determinant() const {
  576. AssertFatal(rows == cols, "Determinant is only defined for square matrices.");
  577. // For simplicity, only implement for 3x3 matrices
  578. AssertFatal(rows >= 3 && cols >= 3, "Determinant only for 3x3 or more"); // Ensure the matrix is 3x3
  579. return (*this)(0, 0) * ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) +
  580. (*this)(1, 0) * ((*this)(0, 2) * (*this)(2, 1) - (*this)(0, 1) * (*this)(2, 2)) +
  581. (*this)(2, 0) * ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1));
  582. }
  583. ///< M * a -> M
  584. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a)
  585. { return *this = *this * a; }
  586. ///< a * M -> M
  587. Matrix<DATA_TYPE, rows, cols>& mulL(const Matrix<DATA_TYPE, rows, cols>& a)
  588. { return *this = a * *this; }
  589. ///< a * b -> M
  590. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const Matrix<DATA_TYPE, rows, cols>& b)
  591. { return *this = a * b; }
  592. ///< M * a -> M
  593. Matrix<DATA_TYPE, rows, cols>& mul(const F32 a)
  594. { return *this = *this * a; }
  595. ///< a * b -> M
  596. Matrix<DATA_TYPE, rows, cols>& mul(const Matrix<DATA_TYPE, rows, cols>& a, const F32 b)
  597. { return *this = a * b; }
  598. Matrix<DATA_TYPE, rows, cols>& add(const Matrix<DATA_TYPE, rows, cols>& a)
  599. {
  600. return *this = *this += a;
  601. }
  602. ///< M * p -> p (full [4x4] * [1x4])
  603. void mul(Point4F& p) const { p = *this * p; }
  604. ///< M * p -> p (assume w = 1.0f)
  605. void mulP(Point3F& p) const { p = *this * p; }
  606. ///< M * p -> d (assume w = 1.0f)
  607. void mulP(const Point3F& p, Point3F* d) const { *d = *this * p; }
  608. ///< M * v -> v (assume w = 0.0f)
  609. void mulV(VectorF& v) const
  610. {
  611. AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");
  612. VectorF result(
  613. (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,
  614. (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,
  615. (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z
  616. );
  617. v = result;
  618. }
  619. ///< M * v -> d (assume w = 0.0f)
  620. void mulV(const VectorF& v, Point3F* d) const
  621. {
  622. AssertFatal(rows == 4 && cols == 4, "Multiplying VectorF with matrix requires 4x4");
  623. VectorF result(
  624. (*this)(0, 0) * v.x + (*this)(0, 1) * v.y + (*this)(0, 2) * v.z,
  625. (*this)(1, 0) * v.x + (*this)(1, 1) * v.y + (*this)(1, 2) * v.z,
  626. (*this)(2, 0) * v.x + (*this)(2, 1) * v.y + (*this)(2, 2) * v.z
  627. );
  628. d->x = result.x;
  629. d->y = result.y;
  630. d->z = result.z;
  631. }
  632. ///< Axial box -> Axial Box (too big a function to be inline)
  633. void mul(Box3F& box) const;
  634. // ------ Getters ------
  635. bool isNaN() {
  636. for (U32 i = 0; i < rows; i++) {
  637. for (U32 j = 0; j < cols; j++) {
  638. if (mIsNaN_F((*this)(i, j)))
  639. return true;
  640. }
  641. }
  642. return false;
  643. }
  644. // row + col * cols
  645. static U32 idx(U32 i, U32 j) { return (i + j * cols); }
  646. bool isAffine() const;
  647. bool isIdentity() const;
  648. /// Take inverse of matrix assuming it is affine (rotation,
  649. /// scale, sheer, translation only).
  650. Matrix<DATA_TYPE, rows, cols>& affineInverse();
  651. Point3F getScale() const;
  652. EulerF toEuler() const;
  653. Point3F getPosition() const;
  654. void getColumn(S32 col, Point4F* cptr) const;
  655. Point4F getColumn4F(S32 col) const { Point4F ret; getColumn(col, &ret); return ret; }
  656. void getColumn(S32 col, Point3F* cptr) const;
  657. Point3F getColumn3F(S32 col) const { Point3F ret; getColumn(col, &ret); return ret; }
  658. void getRow(S32 row, Point4F* cptr) const;
  659. Point4F getRow4F(S32 row) const { Point4F ret; getRow(row, &ret); return ret; }
  660. void getRow(S32 row, Point3F* cptr) const;
  661. Point3F getRow3F(S32 row) const { Point3F ret; getRow(row, &ret); return ret; }
  662. VectorF getRightVector() const;
  663. VectorF getForwardVector() const;
  664. VectorF getUpVector() const;
  665. DATA_TYPE* getData() {
  666. return data;
  667. }
  668. const DATA_TYPE* getData() const {
  669. return data;
  670. }
  671. void transposeTo(Matrix<DATA_TYPE, cols, rows>& matrix) const {
  672. for (U32 i = 0; i < rows; ++i) {
  673. for (U32 j = 0; j < cols; ++j) {
  674. matrix(j, i) = (*this)(i, j);
  675. }
  676. }
  677. }
  678. void swap(DATA_TYPE& a, DATA_TYPE& b) {
  679. DATA_TYPE temp = a;
  680. a = b;
  681. b = temp;
  682. }
  683. void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const;
  684. void invertTo(Matrix<DATA_TYPE, cols, rows>* matrix);
  685. void dumpMatrix(const char* caption = NULL) const;
  686. // Static identity matrix
  687. static const Matrix Identity;
  688. // ------ Operators ------
  689. friend Matrix<DATA_TYPE, rows, cols> operator*(const Matrix<DATA_TYPE, rows, cols>& m1, const Matrix<DATA_TYPE, rows, cols>& m2) {
  690. Matrix<DATA_TYPE, rows, cols> result;
  691. result(0, 0) = m1(0, 0) * m2(0, 0) + m1(0, 1) * m2(1, 0) + m1(0, 2) * m2(2, 0) + m1(0, 3) * m2(3, 0);
  692. result(0, 1) = m1(0, 0) * m2(0, 1) + m1(0, 1) * m2(1, 1) + m1(0, 2) * m2(2, 1) + m1(0, 3) * m2(3, 1);
  693. result(0, 2) = m1(0, 0) * m2(0, 2) + m1(0, 1) * m2(1, 2) + m1(0, 2) * m2(2, 2) + m1(0, 3) * m2(3, 2);
  694. result(0, 3) = m1(0, 0) * m2(0, 3) + m1(0, 1) * m2(1, 3) + m1(0, 2) * m2(2, 3) + m1(0, 3) * m2(3, 3);
  695. result(1, 0) = m1(1, 0) * m2(0, 0) + m1(1, 1) * m2(1, 0) + m1(1, 2) * m2(2, 0) + m1(1, 3) * m2(3, 0);
  696. result(1, 1) = m1(1, 0) * m2(0, 1) + m1(1, 1) * m2(1, 1) + m1(1, 2) * m2(2, 1) + m1(1, 3) * m2(3, 1);
  697. result(1, 2) = m1(1, 0) * m2(0, 2) + m1(1, 1) * m2(1, 2) + m1(1, 2) * m2(2, 2) + m1(1, 3) * m2(3, 2);
  698. result(1, 3) = m1(1, 0) * m2(0, 3) + m1(1, 1) * m2(1, 3) + m1(1, 2) * m2(2, 3) + m1(1, 3) * m2(3, 3);
  699. result(2, 0) = m1(2, 0) * m2(0, 0) + m1(2, 1) * m2(1, 0) + m1(2, 2) * m2(2, 0) + m1(2, 3) * m2(3, 0);
  700. result(2, 1) = m1(2, 0) * m2(0, 1) + m1(2, 1) * m2(1, 1) + m1(2, 2) * m2(2, 1) + m1(2, 3) * m2(3, 1);
  701. result(2, 2) = m1(2, 0) * m2(0, 2) + m1(2, 1) * m2(1, 2) + m1(2, 2) * m2(2, 2) + m1(2, 3) * m2(3, 2);
  702. result(2, 3) = m1(2, 0) * m2(0, 3) + m1(2, 1) * m2(1, 3) + m1(2, 2) * m2(2, 3) + m1(2, 3) * m2(3, 3);
  703. result(3, 0) = m1(3, 0) * m2(0, 0) + m1(3, 1) * m2(1, 0) + m1(3, 2) * m2(2, 0) + m1(3, 3) * m2(3, 0);
  704. result(3, 1) = m1(3, 0) * m2(0, 1) + m1(3, 1) * m2(1, 1) + m1(3, 2) * m2(2, 1) + m1(3, 3) * m2(3, 1);
  705. result(3, 2) = m1(3, 0) * m2(0, 2) + m1(3, 1) * m2(1, 2) + m1(3, 2) * m2(2, 2) + m1(3, 3) * m2(3, 2);
  706. result(3, 3) = m1(3, 0) * m2(0, 3) + m1(3, 1) * m2(1, 3) + m1(3, 2) * m2(2, 3) + m1(3, 3) * m2(3, 3);
  707. return result;
  708. }
  709. Matrix<DATA_TYPE, rows, cols> operator *= (const Matrix<DATA_TYPE, rows, cols>& other) {
  710. *this = *this * other;
  711. return *this;
  712. }
  713. Matrix<DATA_TYPE, rows, cols> operator+(const Matrix<DATA_TYPE, rows, cols>& m2) {
  714. Matrix<DATA_TYPE, rows, cols> result;
  715. for (U32 i = 0; i < rows; ++i)
  716. {
  717. for (U32 j = 0; j < cols; ++j)
  718. {
  719. result(i, j) = 0; // Initialize result element to 0
  720. result(i, j) = (*this)(i, j) + m2(i, j);
  721. }
  722. }
  723. return result;
  724. }
  725. Matrix<DATA_TYPE, rows, cols> operator+=(const Matrix<DATA_TYPE, rows, cols>& m2) {
  726. for (U32 i = 0; i < rows; ++i)
  727. {
  728. for (U32 j = 0; j < cols; ++j)
  729. {
  730. (*this)(i, j) += m2(i, j);
  731. }
  732. }
  733. return (*this);
  734. }
  735. Matrix<DATA_TYPE, rows, cols> operator * (const DATA_TYPE scalar) const {
  736. Matrix<DATA_TYPE, rows, cols> result;
  737. for (U32 i = 0; i < rows; i++)
  738. {
  739. for (U32 j = 0; j < cols; j++)
  740. {
  741. result(i, j) = (*this)(i, j) * scalar;
  742. }
  743. }
  744. return result;
  745. }
  746. Matrix<DATA_TYPE, rows, cols>& operator *= (const DATA_TYPE scalar) {
  747. for (U32 i = 0; i < rows; i++)
  748. {
  749. for (U32 j = 0; j < cols; j++)
  750. {
  751. (*this)(i, j) *= scalar;
  752. }
  753. }
  754. return *this;
  755. }
  756. Point3F operator*(const Point3F& point) const {
  757. AssertFatal(rows == 4 && cols == 4, "Multiplying point3 with matrix requires 4x4");
  758. Point3F result;
  759. result.x = (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3);
  760. result.y = (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3);
  761. result.z = (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3);
  762. return result;
  763. }
  764. Point4F operator*(const Point4F& point) const {
  765. AssertFatal(rows == 4 && cols == 4, "Multiplying point4 with matrix requires 4x4");
  766. return Point4F(
  767. (*this)(0, 0) * point.x + (*this)(0, 1) * point.y + (*this)(0, 2) * point.z + (*this)(0, 3) * point.w,
  768. (*this)(1, 0) * point.x + (*this)(1, 1) * point.y + (*this)(1, 2) * point.z + (*this)(1, 3) * point.w,
  769. (*this)(2, 0) * point.x + (*this)(2, 1) * point.y + (*this)(2, 2) * point.z + (*this)(2, 3) * point.w,
  770. (*this)(3, 0) * point.x + (*this)(3, 1) * point.y + (*this)(3, 2) * point.z + (*this)(3, 3) * point.w
  771. );
  772. }
  773. Matrix<DATA_TYPE, rows, cols>& operator = (const Matrix<DATA_TYPE, rows, cols>& other) {
  774. if (this != &other) {
  775. std::copy(other.data, other.data + rows * cols, this->data);
  776. }
  777. return *this;
  778. }
  779. bool operator == (const Matrix<DATA_TYPE, rows, cols>& other) const {
  780. for (U32 i = 0; i < rows; i++)
  781. {
  782. for (U32 j = 0; j < cols; j++)
  783. {
  784. if ((*this)(i, j) != other(i, j))
  785. return false;
  786. }
  787. }
  788. return true;
  789. }
  790. bool operator != (const Matrix<DATA_TYPE, rows, cols>& other) const {
  791. return !(*this == other);
  792. }
  793. operator DATA_TYPE* () { return (data); }
  794. operator const DATA_TYPE* () const { return (DATA_TYPE*)(data); }
  795. DATA_TYPE& operator () (U32 row, U32 col) {
  796. if (row >= rows || col >= cols)
  797. AssertFatal(false, "Matrix indices out of range");
  798. return data[idx(col,row)];
  799. }
  800. DATA_TYPE operator () (U32 row, U32 col) const {
  801. if (row >= rows || col >= cols)
  802. AssertFatal(false, "Matrix indices out of range");
  803. return data[idx(col, row)];
  804. }
  805. };
  806. //--------------------------------------------
  807. // INLINE FUNCTIONS
  808. //--------------------------------------------
  809. template<typename DATA_TYPE, U32 rows, U32 cols>
  810. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::transpose()
  811. {
  812. AssertFatal(rows == cols, "Transpose can only be performed on square matrices.");
  813. swap((*this)(0, 1), (*this)(1, 0));
  814. swap((*this)(0, 2), (*this)(2, 0));
  815. swap((*this)(0, 3), (*this)(3, 0));
  816. swap((*this)(1, 2), (*this)(2, 1));
  817. swap((*this)(1, 3), (*this)(3, 1));
  818. swap((*this)(2, 3), (*this)(3, 2));
  819. return (*this);
  820. }
  821. template<typename DATA_TYPE, U32 rows, U32 cols>
  822. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::identity()
  823. {
  824. for (U32 i = 0; i < rows; i++)
  825. {
  826. for (U32 j = 0; j < cols; j++)
  827. {
  828. if (j == i)
  829. (*this)(i, j) = static_cast<DATA_TYPE>(1);
  830. else
  831. (*this)(i, j) = static_cast<DATA_TYPE>(0);
  832. }
  833. }
  834. return (*this);
  835. }
  836. template<typename DATA_TYPE, U32 rows, U32 cols>
  837. inline void Matrix<DATA_TYPE, rows, cols>::normalize()
  838. {
  839. AssertFatal(rows >= 3 && cols >= 3, "Normalize can only be applied 3x3 or more");
  840. Point3F col0, col1, col2;
  841. getColumn(0, &col0);
  842. getColumn(1, &col1);
  843. mCross(col0, col1, &col2);
  844. mCross(col2, col0, &col1);
  845. col0.normalize();
  846. col1.normalize();
  847. col2.normalize();
  848. setColumn(0, col0);
  849. setColumn(1, col1);
  850. setColumn(2, col2);
  851. }
  852. template<typename DATA_TYPE, U32 rows, U32 cols>
  853. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::scale(const Point3F& s)
  854. {
  855. // torques scale applies directly, does not create another matrix to multiply with the translation matrix.
  856. AssertFatal(rows >= 4 && cols >= 4, "Scale can only be applied 4x4 or more");
  857. (*this)(0, 0) *= s.x; (*this)(0, 1) *= s.y; (*this)(0, 2) *= s.z;
  858. (*this)(1, 0) *= s.x; (*this)(1, 1) *= s.y; (*this)(1, 2) *= s.z;
  859. (*this)(2, 0) *= s.x; (*this)(2, 1) *= s.y; (*this)(2, 2) *= s.z;
  860. (*this)(3, 0) *= s.x; (*this)(3, 1) *= s.y; (*this)(3, 2) *= s.z;
  861. return (*this);
  862. }
  863. template<typename DATA_TYPE, U32 rows, U32 cols>
  864. inline bool Matrix<DATA_TYPE, rows, cols>::isIdentity() const {
  865. for (U32 i = 0; i < rows; i++)
  866. {
  867. for (U32 j = 0; j < cols; j++)
  868. {
  869. if (j == i)
  870. {
  871. if((*this)(i, j) != static_cast<DATA_TYPE>(1))
  872. {
  873. return false;
  874. }
  875. }
  876. else
  877. {
  878. if((*this)(i, j) != static_cast<DATA_TYPE>(0))
  879. {
  880. return false;
  881. }
  882. }
  883. }
  884. }
  885. return true;
  886. }
  887. template<typename DATA_TYPE, U32 rows, U32 cols>
  888. inline Point3F Matrix<DATA_TYPE, rows, cols>::getScale() const
  889. {
  890. // this function assumes the matrix has scale applied through the scale(const Point3F& s) function.
  891. // for now assume float since we have point3F.
  892. AssertFatal(rows >= 4 && cols >= 4, "Scale can only be applied 4x4 or more");
  893. Point3F scale;
  894. scale.x = mSqrt((*this)(0, 0) * (*this)(0, 0) + (*this)(1, 0) * (*this)(1, 0) + (*this)(2, 0) * (*this)(2, 0));
  895. scale.y = mSqrt((*this)(0, 1) * (*this)(0, 1) + (*this)(1, 1) * (*this)(1, 1) + (*this)(2, 1) * (*this)(2, 1));
  896. scale.z = mSqrt((*this)(0, 2) * (*this)(0, 2) + (*this)(1, 2) * (*this)(1, 2) + (*this)(2, 2) * (*this)(2, 2));
  897. return scale;
  898. }
  899. template<typename DATA_TYPE, U32 rows, U32 cols>
  900. inline Point3F Matrix<DATA_TYPE, rows, cols>::getPosition() const
  901. {
  902. Point3F pos;
  903. getColumn(3, &pos);
  904. return pos;
  905. }
  906. template<typename DATA_TYPE, U32 rows, U32 cols>
  907. inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point4F* cptr) const
  908. {
  909. if (rows >= 2)
  910. {
  911. cptr->x = (*this)(0, col);
  912. cptr->y = (*this)(1, col);
  913. }
  914. if (rows >= 3)
  915. cptr->z = (*this)(2, col);
  916. else
  917. cptr->z = 0.0f;
  918. if (rows >= 4)
  919. cptr->w = (*this)(3, col);
  920. else
  921. cptr->w = 0.0f;
  922. }
  923. template<typename DATA_TYPE, U32 rows, U32 cols>
  924. inline void Matrix<DATA_TYPE, rows, cols>::getColumn(S32 col, Point3F* cptr) const
  925. {
  926. if (rows >= 2)
  927. {
  928. cptr->x = (*this)(0, col);
  929. cptr->y = (*this)(1, col);
  930. }
  931. if (rows >= 3)
  932. cptr->z = (*this)(2, col);
  933. else
  934. cptr->z = 0.0f;
  935. }
  936. template<typename DATA_TYPE, U32 rows, U32 cols>
  937. inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point4F &cptr) {
  938. if(rows >= 2)
  939. {
  940. (*this)(0, col) = cptr.x;
  941. (*this)(1, col) = cptr.y;
  942. }
  943. if(rows >= 3)
  944. (*this)(2, col) = cptr.z;
  945. if(rows >= 4)
  946. (*this)(3, col) = cptr.w;
  947. }
  948. template<typename DATA_TYPE, U32 rows, U32 cols>
  949. inline void Matrix<DATA_TYPE, rows, cols>::setColumn(S32 col, const Point3F &cptr) {
  950. if(rows >= 2)
  951. {
  952. (*this)(0, col) = cptr.x;
  953. (*this)(1, col) = cptr.y;
  954. }
  955. if(rows >= 3)
  956. (*this)(2, col) = cptr.z;
  957. }
  958. template<typename DATA_TYPE, U32 rows, U32 cols>
  959. inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point4F* cptr) const
  960. {
  961. if (cols >= 2)
  962. {
  963. cptr->x = (*this)(row, 0);
  964. cptr->y = (*this)(row, 1);
  965. }
  966. if (cols >= 3)
  967. cptr->z = (*this)(row, 2);
  968. else
  969. cptr->z = 0.0f;
  970. if (cols >= 4)
  971. cptr->w = (*this)(row, 3);
  972. else
  973. cptr->w = 0.0f;
  974. }
  975. template<typename DATA_TYPE, U32 rows, U32 cols>
  976. inline void Matrix<DATA_TYPE, rows, cols>::getRow(S32 row, Point3F* cptr) const
  977. {
  978. if (cols >= 2)
  979. {
  980. cptr->x = (*this)(row, 0);
  981. cptr->y = (*this)(row, 1);
  982. }
  983. if (cols >= 3)
  984. cptr->z = (*this)(row, 2);
  985. else
  986. cptr->z = 0.0f;
  987. }
  988. template<typename DATA_TYPE, U32 rows, U32 cols>
  989. inline VectorF Matrix<DATA_TYPE, rows, cols>::getRightVector() const
  990. {
  991. VectorF vec;
  992. getColumn(0, &vec);
  993. return vec;
  994. }
  995. template<typename DATA_TYPE, U32 rows, U32 cols>
  996. inline VectorF Matrix<DATA_TYPE, rows, cols>::getForwardVector() const
  997. {
  998. VectorF vec;
  999. getColumn(1, &vec);
  1000. return vec;
  1001. }
  1002. template<typename DATA_TYPE, U32 rows, U32 cols>
  1003. inline VectorF Matrix<DATA_TYPE, rows, cols>::getUpVector() const
  1004. {
  1005. VectorF vec;
  1006. getColumn(2, &vec);
  1007. return vec;
  1008. }
  1009. template<typename DATA_TYPE, U32 rows, U32 cols>
  1010. inline void Matrix<DATA_TYPE, rows, cols>::invertTo(Matrix<DATA_TYPE, cols, rows>* matrix) const
  1011. {
  1012. Matrix<DATA_TYPE, rows, cols> invMatrix;
  1013. for (U32 i = 0; i < rows; ++i)
  1014. {
  1015. for (U32 j = 0; j < cols; ++j)
  1016. {
  1017. invMatrix(i, j) = (*this)(i, j);
  1018. }
  1019. }
  1020. invMatrix.inverse();
  1021. for (U32 i = 0; i < rows; ++i)
  1022. {
  1023. for (U32 j = 0; j < cols; ++j)
  1024. {
  1025. (*matrix)(i, j) = invMatrix(i, j);
  1026. }
  1027. }
  1028. }
  1029. template<typename DATA_TYPE, U32 rows, U32 cols>
  1030. inline void Matrix<DATA_TYPE, rows, cols>::invertTo(Matrix<DATA_TYPE, cols, rows>* matrix)
  1031. {
  1032. Matrix<DATA_TYPE, rows, cols> invMatrix = this->inverse();
  1033. for (U32 i = 0; i < rows; ++i)
  1034. {
  1035. for (U32 j = 0; j < cols; ++j)
  1036. {
  1037. (*matrix)(i, j) = invMatrix(i, j);
  1038. }
  1039. }
  1040. }
  1041. template<typename DATA_TYPE, U32 rows, U32 cols>
  1042. inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point4F& cptr) {
  1043. if(cols >= 2)
  1044. {
  1045. (*this)(row, 0) = cptr.x;
  1046. (*this)(row, 1) = cptr.y;
  1047. }
  1048. if(cols >= 3)
  1049. (*this)(row, 2) = cptr.z;
  1050. if(cols >= 4)
  1051. (*this)(row, 3) = cptr.w;
  1052. }
  1053. template<typename DATA_TYPE, U32 rows, U32 cols>
  1054. inline void Matrix<DATA_TYPE, rows, cols>::setRow(S32 row, const Point3F& cptr) {
  1055. if(cols >= 2)
  1056. {
  1057. (*this)(row, 0) = cptr.x;
  1058. (*this)(row, 1) = cptr.y;
  1059. }
  1060. if(cols >= 3)
  1061. (*this)(row, 2) = cptr.z;
  1062. }
  1063. template<typename DATA_TYPE, U32 rows, U32 cols>
  1064. inline void Matrix<DATA_TYPE, rows, cols>::displace(const Point3F& delta)
  1065. {
  1066. (*this)(0, 3) += delta.x;
  1067. (*this)(1, 3) += delta.y;
  1068. (*this)(2, 3) += delta.z;
  1069. }
  1070. template<typename DATA_TYPE, U32 rows, U32 cols>
  1071. inline void Matrix<DATA_TYPE, rows, cols>::reverseProjection()
  1072. {
  1073. AssertFatal(rows == 4 && cols == 4, "reverseProjection requires a 4x4 matrix.");
  1074. (*this)(2, 0) = (*this)(3, 0) - (*this)(2, 0);
  1075. (*this)(2, 1) = (*this)(3, 1) - (*this)(2, 1);
  1076. (*this)(2, 2) = (*this)(3, 2) - (*this)(2, 2);
  1077. (*this)(2, 3) = (*this)(3, 3) - (*this)(2, 3);
  1078. }
  1079. template<typename DATA_TYPE, U32 rows, U32 cols>
  1080. const Matrix<DATA_TYPE, rows, cols> Matrix<DATA_TYPE, rows, cols>::Identity = []() {
  1081. Matrix<DATA_TYPE, rows, cols> identity(true);
  1082. return identity;
  1083. }();
  1084. template<typename DATA_TYPE, U32 rows, U32 cols>
  1085. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e)
  1086. {
  1087. // when the template refactor is done, euler will be able to be setup in different ways
  1088. AssertFatal(rows >= 3 && cols >= 3, "EulerF can only initialize 3x3 or more");
  1089. static_assert(std::is_same<DATA_TYPE, float>::value, "Can only initialize eulers with floats for now");
  1090. F32 cosPitch, sinPitch;
  1091. mSinCos(e.x, sinPitch, cosPitch);
  1092. F32 cosYaw, sinYaw;
  1093. mSinCos(e.y, sinYaw, cosYaw);
  1094. F32 cosRoll, sinRoll;
  1095. mSinCos(e.z, sinRoll, cosRoll);
  1096. enum {
  1097. AXIS_X = (1 << 0),
  1098. AXIS_Y = (1 << 1),
  1099. AXIS_Z = (1 << 2)
  1100. };
  1101. U32 axis = 0;
  1102. if (e.x != 0.0f) axis |= AXIS_X;
  1103. if (e.y != 0.0f) axis |= AXIS_Y;
  1104. if (e.z != 0.0f) axis |= AXIS_Z;
  1105. switch (axis) {
  1106. case 0:
  1107. (*this) = Matrix<DATA_TYPE, rows, cols>(true);
  1108. break;
  1109. case AXIS_X:
  1110. (*this)(0, 0) = 1.0f; (*this)(0, 1) = 0.0f; (*this)(0, 2) = 0.0f;
  1111. (*this)(1, 0) = 0.0f; (*this)(1, 1) = cosPitch; (*this)(1, 2) = sinPitch;
  1112. (*this)(2, 0) = 0.0f; (*this)(2, 1) = -sinPitch; (*this)(2, 2) = cosPitch;
  1113. break;
  1114. case AXIS_Y:
  1115. (*this)(0, 0) = cosYaw; (*this)(1, 0) = 0.0f; (*this)(2, 0) = sinYaw;
  1116. (*this)(0, 1) = 0.0f; (*this)(1, 1) = 1.0f; (*this)(2, 1) = 0.0f;
  1117. (*this)(0, 2) = -sinYaw; (*this)(1, 2) = 0.0f; (*this)(2, 2) = cosYaw;
  1118. break;
  1119. case AXIS_Z:
  1120. (*this)(0, 0) = cosRoll; (*this)(0, 1) = sinRoll; (*this)(0, 2) = 0.0f;
  1121. (*this)(1, 0) = -sinRoll; (*this)(1, 1) = cosRoll; (*this)(1, 2) = 0.0f;
  1122. (*this)(2, 0) = 0.0f; (*this)(2, 1) = 0.0f; (*this)(2, 2) = 1.0f;
  1123. break;
  1124. default:
  1125. F32 r1 = cosYaw * cosRoll;
  1126. F32 r2 = cosYaw * sinRoll;
  1127. F32 r3 = sinYaw * cosRoll;
  1128. F32 r4 = sinYaw * sinRoll;
  1129. // the matrix looks like this:
  1130. // r1 - (r4 * sin(x)) r2 + (r3 * sin(x)) -cos(x) * sin(y)
  1131. // -cos(x) * sin(z) cos(x) * cos(z) sin(x)
  1132. // r3 + (r2 * sin(x)) r4 - (r1 * sin(x)) cos(x) * cos(y)
  1133. //
  1134. // where:
  1135. // r1 = cos(y) * cos(z)
  1136. // r2 = cos(y) * sin(z)
  1137. // r3 = sin(y) * cos(z)
  1138. // r4 = sin(y) * sin(z)
  1139. // init the euler 3x3 rotation matrix.
  1140. (*this)(0, 0) = r1 - (r4 * sinPitch); (*this)(0, 1) = r2 + (r3 * sinPitch); (*this)(0, 2) = -cosPitch * sinYaw;
  1141. (*this)(1, 0) = -cosPitch * sinRoll; (*this)(1, 1) = cosPitch * cosRoll; (*this)(1, 2) = sinPitch;
  1142. (*this)(2, 0) = r3 + (r2 * sinPitch); (*this)(2, 1) = r4 - (r1 * sinPitch); (*this)(2, 2) = cosPitch * cosYaw;
  1143. break;
  1144. }
  1145. if (rows == 4)
  1146. {
  1147. (*this)(3, 0) = 0.0f;
  1148. (*this)(3, 1) = 0.0f;
  1149. (*this)(3, 2) = 0.0f;
  1150. }
  1151. if (cols == 4)
  1152. {
  1153. (*this)(0, 3) = 0.0f;
  1154. (*this)(1, 3) = 0.0f;
  1155. (*this)(2, 3) = 0.0f;
  1156. }
  1157. if (rows == 4 && cols == 4)
  1158. {
  1159. (*this)(3, 3) = 1.0f;
  1160. }
  1161. return(*this);
  1162. }
  1163. template<typename DATA_TYPE, U32 rows, U32 cols>
  1164. Matrix<DATA_TYPE, rows, cols>::Matrix(const EulerF& e, const Point3F p)
  1165. {
  1166. set(e, p);
  1167. }
  1168. template<typename DATA_TYPE, U32 rows, U32 cols>
  1169. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::set(const EulerF& e, const Point3F p)
  1170. {
  1171. AssertFatal(rows >= 3 && cols >= 4, "Euler and Point can only initialize 3x4 or more");
  1172. // call set euler, this already sets the last row if it exists.
  1173. set(e);
  1174. // does this need to multiply with the result of the euler? or are we just setting position.
  1175. (*this)(0, 3) = p.x;
  1176. (*this)(1, 3) = p.y;
  1177. (*this)(2, 3) = p.z;
  1178. return (*this);
  1179. }
  1180. template<typename DATA_TYPE, U32 rows, U32 cols>
  1181. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::inverse()
  1182. {
  1183. #if 0
  1184. // NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and
  1185. // numbers near 0.0
  1186. //
  1187. AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
  1188. const U32 size = rows - 1;
  1189. const DATA_TYPE pivot_eps = static_cast<DATA_TYPE>(1e-20); // Smaller epsilon to handle numerical precision
  1190. // Create augmented matrix [this | I]
  1191. Matrix<DATA_TYPE, size, rows + size> augmentedMatrix;
  1192. for (U32 i = 0; i < size; i++)
  1193. {
  1194. for (U32 j = 0; j < size; j++)
  1195. {
  1196. augmentedMatrix(i, j) = (*this)(i, j);
  1197. augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);
  1198. }
  1199. }
  1200. // Apply gauss-joran elimination
  1201. for (U32 i = 0; i < size; i++)
  1202. {
  1203. U32 pivotRow = i;
  1204. DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i));
  1205. for (U32 k = i + 1; k < size; k++)
  1206. {
  1207. DATA_TYPE curValue = std::abs(augmentedMatrix(k, i));
  1208. if (curValue > pivotValue) {
  1209. pivotRow = k;
  1210. pivotValue = curValue;
  1211. }
  1212. }
  1213. // Swap if needed.
  1214. if (i != pivotRow)
  1215. {
  1216. for (U32 j = 0; j < 2 * size; j++)
  1217. {
  1218. DATA_TYPE temp = augmentedMatrix(i, j);
  1219. augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j);
  1220. augmentedMatrix(pivotRow, j) = temp;
  1221. }
  1222. }
  1223. // Early out if pivot is 0, return identity matrix.
  1224. if (std::abs(augmentedMatrix(i, i)) < pivot_eps)
  1225. {
  1226. this->identity();
  1227. return *this;
  1228. }
  1229. DATA_TYPE pivotVal = static_cast<DATA_TYPE>(1.0) / augmentedMatrix(i, i);
  1230. // scale the pivot
  1231. for (U32 j = 0; j < 2 * size; j++)
  1232. {
  1233. augmentedMatrix(i, j) *= pivotVal;
  1234. }
  1235. // Eliminate the current column in all other rows
  1236. for (U32 k = 0; k < size; k++)
  1237. {
  1238. if (k != i)
  1239. {
  1240. DATA_TYPE factor = augmentedMatrix(k, i);
  1241. for (U32 j = 0; j < 2 * size; j++)
  1242. {
  1243. augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);
  1244. }
  1245. }
  1246. }
  1247. }
  1248. for (U32 i = 0; i < size; i++)
  1249. {
  1250. for (U32 j = 0; j < size; j++)
  1251. {
  1252. (*this)(i, j) = augmentedMatrix(i, j + size);
  1253. }
  1254. }
  1255. #else
  1256. AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
  1257. AssertFatal(rows >= 3 && cols >= 3, "Must be at least a 3x3 matrix");
  1258. DATA_TYPE det = determinant();
  1259. // Check if the determinant is non-zero
  1260. if (std::abs(det) < static_cast<DATA_TYPE>(1e-10)) {
  1261. this->identity(); // Return the identity matrix if the determinant is zero
  1262. return *this;
  1263. }
  1264. DATA_TYPE invDet = DATA_TYPE(1) / det;
  1265. Matrix<DATA_TYPE, rows, cols> temp;
  1266. // Calculate the inverse of the 3x3 upper-left submatrix using Cramer's rule
  1267. temp(0, 0) = ((*this)(1, 1) * (*this)(2, 2) - (*this)(1, 2) * (*this)(2, 1)) * invDet;
  1268. temp(0, 1) = ((*this)(2, 1) * (*this)(0, 2) - (*this)(2, 2) * (*this)(0, 1)) * invDet;
  1269. temp(0, 2) = ((*this)(0, 1) * (*this)(1, 2) - (*this)(0, 2) * (*this)(1, 1)) * invDet;
  1270. temp(1, 0) = ((*this)(1, 2) * (*this)(2, 0) - (*this)(1, 0) * (*this)(2, 2)) * invDet;
  1271. temp(1, 1) = ((*this)(2, 2) * (*this)(0, 0) - (*this)(2, 0) * (*this)(0, 2)) * invDet;
  1272. temp(1, 2) = ((*this)(0, 2) * (*this)(1, 0) - (*this)(0, 0) * (*this)(1, 2)) * invDet;
  1273. temp(2, 0) = ((*this)(1, 0) * (*this)(2, 1) - (*this)(1, 1) * (*this)(2, 0)) * invDet;
  1274. temp(2, 1) = ((*this)(2, 0) * (*this)(0, 1) - (*this)(2, 1) * (*this)(0, 0)) * invDet;
  1275. temp(2, 2) = ((*this)(0, 0) * (*this)(1, 1) - (*this)(0, 1) * (*this)(1, 0)) * invDet;
  1276. // Copy the 3x3 inverse back into this matrix
  1277. for (U32 i = 0; i < 3; ++i)
  1278. {
  1279. for (U32 j = 0; j < 3; ++j)
  1280. {
  1281. (*this)(i, j) = temp(i, j);
  1282. }
  1283. }
  1284. #endif
  1285. Point3F pos = -this->getPosition();
  1286. mulV(pos);
  1287. this->setPosition(pos);
  1288. return (*this);
  1289. }
  1290. template<typename DATA_TYPE, U32 rows, U32 cols>
  1291. inline bool Matrix<DATA_TYPE, rows, cols>::fullInverse()
  1292. {
  1293. #if 0
  1294. // NOTE: Gauss-Jordan elimination is yielding unpredictable results due to precission handling and
  1295. // numbers near 0.0
  1296. AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
  1297. const U32 size = rows;
  1298. const DATA_TYPE pivot_eps = static_cast<DATA_TYPE>(1e-20); // Smaller epsilon to handle numerical precision
  1299. // Create augmented matrix [this | I]
  1300. Matrix<DATA_TYPE, size, rows + size> augmentedMatrix;
  1301. for (U32 i = 0; i < size; i++)
  1302. {
  1303. for (U32 j = 0; j < size; j++)
  1304. {
  1305. augmentedMatrix(i, j) = (*this)(i, j);
  1306. augmentedMatrix(i, j + size) = (i == j) ? static_cast<DATA_TYPE>(1) : static_cast<DATA_TYPE>(0);
  1307. }
  1308. }
  1309. // Apply gauss-joran elimination
  1310. for (U32 i = 0; i < size; i++)
  1311. {
  1312. U32 pivotRow = i;
  1313. DATA_TYPE pivotValue = std::abs(augmentedMatrix(i, i));
  1314. for (U32 k = i + 1; k < size; k++)
  1315. {
  1316. DATA_TYPE curValue = std::abs(augmentedMatrix(k, i));
  1317. if (curValue > pivotValue) {
  1318. pivotRow = k;
  1319. pivotValue = curValue;
  1320. }
  1321. }
  1322. // Swap if needed.
  1323. if (i != pivotRow)
  1324. {
  1325. for (U32 j = 0; j < 2 * size; j++)
  1326. {
  1327. DATA_TYPE temp = augmentedMatrix(i, j);
  1328. augmentedMatrix(i, j) = augmentedMatrix(pivotRow, j);
  1329. augmentedMatrix(pivotRow, j) = temp;
  1330. }
  1331. }
  1332. // Early out if pivot is 0, return identity matrix.
  1333. if (std::abs(augmentedMatrix(i, i)) < pivot_eps)
  1334. {
  1335. return false;
  1336. }
  1337. DATA_TYPE pivotVal = static_cast<DATA_TYPE>(1.0) / augmentedMatrix(i, i);
  1338. // scale the pivot
  1339. for (U32 j = 0; j < 2 * size; j++)
  1340. {
  1341. augmentedMatrix(i, j) *= pivotVal;
  1342. }
  1343. // Eliminate the current column in all other rows
  1344. for (U32 k = 0; k < size; k++)
  1345. {
  1346. if (k != i)
  1347. {
  1348. DATA_TYPE factor = augmentedMatrix(k, i);
  1349. for (U32 j = 0; j < 2 * size; j++)
  1350. {
  1351. augmentedMatrix(k, j) -= factor * augmentedMatrix(i, j);
  1352. }
  1353. }
  1354. }
  1355. }
  1356. for (U32 i = 0; i < size; i++)
  1357. {
  1358. for (U32 j = 0; j < size; j++)
  1359. {
  1360. (*this)(i, j) = augmentedMatrix(i, j + size);
  1361. }
  1362. }
  1363. #else
  1364. AssertFatal(rows == cols, "Can only perform inverse on square matrices.");
  1365. AssertFatal(rows >= 4 && cols >= 4, "Can only perform fullInverse on minimum 4x4 matrix");
  1366. Point4F a, b, c, d;
  1367. getRow(0, &a);
  1368. getRow(1, &b);
  1369. getRow(2, &c);
  1370. getRow(3, &d);
  1371. F32 det = a.x * b.y * c.z * d.w - a.x * b.y * c.w * d.z - a.x * c.y * b.z * d.w + a.x * c.y * b.w * d.z + a.x * d.y * b.z * c.w - a.x * d.y * b.w * c.z
  1372. - b.x * a.y * c.z * d.w + b.x * a.y * c.w * d.z + b.x * c.y * a.z * d.w - b.x * c.y * a.w * d.z - b.x * d.y * a.z * c.w + b.x * d.y * a.w * c.z
  1373. + c.x * a.y * b.z * d.w - c.x * a.y * b.w * d.z - c.x * b.y * a.z * d.w + c.x * b.y * a.w * d.z + c.x * d.y * a.z * b.w - c.x * d.y * a.w * b.z
  1374. - d.x * a.y * b.z * c.w + d.x * a.y * b.w * c.z + d.x * b.y * a.z * c.w - d.x * b.y * a.w * c.z - d.x * c.y * a.z * b.w + d.x * c.y * a.w * b.z;
  1375. if (mFabs(det) < 0.00001f)
  1376. return false;
  1377. Point4F aa, bb, cc, dd;
  1378. aa.x = b.y * c.z * d.w - b.y * c.w * d.z - c.y * b.z * d.w + c.y * b.w * d.z + d.y * b.z * c.w - d.y * b.w * c.z;
  1379. aa.y = -a.y * c.z * d.w + a.y * c.w * d.z + c.y * a.z * d.w - c.y * a.w * d.z - d.y * a.z * c.w + d.y * a.w * c.z;
  1380. aa.z = a.y * b.z * d.w - a.y * b.w * d.z - b.y * a.z * d.w + b.y * a.w * d.z + d.y * a.z * b.w - d.y * a.w * b.z;
  1381. aa.w = -a.y * b.z * c.w + a.y * b.w * c.z + b.y * a.z * c.w - b.y * a.w * c.z - c.y * a.z * b.w + c.y * a.w * b.z;
  1382. bb.x = -b.x * c.z * d.w + b.x * c.w * d.z + c.x * b.z * d.w - c.x * b.w * d.z - d.x * b.z * c.w + d.x * b.w * c.z;
  1383. bb.y = a.x * c.z * d.w - a.x * c.w * d.z - c.x * a.z * d.w + c.x * a.w * d.z + d.x * a.z * c.w - d.x * a.w * c.z;
  1384. bb.z = -a.x * b.z * d.w + a.x * b.w * d.z + b.x * a.z * d.w - b.x * a.w * d.z - d.x * a.z * b.w + d.x * a.w * b.z;
  1385. bb.w = a.x * b.z * c.w - a.x * b.w * c.z - b.x * a.z * c.w + b.x * a.w * c.z + c.x * a.z * b.w - c.x * a.w * b.z;
  1386. cc.x = b.x * c.y * d.w - b.x * c.w * d.y - c.x * b.y * d.w + c.x * b.w * d.y + d.x * b.y * c.w - d.x * b.w * c.y;
  1387. cc.y = -a.x * c.y * d.w + a.x * c.w * d.y + c.x * a.y * d.w - c.x * a.w * d.y - d.x * a.y * c.w + d.x * a.w * c.y;
  1388. cc.z = a.x * b.y * d.w - a.x * b.w * d.y - b.x * a.y * d.w + b.x * a.w * d.y + d.x * a.y * b.w - d.x * a.w * b.y;
  1389. cc.w = -a.x * b.y * c.w + a.x * b.w * c.y + b.x * a.y * c.w - b.x * a.w * c.y - c.x * a.y * b.w + c.x * a.w * b.y;
  1390. dd.x = -b.x * c.y * d.z + b.x * c.z * d.y + c.x * b.y * d.z - c.x * b.z * d.y - d.x * b.y * c.z + d.x * b.z * c.y;
  1391. dd.y = a.x * c.y * d.z - a.x * c.z * d.y - c.x * a.y * d.z + c.x * a.z * d.y + d.x * a.y * c.z - d.x * a.z * c.y;
  1392. dd.z = -a.x * b.y * d.z + a.x * b.z * d.y + b.x * a.y * d.z - b.x * a.z * d.y - d.x * a.y * b.z + d.x * a.z * b.y;
  1393. dd.w = a.x * b.y * c.z - a.x * b.z * c.y - b.x * a.y * c.z + b.x * a.z * c.y + c.x * a.y * b.z - c.x * a.z * b.y;
  1394. setRow(0, aa);
  1395. setRow(1, bb);
  1396. setRow(2, cc);
  1397. setRow(3, dd);
  1398. mul(1.0f / det);
  1399. #endif
  1400. return true;
  1401. }
  1402. template<typename DATA_TYPE, U32 rows, U32 cols>
  1403. inline void Matrix<DATA_TYPE, rows, cols>::invert()
  1404. {
  1405. (*this) = inverse();
  1406. }
  1407. template<typename DATA_TYPE, U32 rows, U32 cols>
  1408. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setCrossProduct(const Point3F& p)
  1409. {
  1410. AssertFatal(rows == 4 && cols == 4, "Cross product only supported on 4x4 for now");
  1411. (*this)(0, 0) = 0;
  1412. (*this)(0, 1) = -p.z;
  1413. (*this)(0, 2) = p.y;
  1414. (*this)(0, 3) = 0;
  1415. (*this)(1, 0) = p.z;
  1416. (*this)(1, 1) = 0;
  1417. (*this)(1, 2) = -p.x;
  1418. (*this)(1, 3) = 0;
  1419. (*this)(2, 0) = -p.y;
  1420. (*this)(2, 1) = p.x;
  1421. (*this)(2, 2) = 0;
  1422. (*this)(2, 3) = 0;
  1423. (*this)(3, 0) = 0;
  1424. (*this)(3, 1) = 0;
  1425. (*this)(3, 2) = 0;
  1426. (*this)(3, 3) = 1;
  1427. return (*this);
  1428. }
  1429. template<typename DATA_TYPE, U32 rows, U32 cols>
  1430. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::setTensorProduct(const Point3F& p, const Point3F& q)
  1431. {
  1432. AssertFatal(rows == 4 && cols == 4, "Tensor product only supported on 4x4 for now");
  1433. (*this)(0, 0) = p.x * q.x;
  1434. (*this)(0, 1) = p.x * q.y;
  1435. (*this)(0, 2) = p.x * q.z;
  1436. (*this)(0, 3) = 0;
  1437. (*this)(1, 0) = p.y * q.x;
  1438. (*this)(1, 1) = p.y * q.y;
  1439. (*this)(1, 2) = p.y * q.z;
  1440. (*this)(1, 3) = 0;
  1441. (*this)(2, 0) = p.z * q.x;
  1442. (*this)(2, 1) = p.z * q.y;
  1443. (*this)(2, 2) = p.z * q.z;
  1444. (*this)(2, 3) = 0;
  1445. (*this)(3, 0) = 0;
  1446. (*this)(3, 1) = 0;
  1447. (*this)(3, 2) = 0;
  1448. (*this)(3, 3) = 1;
  1449. return (*this);
  1450. }
  1451. template<typename DATA_TYPE, U32 rows, U32 cols>
  1452. inline void Matrix<DATA_TYPE, rows, cols>::mul(Box3F& box) const
  1453. {
  1454. AssertFatal(rows == 4 && cols == 4, "Multiplying Box3F with matrix requires 4x4");
  1455. // Extract the min and max extents
  1456. const Point3F& originalMin = box.minExtents;
  1457. const Point3F& originalMax = box.maxExtents;
  1458. // Array to store transformed corners
  1459. Point3F transformedCorners[8];
  1460. // Compute all 8 corners of the box
  1461. Point3F corners[8] = {
  1462. {originalMin.x, originalMin.y, originalMin.z},
  1463. {originalMax.x, originalMin.y, originalMin.z},
  1464. {originalMin.x, originalMax.y, originalMin.z},
  1465. {originalMax.x, originalMax.y, originalMin.z},
  1466. {originalMin.x, originalMin.y, originalMax.z},
  1467. {originalMax.x, originalMin.y, originalMax.z},
  1468. {originalMin.x, originalMax.y, originalMax.z},
  1469. {originalMax.x, originalMax.y, originalMax.z}
  1470. };
  1471. // Transform each corner
  1472. for (U32 i = 0; i < 8; ++i)
  1473. {
  1474. const Point3F& corner = corners[i];
  1475. transformedCorners[i].x = (*this)(0, 0) * corner.x + (*this)(0, 1) * corner.y + (*this)(0, 2) * corner.z + (*this)(0, 3);
  1476. transformedCorners[i].y = (*this)(1, 0) * corner.x + (*this)(1, 1) * corner.y + (*this)(1, 2) * corner.z + (*this)(1, 3);
  1477. transformedCorners[i].z = (*this)(2, 0) * corner.x + (*this)(2, 1) * corner.y + (*this)(2, 2) * corner.z + (*this)(2, 3);
  1478. }
  1479. // Initialize min and max extents to the transformed values
  1480. Point3F newMin = transformedCorners[0];
  1481. Point3F newMax = transformedCorners[0];
  1482. // Compute the new min and max extents from the transformed corners
  1483. for (U32 i = 1; i < 8; ++i)
  1484. {
  1485. const Point3F& corner = transformedCorners[i];
  1486. if (corner.x < newMin.x) newMin.x = corner.x;
  1487. if (corner.y < newMin.y) newMin.y = corner.y;
  1488. if (corner.z < newMin.z) newMin.z = corner.z;
  1489. if (corner.x > newMax.x) newMax.x = corner.x;
  1490. if (corner.y > newMax.y) newMax.y = corner.y;
  1491. if (corner.z > newMax.z) newMax.z = corner.z;
  1492. }
  1493. // Update the box with the new min and max extents
  1494. box.minExtents = newMin;
  1495. box.maxExtents = newMax;
  1496. }
  1497. template<typename DATA_TYPE, U32 rows, U32 cols>
  1498. inline bool Matrix<DATA_TYPE, rows, cols>::isAffine() const
  1499. {
  1500. if ((*this)(3, 3) != 1.0f)
  1501. {
  1502. return false;
  1503. }
  1504. for (U32 col = 0; col < cols - 1; ++col)
  1505. {
  1506. if ((*this)(3, col) != 0.0f)
  1507. {
  1508. return false;
  1509. }
  1510. }
  1511. Point3F one, two, three;
  1512. getColumn(0, &one);
  1513. getColumn(1, &two);
  1514. getColumn(2, &three);
  1515. // check columns
  1516. {
  1517. if (mDot(one, two) > 0.0001f ||
  1518. mDot(one, three) > 0.0001f ||
  1519. mDot(two, three) > 0.0001f)
  1520. return false;
  1521. if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
  1522. mFabs(1.0f - two.lenSquared()) > 0.0001f ||
  1523. mFabs(1.0f - three.lenSquared()) > 0.0001f)
  1524. return false;
  1525. }
  1526. getRow(0, &one);
  1527. getRow(1, &two);
  1528. getRow(2, &three);
  1529. // check rows
  1530. {
  1531. if (mDot(one, two) > 0.0001f ||
  1532. mDot(one, three) > 0.0001f ||
  1533. mDot(two, three) > 0.0001f)
  1534. return false;
  1535. if (mFabs(1.0f - one.lenSquared()) > 0.0001f ||
  1536. mFabs(1.0f - two.lenSquared()) > 0.0001f ||
  1537. mFabs(1.0f - three.lenSquared()) > 0.0001f)
  1538. return false;
  1539. }
  1540. return true;
  1541. }
  1542. template<typename DATA_TYPE, U32 rows, U32 cols>
  1543. inline Matrix<DATA_TYPE, rows, cols>& Matrix<DATA_TYPE, rows, cols>::affineInverse()
  1544. {
  1545. AssertFatal(rows >= 4 && cols >= 4, "affineInverse requires at least 4x4");
  1546. Matrix<DATA_TYPE, rows, cols> temp = *this;
  1547. // Transpose rotation part
  1548. (*this)(0, 1) = temp(1, 0);
  1549. (*this)(0, 2) = temp(2, 0);
  1550. (*this)(1, 0) = temp(0, 1);
  1551. (*this)(1, 2) = temp(2, 1);
  1552. (*this)(2, 0) = temp(0, 2);
  1553. (*this)(2, 1) = temp(1, 2);
  1554. // Adjust translation part
  1555. (*this)(0, 3) = -(temp(0, 0) * temp(0, 3) + temp(1, 0) * temp(1, 3) + temp(2, 0) * temp(2, 3));
  1556. (*this)(1, 3) = -(temp(0, 1) * temp(0, 3) + temp(1, 1) * temp(1, 3) + temp(2, 1) * temp(2, 3));
  1557. (*this)(2, 3) = -(temp(0, 2) * temp(0, 3) + temp(1, 2) * temp(1, 3) + temp(2, 2) * temp(2, 3));
  1558. return *this;
  1559. }
  1560. template<typename DATA_TYPE, U32 rows, U32 cols>
  1561. inline EulerF Matrix<DATA_TYPE, rows, cols>::toEuler() const
  1562. {
  1563. AssertFatal(rows >= 3 && cols >= 3, "Euler rotations require at least a 3x3 matrix.");
  1564. // like all others assume float for now.
  1565. EulerF r;
  1566. r.x = mAsin(mClampF((*this)(1,2), -1.0, 1.0));
  1567. if (mCos(r.x) != 0.0f)
  1568. {
  1569. r.y = mAtan2(-(*this)(0, 2), (*this)(2, 2)); // yaw
  1570. r.z = mAtan2(-(*this)(1, 0), (*this)(1, 1)); // roll
  1571. }
  1572. else
  1573. {
  1574. r.y = 0.0f;
  1575. r.z = mAtan2((*this)(0, 1), (*this)(0, 0)); // this rolls when pitch is +90 degrees
  1576. }
  1577. return r;
  1578. }
  1579. template<typename DATA_TYPE, U32 rows, U32 cols>
  1580. inline void Matrix<DATA_TYPE, rows, cols>::dumpMatrix(const char* caption) const
  1581. {
  1582. U32 size = (caption == NULL) ? 0 : dStrlen(caption);
  1583. FrameTemp<char> spacer(size + 1);
  1584. char* spacerRef = spacer;
  1585. // is_floating_point should return true for floats and doubles.
  1586. const char* formatSpec = std::is_floating_point_v<DATA_TYPE> ? " %-8.4f" : " %d";
  1587. dMemset(spacerRef, ' ', size);
  1588. // null terminate.
  1589. spacerRef[size] = '\0';
  1590. /*Con::printf("%s = | %-8.4f %-8.4f %-8.4f %-8.4f |", caption, m[idx(0, 0)], m[idx(0, 1)], m[idx(0, 2)], m[idx(0, 3)]);
  1591. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(1, 0)], m[idx(1, 1)], m[idx(1, 2)], m[idx(1, 3)]);
  1592. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(2, 0)], m[idx(2, 1)], m[idx(2, 2)], m[idx(2, 3)]);
  1593. Con::printf("%s | %-8.4f %-8.4f %-8.4f %-8.4f |", spacerRef, m[idx(3, 0)], m[idx(3, 1)], m[idx(3, 2)], m[idx(3, 3)]);*/
  1594. StringBuilder str;
  1595. str.format("%s = |", caption);
  1596. for (U32 i = 0; i < rows; i++)
  1597. {
  1598. if (i > 0)
  1599. {
  1600. str.append(spacerRef);
  1601. }
  1602. for (U32 j = 0; j < cols; j++)
  1603. {
  1604. str.format(formatSpec, (*this)(i, j));
  1605. }
  1606. str.append(" |\n");
  1607. }
  1608. Con::printf("%s", str.end().c_str());
  1609. }
  1610. //------------------------------------
  1611. // Non-member methods
  1612. //------------------------------------
  1613. inline void mTransformPlane(
  1614. const MatrixF& mat,
  1615. const Point3F& scale,
  1616. const PlaneF& plane,
  1617. PlaneF* result
  1618. ) {
  1619. // Create the inverse scale matrix
  1620. MatrixF invScale(true);
  1621. invScale(0, 0) = 1.0f / scale.x;
  1622. invScale(1, 1) = 1.0f / scale.y;
  1623. invScale(2, 2) = 1.0f / scale.z;
  1624. const Point3F shear(mat(0, 3), mat(1, 3), mat(2, 3));
  1625. const Point3F row0 = mat.getRow3F(0);
  1626. const Point3F row1 = mat.getRow3F(1);
  1627. const Point3F row2 = mat.getRow3F(2);
  1628. const F32 A = -mDot(row0, shear);
  1629. const F32 B = -mDot(row1, shear);
  1630. const F32 C = -mDot(row2, shear);
  1631. // Compute the inverse transpose of the matrix
  1632. MatrixF invTrMatrix(true);
  1633. invTrMatrix(0, 0) = mat(0, 0);
  1634. invTrMatrix(0, 1) = mat(0, 1);
  1635. invTrMatrix(0, 2) = mat(0, 2);
  1636. invTrMatrix(1, 0) = mat(1, 0);
  1637. invTrMatrix(1, 1) = mat(1, 1);
  1638. invTrMatrix(1, 2) = mat(1, 2);
  1639. invTrMatrix(2, 0) = mat(2, 0);
  1640. invTrMatrix(2, 1) = mat(2, 1);
  1641. invTrMatrix(2, 2) = mat(2, 2);
  1642. invTrMatrix(3, 0) = A;
  1643. invTrMatrix(3, 1) = B;
  1644. invTrMatrix(3, 2) = C;
  1645. invTrMatrix.mul(invScale);
  1646. // Transform the plane normal
  1647. Point3F norm(plane.x, plane.y, plane.z);
  1648. invTrMatrix.mulP(norm);
  1649. norm.normalize();
  1650. // Transform the plane point
  1651. Point3F point = norm * -plane.d;
  1652. MatrixF temp = mat;
  1653. point.x *= scale.x;
  1654. point.y *= scale.y;
  1655. point.z *= scale.z;
  1656. temp.mulP(point);
  1657. // Recompute the plane distance
  1658. PlaneF resultPlane(point, norm);
  1659. result->x = resultPlane.x;
  1660. result->y = resultPlane.y;
  1661. result->z = resultPlane.z;
  1662. result->d = resultPlane.d;
  1663. }
  1664. //--------------------------------------------
  1665. // INLINE FUNCTIONS END
  1666. //--------------------------------------------
  1667. typedef Matrix<F32, 4, 4> MatrixF;
  1668. class MatrixTemplateExport
  1669. {
  1670. public:
  1671. template <typename T, U32 rows, U32 cols>
  1672. static EngineFieldTable::Field getMatrixField();
  1673. };
  1674. template<typename T, U32 rows, U32 cols>
  1675. inline EngineFieldTable::Field MatrixTemplateExport::getMatrixField()
  1676. {
  1677. typedef Matrix<T, rows, cols> ThisType;
  1678. return _FIELD_AS(T, data, data, rows * cols, "");
  1679. }
  1680. #endif // !USE_TEMPLATE_MATRIX
  1681. #endif //_MMATRIX_H_