123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366 |
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /*
- * OPCODE - Optimized Collision Detection
- * Copyright (C) 2001 Pierre Terdiman
- * Homepage: http://www.codercorner.com/Opcode.htm
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Contains code for box pruning.
- * \file IceBoxPruning.cpp
- * \author Pierre Terdiman
- * \date January, 29, 2000
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /*
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- You could use a complex sweep-and-prune as implemented in I-Collide.
- You could use a complex hashing scheme as implemented in V-Clip or recently in ODE it seems.
- You could use a "Recursive Dimensional Clustering" algorithm as implemented in GPG2.
- Or you could use this.
- Faster ? I don't know. Probably not. It would be a shame. But who knows ?
- Easier ? Definitely. Enjoy the sheer simplicity.
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- #include "Opcode.h"
- using namespace Opcode;
- inline_ void FindRunningIndex(udword& index, float* array, udword* sorted, int last, float max)
- {
- int First=index;
- while(First<=last)
- {
- index = (First+last)>>1;
- if(max>array[sorted[index]]) First = index+1;
- else last = index-1;
- }
- }
- // ### could be log(n) !
- // and maybe use cmp integers
- // InsertionSort has better coherence, RadixSort is better for one-shot queries.
- #define PRUNING_SORTER RadixSort
- //#define PRUNING_SORTER InsertionSort
- // Static for coherence
- static PRUNING_SORTER* gCompletePruningSorter = null;
- static PRUNING_SORTER* gBipartitePruningSorter0 = null;
- static PRUNING_SORTER* gBipartitePruningSorter1 = null;
- inline_ PRUNING_SORTER* GetCompletePruningSorter()
- {
- if(!gCompletePruningSorter) gCompletePruningSorter = new PRUNING_SORTER;
- return gCompletePruningSorter;
- }
- inline_ PRUNING_SORTER* GetBipartitePruningSorter0()
- {
- if(!gBipartitePruningSorter0) gBipartitePruningSorter0 = new PRUNING_SORTER;
- return gBipartitePruningSorter0;
- }
- inline_ PRUNING_SORTER* GetBipartitePruningSorter1()
- {
- if(!gBipartitePruningSorter1) gBipartitePruningSorter1 = new PRUNING_SORTER;
- return gBipartitePruningSorter1;
- }
- void ReleasePruningSorters()
- {
- DELETESINGLE(gBipartitePruningSorter1);
- DELETESINGLE(gBipartitePruningSorter0);
- DELETESINGLE(gCompletePruningSorter);
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set.
- * \param nb0 [in] number of boxes in the first set
- * \param array0 [in] array of boxes for the first set
- * \param nb1 [in] number of boxes in the second set
- * \param array1 [in] array of boxes for the second set
- * \param pairs [out] array of overlapping pairs
- * \param axes [in] projection order (0,2,1 is often best)
- * \return true if success.
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool Opcode::BipartiteBoxPruning(udword nb0, const AABB** array0, udword nb1, const AABB** array1, Pairs& pairs, const Axes& axes)
- {
- // Checkings
- if(!nb0 || !array0 || !nb1 || !array1) return false;
- // Catch axes
- udword Axis0 = axes.mAxis0;
- udword Axis1 = axes.mAxis1;
- udword Axis2 = axes.mAxis2;
- // Allocate some temporary data
- float* MinPosList0 = new float[nb0];
- float* MinPosList1 = new float[nb1];
- // 1) Build main lists using the primary axis
- for(udword i=0;i<nb0;i++) MinPosList0[i] = array0[i]->GetMin(Axis0);
- for(udword i=0;i<nb1;i++) MinPosList1[i] = array1[i]->GetMin(Axis0);
- // 2) Sort the lists
- PRUNING_SORTER* RS0 = GetBipartitePruningSorter0();
- PRUNING_SORTER* RS1 = GetBipartitePruningSorter1();
- const udword* Sorted0 = RS0->Sort(MinPosList0, nb0).GetRanks();
- const udword* Sorted1 = RS1->Sort(MinPosList1, nb1).GetRanks();
- // 3) Prune the lists
- udword Index0, Index1;
- const udword* const LastSorted0 = &Sorted0[nb0];
- const udword* const LastSorted1 = &Sorted1[nb1];
- const udword* RunningAddress0 = Sorted0;
- const udword* RunningAddress1 = Sorted1;
- while(RunningAddress1<LastSorted1 && Sorted0<LastSorted0)
- {
- Index0 = *Sorted0++;
- while(RunningAddress1<LastSorted1 && MinPosList1[*RunningAddress1]<MinPosList0[Index0]) RunningAddress1++;
- const udword* RunningAddress2_1 = RunningAddress1;
- while(RunningAddress2_1<LastSorted1 && MinPosList1[Index1 = *RunningAddress2_1++]<=array0[Index0]->GetMax(Axis0))
- {
- if(array0[Index0]->Intersect(*array1[Index1], Axis1))
- {
- if(array0[Index0]->Intersect(*array1[Index1], Axis2))
- {
- pairs.AddPair(Index0, Index1);
- }
- }
- }
- }
- ////
- while(RunningAddress0<LastSorted0 && Sorted1<LastSorted1)
- {
- Index0 = *Sorted1++;
- while(RunningAddress0<LastSorted0 && MinPosList0[*RunningAddress0]<=MinPosList1[Index0]) RunningAddress0++;
- const udword* RunningAddress2_0 = RunningAddress0;
- while(RunningAddress2_0<LastSorted0 && MinPosList0[Index1 = *RunningAddress2_0++]<=array1[Index0]->GetMax(Axis0))
- {
- if(array0[Index1]->Intersect(*array1[Index0], Axis1))
- {
- if(array0[Index1]->Intersect(*array1[Index0], Axis2))
- {
- pairs.AddPair(Index1, Index0);
- }
- }
- }
- }
- DELETEARRAY(MinPosList1);
- DELETEARRAY(MinPosList0);
- return true;
- }
- #define ORIGINAL_VERSION
- //#define JOAKIM
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set.
- * \param nb [in] number of boxes
- * \param array [in] array of boxes
- * \param pairs [out] array of overlapping pairs
- * \param axes [in] projection order (0,2,1 is often best)
- * \return true if success.
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool Opcode::CompleteBoxPruning(udword nb, const AABB** array, Pairs& pairs, const Axes& axes)
- {
- // Checkings
- if(!nb || !array) return false;
- // Catch axes
- udword Axis0 = axes.mAxis0;
- udword Axis1 = axes.mAxis1;
- udword Axis2 = axes.mAxis2;
- #ifdef ORIGINAL_VERSION
- // Allocate some temporary data
- // float* PosList = new float[nb];
- float* PosList = new float[nb+1];
- // 1) Build main list using the primary axis
- for(udword i=0;i<nb;i++) PosList[i] = array[i]->GetMin(Axis0);
- PosList[nb++] = MAX_FLOAT;
- // 2) Sort the list
- PRUNING_SORTER* RS = GetCompletePruningSorter();
- const udword* Sorted = RS->Sort(PosList, nb).GetRanks();
- // 3) Prune the list
- const udword* const LastSorted = &Sorted[nb];
- const udword* RunningAddress = Sorted;
- udword Index0, Index1;
- while(RunningAddress<LastSorted && Sorted<LastSorted)
- {
- Index0 = *Sorted++;
- // while(RunningAddress<LastSorted && PosList[*RunningAddress++]<PosList[Index0]);
- while(PosList[*RunningAddress++]<PosList[Index0]);
- if(RunningAddress<LastSorted)
- {
- const udword* RunningAddress2 = RunningAddress;
- // while(RunningAddress2<LastSorted && PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0))
- while(PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0))
- {
- // if(Index0!=Index1)
- // {
- if(array[Index0]->Intersect(*array[Index1], Axis1))
- {
- if(array[Index0]->Intersect(*array[Index1], Axis2))
- {
- pairs.AddPair(Index0, Index1);
- }
- }
- // }
- }
- }
- }
- DELETEARRAY(PosList);
- #endif
- #ifdef JOAKIM
- // Allocate some temporary data
- // float* PosList = new float[nb];
- float* MinList = new float[nb+1];
- // 1) Build main list using the primary axis
- for(udword i=0;i<nb;i++) MinList[i] = array[i]->GetMin(Axis0);
- MinList[nb] = MAX_FLOAT;
- // 2) Sort the list
- PRUNING_SORTER* RS = GetCompletePruningSorter();
- udword* Sorted = RS->Sort(MinList, nb+1).GetRanks();
- // 3) Prune the list
- // const udword* const LastSorted = &Sorted[nb];
- // const udword* const LastSorted = &Sorted[nb-1];
- const udword* RunningAddress = Sorted;
- udword Index0, Index1;
- // while(RunningAddress<LastSorted && Sorted<LastSorted)
- // while(RunningAddress<LastSorted)
- while(RunningAddress<&Sorted[nb])
- // while(Sorted<LastSorted)
- {
- // Index0 = *Sorted++;
- Index0 = *RunningAddress++;
- // while(RunningAddress<LastSorted && PosList[*RunningAddress++]<PosList[Index0]);
- // while(PosList[*RunningAddress++]<PosList[Index0]);
- //RunningAddress = Sorted;
- // if(RunningAddress<LastSorted)
- {
- const udword* RunningAddress2 = RunningAddress;
- // while(RunningAddress2<LastSorted && PosList[Index1 = *RunningAddress2++]<=array[Index0]->GetMax(Axis0))
- // float CurrentMin = array[Index0]->GetMin(Axis0);
- float CurrentMax = array[Index0]->GetMax(Axis0);
- while(MinList[Index1 = *RunningAddress2] <= CurrentMax)
- // while(PosList[Index1 = *RunningAddress] <= CurrentMax)
- {
- // if(Index0!=Index1)
- // {
- if(array[Index0]->Intersect(*array[Index1], Axis1))
- {
- if(array[Index0]->Intersect(*array[Index1], Axis2))
- {
- pairs.AddPair(Index0, Index1);
- }
- }
- // }
- RunningAddress2++;
- // RunningAddress++;
- }
- }
- }
- DELETEARRAY(MinList);
- #endif
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // Brute-force versions are kept:
- // - to check the optimized versions return the correct list of intersections
- // - to check the speed of the optimized code against the brute-force one
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Brute-force bipartite box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to a different set.
- * \param nb0 [in] number of boxes in the first set
- * \param array0 [in] array of boxes for the first set
- * \param nb1 [in] number of boxes in the second set
- * \param array1 [in] array of boxes for the second set
- * \param pairs [out] array of overlapping pairs
- * \return true if success.
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool Opcode::BruteForceBipartiteBoxTest(udword nb0, const AABB** array0, udword nb1, const AABB** array1, Pairs& pairs)
- {
- // Checkings
- if(!nb0 || !array0 || !nb1 || !array1) return false;
- // Brute-force nb0*nb1 overlap tests
- for(udword i=0;i<nb0;i++)
- {
- for(udword j=0;j<nb1;j++)
- {
- if(array0[i]->Intersect(*array1[j])) pairs.AddPair(i, j);
- }
- }
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Complete box pruning. Returns a list of overlapping pairs of boxes, each box of the pair belongs to the same set.
- * \param nb [in] number of boxes
- * \param array [in] array of boxes
- * \param pairs [out] array of overlapping pairs
- * \return true if success.
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool Opcode::BruteForceCompleteBoxTest(udword nb, const AABB** array, Pairs& pairs)
- {
- // Checkings
- if(!nb || !array) return false;
- // Brute-force n(n-1)/2 overlap tests
- for(udword i=0;i<nb;i++)
- {
- for(udword j=i+1;j<nb;j++)
- {
- if(array[i]->Intersect(*array[j])) pairs.AddPair(i, j);
- }
- }
- return true;
- }
|