reverb.cpp 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833
  1. /**
  2. * Ambisonic reverb engine for the OpenAL cross platform audio library
  3. * Copyright (C) 2008-2017 by Chris Robinson and Christopher Fitzgerald.
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Library General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Library General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Library General Public
  15. * License along with this library; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. * Or go to http://www.gnu.org/copyleft/lgpl.html
  19. */
  20. #include "config.h"
  21. #include <algorithm>
  22. #include <array>
  23. #include <cassert>
  24. #include <cmath>
  25. #include <cstdint>
  26. #include <cstdio>
  27. #include <functional>
  28. #include <numeric>
  29. #include "alc/effects/base.h"
  30. #include "alnumbers.h"
  31. #include "alnumeric.h"
  32. #include "alspan.h"
  33. #include "core/ambidefs.h"
  34. #include "core/bufferline.h"
  35. #include "core/context.h"
  36. #include "core/cubic_tables.h"
  37. #include "core/device.h"
  38. #include "core/effects/base.h"
  39. #include "core/effectslot.h"
  40. #include "core/filters/biquad.h"
  41. #include "core/filters/splitter.h"
  42. #include "core/mixer.h"
  43. #include "core/mixer/defs.h"
  44. #include "intrusive_ptr.h"
  45. #include "opthelpers.h"
  46. #include "vector.h"
  47. struct BufferStorage;
  48. namespace {
  49. using uint = unsigned int;
  50. constexpr float MaxModulationTime{4.0f};
  51. constexpr float DefaultModulationTime{0.25f};
  52. #define MOD_FRACBITS 24
  53. #define MOD_FRACONE (1<<MOD_FRACBITS)
  54. #define MOD_FRACMASK (MOD_FRACONE-1)
  55. /* Max samples per process iteration. Used to limit the size needed for
  56. * temporary buffers. Must be a multiple of 4 for SIMD alignment.
  57. */
  58. constexpr size_t MAX_UPDATE_SAMPLES{256};
  59. /* The number of spatialized lines or channels to process. Four channels allows
  60. * for a 3D A-Format response. NOTE: This can't be changed without taking care
  61. * of the conversion matrices, and a few places where the length arrays are
  62. * assumed to have 4 elements.
  63. */
  64. constexpr size_t NUM_LINES{4u};
  65. /* This coefficient is used to define the maximum frequency range controlled by
  66. * the modulation depth. The current value of 0.05 will allow it to swing from
  67. * 0.95x to 1.05x. This value must be below 1. At 1 it will cause the sampler
  68. * to stall on the downswing, and above 1 it will cause it to sample backwards.
  69. * The value 0.05 seems be nearest to Creative hardware behavior.
  70. */
  71. constexpr float MODULATION_DEPTH_COEFF{0.05f};
  72. /* The B-Format to (W-normalized) A-Format conversion matrix. This produces a
  73. * tetrahedral array of discrete signals (boosted by a factor of sqrt(3), to
  74. * reduce the error introduced in the conversion).
  75. */
  76. alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> B2A{{
  77. /* W Y Z X */
  78. {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* A0 */
  79. {{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* A1 */
  80. {{ 0.5f, 0.5f, -0.5f, -0.5f }}, /* A2 */
  81. {{ 0.5f, -0.5f, 0.5f, -0.5f }} /* A3 */
  82. }};
  83. /* Converts (W-normalized) A-Format to B-Format for early reflections (scaled
  84. * by 1/sqrt(3) to compensate for the boost in the B2A matrix).
  85. */
  86. alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> EarlyA2B{{
  87. /* A0 A1 A2 A3 */
  88. {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */
  89. {{ 0.5f, -0.5f, 0.5f, -0.5f }}, /* Y */
  90. {{ 0.5f, -0.5f, -0.5f, 0.5f }}, /* Z */
  91. {{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */
  92. }};
  93. /* Converts (W-normalized) A-Format to B-Format for late reverb (scaled
  94. * by 1/sqrt(3) to compensate for the boost in the B2A matrix). The response
  95. * is rotated around Z (ambisonic X) so that the front lines are placed
  96. * horizontally in front, and the rear lines are placed vertically in back.
  97. */
  98. constexpr auto InvSqrt2 = static_cast<float>(1.0/al::numbers::sqrt2);
  99. alignas(16) constexpr std::array<std::array<float,NUM_LINES>,NUM_LINES> LateA2B{{
  100. /* A0 A1 A2 A3 */
  101. {{ 0.5f, 0.5f, 0.5f, 0.5f }}, /* W */
  102. {{ InvSqrt2, -InvSqrt2, 0.0f, 0.0f }}, /* Y */
  103. {{ 0.0f, 0.0f, -InvSqrt2, InvSqrt2 }}, /* Z */
  104. {{ 0.5f, 0.5f, -0.5f, -0.5f }} /* X */
  105. }};
  106. /* The all-pass and delay lines have a variable length dependent on the
  107. * effect's density parameter, which helps alter the perceived environment
  108. * size. The size-to-density conversion is a cubed scale:
  109. *
  110. * density = min(1.0, pow(size, 3.0) / DENSITY_SCALE);
  111. *
  112. * The line lengths scale linearly with room size, so the inverse density
  113. * conversion is needed, taking the cube root of the re-scaled density to
  114. * calculate the line length multiplier:
  115. *
  116. * length_mult = max(5.0, cbrt(density*DENSITY_SCALE));
  117. *
  118. * The density scale below will result in a max line multiplier of 50, for an
  119. * effective size range of 5m to 50m.
  120. */
  121. constexpr float DENSITY_SCALE{125000.0f};
  122. /* All delay line lengths are specified in seconds.
  123. *
  124. * To approximate early reflections, we break them up into primary (those
  125. * arriving from the same direction as the source) and secondary (those
  126. * arriving from the opposite direction).
  127. *
  128. * The early taps decorrelate the 4-channel signal to approximate an average
  129. * room response for the primary reflections after the initial early delay.
  130. *
  131. * Given an average room dimension (d_a) and the speed of sound (c) we can
  132. * calculate the average reflection delay (r_a) regardless of listener and
  133. * source positions as:
  134. *
  135. * r_a = d_a / c
  136. * c = 343.3
  137. *
  138. * This can extended to finding the average difference (r_d) between the
  139. * maximum (r_1) and minimum (r_0) reflection delays:
  140. *
  141. * r_0 = 2 / 3 r_a
  142. * = r_a - r_d / 2
  143. * = r_d
  144. * r_1 = 4 / 3 r_a
  145. * = r_a + r_d / 2
  146. * = 2 r_d
  147. * r_d = 2 / 3 r_a
  148. * = r_1 - r_0
  149. *
  150. * As can be determined by integrating the 1D model with a source (s) and
  151. * listener (l) positioned across the dimension of length (d_a):
  152. *
  153. * r_d = int_(l=0)^d_a (int_(s=0)^d_a |2 d_a - 2 (l + s)| ds) dl / c
  154. *
  155. * The initial taps (T_(i=0)^N) are then specified by taking a power series
  156. * that ranges between r_0 and half of r_1 less r_0:
  157. *
  158. * R_i = 2^(i / (2 N - 1)) r_d
  159. * = r_0 + (2^(i / (2 N - 1)) - 1) r_d
  160. * = r_0 + T_i
  161. * T_i = R_i - r_0
  162. * = (2^(i / (2 N - 1)) - 1) r_d
  163. *
  164. * Assuming an average of 1m, we get the following taps:
  165. */
  166. constexpr std::array<float,NUM_LINES> EARLY_TAP_LENGTHS{{
  167. 0.0000000e+0f, 2.0213520e-4f, 4.2531060e-4f, 6.7171600e-4f
  168. }};
  169. /* The early all-pass filter lengths are based on the early tap lengths:
  170. *
  171. * A_i = R_i / a
  172. *
  173. * Where a is the approximate maximum all-pass cycle limit (20).
  174. */
  175. constexpr std::array<float,NUM_LINES> EARLY_ALLPASS_LENGTHS{{
  176. 9.7096800e-5f, 1.0720356e-4f, 1.1836234e-4f, 1.3068260e-4f
  177. }};
  178. /* The early delay lines are used to transform the primary reflections into
  179. * the secondary reflections. The A-format is arranged in such a way that
  180. * the channels/lines are spatially opposite:
  181. *
  182. * C_i is opposite C_(N-i-1)
  183. *
  184. * The delays of the two opposing reflections (R_i and O_i) from a source
  185. * anywhere along a particular dimension always sum to twice its full delay:
  186. *
  187. * 2 r_a = R_i + O_i
  188. *
  189. * With that in mind we can determine the delay between the two reflections
  190. * and thus specify our early line lengths (L_(i=0)^N) using:
  191. *
  192. * O_i = 2 r_a - R_(N-i-1)
  193. * L_i = O_i - R_(N-i-1)
  194. * = 2 (r_a - R_(N-i-1))
  195. * = 2 (r_a - T_(N-i-1) - r_0)
  196. * = 2 r_a (1 - (2 / 3) 2^((N - i - 1) / (2 N - 1)))
  197. *
  198. * Using an average dimension of 1m, we get:
  199. */
  200. constexpr std::array<float,NUM_LINES> EARLY_LINE_LENGTHS{{
  201. 0.0000000e+0f, 4.9281100e-4f, 9.3916180e-4f, 1.3434322e-3f
  202. }};
  203. /* The late all-pass filter lengths are based on the late line lengths:
  204. *
  205. * A_i = (5 / 3) L_i / r_1
  206. */
  207. constexpr std::array<float,NUM_LINES> LATE_ALLPASS_LENGTHS{{
  208. 1.6182800e-4f, 2.0389060e-4f, 2.8159360e-4f, 3.2365600e-4f
  209. }};
  210. /* The late lines are used to approximate the decaying cycle of recursive
  211. * late reflections.
  212. *
  213. * Splitting the lines in half, we start with the shortest reflection paths
  214. * (L_(i=0)^(N/2)):
  215. *
  216. * L_i = 2^(i / (N - 1)) r_d
  217. *
  218. * Then for the opposite (longest) reflection paths (L_(i=N/2)^N):
  219. *
  220. * L_i = 2 r_a - L_(i-N/2)
  221. * = 2 r_a - 2^((i - N / 2) / (N - 1)) r_d
  222. *
  223. * For our 1m average room, we get:
  224. */
  225. constexpr std::array<float,NUM_LINES> LATE_LINE_LENGTHS{{
  226. 1.9419362e-3f, 2.4466860e-3f, 3.3791220e-3f, 3.8838720e-3f
  227. }};
  228. using ReverbUpdateLine = std::array<float,MAX_UPDATE_SAMPLES>;
  229. struct DelayLineI {
  230. /* The delay lines use interleaved samples, with the lengths being powers
  231. * of 2 to allow the use of bit-masking instead of a modulus for wrapping.
  232. */
  233. al::span<float> mLine;
  234. /* Given the allocated sample buffer, this function updates each delay line
  235. * offset.
  236. */
  237. void realizeLineOffset(al::span<float> sampleBuffer) noexcept
  238. { mLine = sampleBuffer; }
  239. /* Calculate the length of a delay line and store its mask and offset. */
  240. static
  241. auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t
  242. {
  243. /* All line lengths are powers of 2, calculated from their lengths in
  244. * seconds, rounded up.
  245. */
  246. uint samples{float2uint(std::ceil(length*frequency))};
  247. samples = NextPowerOf2(samples + extra);
  248. /* Return the sample count for accumulation. */
  249. return samples*NUM_LINES;
  250. }
  251. };
  252. struct DelayLineU {
  253. al::span<float> mLine;
  254. void realizeLineOffset(al::span<float> sampleBuffer) noexcept
  255. {
  256. assert(sampleBuffer.size() > 4 && !(sampleBuffer.size() & (sampleBuffer.size()-1)));
  257. mLine = sampleBuffer;
  258. }
  259. static
  260. auto calcLineLength(const float length, const float frequency, const uint extra) -> size_t
  261. {
  262. uint samples{float2uint(std::ceil(length*frequency))};
  263. samples = NextPowerOf2(samples + extra);
  264. return samples*NUM_LINES;
  265. }
  266. [[nodiscard]]
  267. auto get(size_t chan) const noexcept
  268. {
  269. const size_t stride{mLine.size() / NUM_LINES};
  270. return mLine.subspan(chan*stride, stride);
  271. }
  272. void write(size_t offset, const size_t c, al::span<const float> in) const noexcept
  273. {
  274. const size_t stride{mLine.size() / NUM_LINES};
  275. const auto output = mLine.subspan(c*stride);
  276. while(!in.empty())
  277. {
  278. offset &= stride-1;
  279. const size_t td{std::min(stride - offset, in.size())};
  280. std::copy_n(in.begin(), td, output.begin() + ptrdiff_t(offset));
  281. offset += td;
  282. in = in.subspan(td);
  283. }
  284. }
  285. /* Writes the given input lines to the delay buffer, applying a geometric
  286. * reflection. This effectively applies the matrix
  287. *
  288. * [ +1/2 -1/2 -1/2 -1/2 ]
  289. * [ -1/2 +1/2 -1/2 -1/2 ]
  290. * [ -1/2 -1/2 +1/2 -1/2 ]
  291. * [ -1/2 -1/2 -1/2 +1/2 ]
  292. *
  293. * to the four input lines when writing to the delay buffer. The effect on
  294. * the B-Format signal is negating W, applying a 180-degree phase shift and
  295. * moving each response to its spatially opposite location.
  296. */
  297. void writeReflected(size_t offset, const al::span<const ReverbUpdateLine,NUM_LINES> in,
  298. const size_t count) const noexcept
  299. {
  300. const size_t stride{mLine.size() / NUM_LINES};
  301. for(size_t i{0u};i < count;)
  302. {
  303. offset &= stride-1;
  304. size_t td{std::min(stride - offset, count - i)};
  305. do {
  306. const std::array src{in[0][i], in[1][i], in[2][i], in[3][i]};
  307. ++i;
  308. const std::array f{
  309. (src[0] - src[1] - src[2] - src[3]) * 0.5f,
  310. (src[1] - src[0] - src[2] - src[3]) * 0.5f,
  311. (src[2] - src[0] - src[1] - src[3]) * 0.5f,
  312. (src[3] - src[0] - src[1] - src[2] ) * 0.5f
  313. };
  314. mLine[0*stride + offset] = f[0];
  315. mLine[1*stride + offset] = f[1];
  316. mLine[2*stride + offset] = f[2];
  317. mLine[3*stride + offset] = f[3];
  318. ++offset;
  319. } while(--td);
  320. }
  321. }
  322. };
  323. struct VecAllpass {
  324. DelayLineI Delay;
  325. float Coeff{0.0f};
  326. std::array<size_t,NUM_LINES> Offset{};
  327. void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t offset,
  328. const float xCoeff, const float yCoeff, const size_t todo) const noexcept;
  329. };
  330. struct Allpass4 {
  331. DelayLineU Delay;
  332. float Coeff{0.0f};
  333. std::array<size_t,NUM_LINES> Offset{};
  334. void process(const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t offset,
  335. const size_t todo) const noexcept;
  336. };
  337. struct T60Filter {
  338. /* Two filters are used to adjust the signal. One to control the low
  339. * frequencies, and one to control the high frequencies.
  340. */
  341. float MidGain{0.0f};
  342. BiquadFilter HFFilter, LFFilter;
  343. void calcCoeffs(const float length, const float lfDecayTime, const float mfDecayTime,
  344. const float hfDecayTime, const float lf0norm, const float hf0norm);
  345. /* Applies the two T60 damping filter sections. */
  346. void process(const al::span<float> samples)
  347. { DualBiquad{HFFilter, LFFilter}.process(samples, samples); }
  348. void clear() noexcept { HFFilter.clear(); LFFilter.clear(); }
  349. };
  350. struct EarlyReflections {
  351. Allpass4 VecAp;
  352. /* An echo line is used to complete the second half of the early
  353. * reflections.
  354. */
  355. DelayLineU Delay;
  356. std::array<size_t,NUM_LINES> Offset{};
  357. float Coeff{};
  358. /* The gain for each output channel based on 3D panning. */
  359. struct OutGains {
  360. std::array<float,MaxAmbiChannels> Current{};
  361. std::array<float,MaxAmbiChannels> Target{};
  362. void clear() { Current.fill(0.0f); Target.fill(0.0); }
  363. };
  364. std::array<OutGains,NUM_LINES> Gains{};
  365. void updateLines(const float density_mult, const float diffusion, const float decayTime,
  366. const float frequency);
  367. void clear()
  368. {
  369. std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear));
  370. }
  371. };
  372. struct Modulation {
  373. /* The vibrato time is tracked with an index over a (MOD_FRACONE)
  374. * normalized range.
  375. */
  376. uint Index{0u}, Step{1u};
  377. /* The depth of frequency change, in samples. */
  378. float Depth{0.0f};
  379. std::array<uint,MAX_UPDATE_SAMPLES> ModDelays{};
  380. void updateModulator(float modTime, float modDepth, float frequency);
  381. auto calcDelays(size_t todo) -> al::span<const uint>;
  382. void clear() noexcept
  383. {
  384. Index = 0u;
  385. Step = 1u;
  386. Depth = 0.0f;
  387. }
  388. };
  389. struct LateReverb {
  390. /* A recursive delay line is used fill in the reverb tail. */
  391. DelayLineU Delay;
  392. std::array<size_t,NUM_LINES> Offset{};
  393. /* Attenuation to compensate for the modal density and decay rate of the
  394. * late lines.
  395. */
  396. float DensityGain{0.0f};
  397. /* T60 decay filters are used to simulate absorption. */
  398. std::array<T60Filter,NUM_LINES> T60;
  399. Modulation Mod;
  400. /* A Gerzon vector all-pass filter is used to simulate diffusion. */
  401. VecAllpass VecAp;
  402. /* The gain for each output channel based on 3D panning. */
  403. struct OutGains {
  404. std::array<float,MaxAmbiChannels> Current{};
  405. std::array<float,MaxAmbiChannels> Target{};
  406. void clear() { Current.fill(0.0f); Target.fill(0.0); }
  407. };
  408. std::array<OutGains,NUM_LINES> Gains{};
  409. void updateLines(const float density_mult, const float diffusion, const float lfDecayTime,
  410. const float mfDecayTime, const float hfDecayTime, const float lf0norm,
  411. const float hf0norm, const float frequency);
  412. void clear()
  413. {
  414. std::for_each(T60.begin(), T60.end(), std::mem_fn(&T60Filter::clear));
  415. Mod.clear();
  416. std::for_each(Gains.begin(), Gains.end(), std::mem_fn(&OutGains::clear));
  417. }
  418. };
  419. struct ReverbPipeline {
  420. /* Master effect filters */
  421. struct FilterPair {
  422. BiquadFilter Lp;
  423. BiquadFilter Hp;
  424. void clear() noexcept { Lp.clear(); Hp.clear(); }
  425. };
  426. std::array<FilterPair,NUM_LINES> mFilter;
  427. /* Late reverb input delay line (early reflections feed this, and late
  428. * reverb taps from it).
  429. */
  430. DelayLineU mLateDelayIn;
  431. /* Tap points for early reflection input delay. */
  432. std::array<std::array<size_t,2>,NUM_LINES> mEarlyDelayTap{};
  433. std::array<float,2> mEarlyDelayCoeff{};
  434. /* Tap points for late reverb feed and delay. */
  435. std::array<std::array<size_t,2>,NUM_LINES> mLateDelayTap{};
  436. /* Coefficients for the all-pass and line scattering matrices. */
  437. float mMixX{1.0f};
  438. float mMixY{0.0f};
  439. EarlyReflections mEarly;
  440. LateReverb mLate;
  441. std::array<std::array<BandSplitter,NUM_LINES>,2> mAmbiSplitter;
  442. size_t mFadeSampleCount{1};
  443. void updateDelayLine(const float gain, const float earlyDelay, const float lateDelay,
  444. const float density_mult, const float frequency);
  445. void update3DPanning(const al::span<const float,3> ReflectionsPan,
  446. const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
  447. const bool doUpmix, const MixParams *mainMix);
  448. void processEarly(const DelayLineU &main_delay, size_t offset, const size_t samplesToDo,
  449. const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
  450. const al::span<FloatBufferLine,NUM_LINES> outSamples);
  451. void processLate(size_t offset, const size_t samplesToDo,
  452. const al::span<ReverbUpdateLine,NUM_LINES> tempSamples,
  453. const al::span<FloatBufferLine,NUM_LINES> outSamples);
  454. void clear() noexcept
  455. {
  456. std::for_each(mFilter.begin(), mFilter.end(), std::mem_fn(&FilterPair::clear));
  457. mEarlyDelayTap = {};
  458. mEarlyDelayCoeff = {};
  459. mLateDelayTap = {};
  460. mEarly.clear();
  461. mLate.clear();
  462. auto clear_filters = [](const al::span<BandSplitter,NUM_LINES> filters)
  463. { std::for_each(filters.begin(), filters.end(), std::mem_fn(&BandSplitter::clear)); };
  464. std::for_each(mAmbiSplitter.begin(), mAmbiSplitter.end(), clear_filters);
  465. }
  466. };
  467. struct ReverbState final : public EffectState {
  468. /* All delay lines are allocated as a single buffer to reduce memory
  469. * fragmentation and management code.
  470. */
  471. al::vector<float,16> mSampleBuffer;
  472. struct Params {
  473. /* Calculated parameters which indicate if cross-fading is needed after
  474. * an update.
  475. */
  476. float Density{1.0f};
  477. float Diffusion{1.0f};
  478. float DecayTime{1.49f};
  479. float HFDecayTime{0.83f * 1.49f};
  480. float LFDecayTime{1.0f * 1.49f};
  481. float ModulationTime{0.25f};
  482. float ModulationDepth{0.0f};
  483. float HFReference{5000.0f};
  484. float LFReference{250.0f};
  485. };
  486. Params mParams;
  487. enum PipelineState : uint8_t {
  488. DeviceClear,
  489. StartFade,
  490. Fading,
  491. Cleanup,
  492. Normal,
  493. };
  494. PipelineState mPipelineState{DeviceClear};
  495. bool mCurrentPipeline{false};
  496. /* Core delay line (early reflections tap from this). */
  497. DelayLineU mMainDelay;
  498. std::array<ReverbPipeline,2> mPipelines;
  499. /* The current write offset for all delay lines. */
  500. size_t mOffset{};
  501. /* Temporary storage used when processing. */
  502. alignas(16) FloatBufferLine mTempLine{};
  503. alignas(16) std::array<ReverbUpdateLine,NUM_LINES> mTempSamples{};
  504. alignas(16) std::array<FloatBufferLine,NUM_LINES> mEarlySamples{};
  505. alignas(16) std::array<FloatBufferLine,NUM_LINES> mLateSamples{};
  506. std::array<float,MaxAmbiOrder+1> mOrderScales{};
  507. bool mUpmixOutput{false};
  508. void MixOutPlain(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
  509. const size_t todo) const
  510. {
  511. /* When not upsampling, the panning gains convert to B-Format and pan
  512. * at the same time.
  513. */
  514. auto inBuffer = mEarlySamples.cbegin();
  515. for(auto &gains : pipeline.mEarly.Gains)
  516. {
  517. MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target,
  518. todo, 0);
  519. }
  520. inBuffer = mLateSamples.cbegin();
  521. for(auto &gains : pipeline.mLate.Gains)
  522. {
  523. MixSamples(al::span{*inBuffer++}.first(todo), samplesOut, gains.Current, gains.Target,
  524. todo, 0);
  525. }
  526. }
  527. void MixOutAmbiUp(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut,
  528. const size_t todo)
  529. {
  530. auto DoMixRow = [](const al::span<float> OutBuffer, const al::span<const float,4> Gains,
  531. const al::span<const FloatBufferLine,4> InSamples)
  532. {
  533. auto inBuffer = InSamples.cbegin();
  534. std::fill(OutBuffer.begin(), OutBuffer.end(), 0.0f);
  535. for(const float gain : Gains)
  536. {
  537. if(std::fabs(gain) > GainSilenceThreshold)
  538. {
  539. auto mix_sample = [gain](const float sample, const float in) noexcept -> float
  540. { return sample + in*gain; };
  541. std::transform(OutBuffer.begin(), OutBuffer.end(), inBuffer->cbegin(),
  542. OutBuffer.begin(), mix_sample);
  543. }
  544. ++inBuffer;
  545. }
  546. };
  547. /* When upsampling, the B-Format conversion needs to be done separately
  548. * so the proper HF scaling can be applied to each B-Format channel.
  549. * The panning gains then pan and upsample the B-Format channels.
  550. */
  551. const auto tmpspan = al::span{mTempLine}.first(todo);
  552. auto hfscale = float{mOrderScales[0]};
  553. auto splitter = pipeline.mAmbiSplitter[0].begin();
  554. auto a2bcoeffs = EarlyA2B.cbegin();
  555. for(auto &gains : pipeline.mEarly.Gains)
  556. {
  557. DoMixRow(tmpspan, *(a2bcoeffs++), mEarlySamples);
  558. /* Apply scaling to the B-Format's HF response to "upsample" it to
  559. * higher-order output.
  560. */
  561. (splitter++)->processHfScale(tmpspan, hfscale);
  562. hfscale = mOrderScales[1];
  563. MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0);
  564. }
  565. hfscale = mOrderScales[0];
  566. splitter = pipeline.mAmbiSplitter[1].begin();
  567. a2bcoeffs = LateA2B.cbegin();
  568. for(auto &gains : pipeline.mLate.Gains)
  569. {
  570. DoMixRow(tmpspan, *(a2bcoeffs++), mLateSamples);
  571. (splitter++)->processHfScale(tmpspan, hfscale);
  572. hfscale = mOrderScales[1];
  573. MixSamples(tmpspan, samplesOut, gains.Current, gains.Target, todo, 0);
  574. }
  575. }
  576. void mixOut(ReverbPipeline &pipeline, const al::span<FloatBufferLine> samplesOut, const size_t todo)
  577. {
  578. if(mUpmixOutput)
  579. MixOutAmbiUp(pipeline, samplesOut, todo);
  580. else
  581. MixOutPlain(pipeline, samplesOut, todo);
  582. }
  583. void allocLines(const float frequency);
  584. void deviceUpdate(const DeviceBase *device, const BufferStorage *buffer) override;
  585. void update(const ContextBase *context, const EffectSlot *slot, const EffectProps *props,
  586. const EffectTarget target) override;
  587. void process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn,
  588. const al::span<FloatBufferLine> samplesOut) override;
  589. };
  590. /**************************************
  591. * Device Update *
  592. **************************************/
  593. inline float CalcDelayLengthMult(float density)
  594. { return std::max(5.0f, std::cbrt(density*DENSITY_SCALE)); }
  595. /* Calculates the delay line metrics and allocates the shared sample buffer
  596. * for all lines given the sample rate (frequency).
  597. */
  598. void ReverbState::allocLines(const float frequency)
  599. {
  600. /* Multiplier for the maximum density value, i.e. density=1, which is
  601. * actually the least density...
  602. */
  603. const float multiplier{CalcDelayLengthMult(1.0f)};
  604. /* The modulator's line length is calculated from the maximum modulation
  605. * time and depth coefficient, and halfed for the low-to-high frequency
  606. * swing.
  607. */
  608. static constexpr float max_mod_delay{MaxModulationTime*MODULATION_DEPTH_COEFF / 2.0f};
  609. std::array<size_t,11> linelengths{};
  610. size_t oidx{0};
  611. size_t totalSamples{0u};
  612. /* The main delay length includes the maximum early reflection delay and
  613. * the largest early tap width. It must also be extended by the update size
  614. * (BufferLineSize) for block processing.
  615. */
  616. float length{ReverbMaxReflectionsDelay + EARLY_TAP_LENGTHS.back()*multiplier};
  617. size_t count{mMainDelay.calcLineLength(length, frequency, BufferLineSize)};
  618. linelengths[oidx++] = count;
  619. totalSamples += count;
  620. for(auto &pipeline : mPipelines)
  621. {
  622. static constexpr float LateDiffAvg{(LATE_LINE_LENGTHS.back()-LATE_LINE_LENGTHS.front()) /
  623. float{NUM_LINES}};
  624. length = ReverbMaxLateReverbDelay + LateDiffAvg*multiplier;
  625. count = pipeline.mLateDelayIn.calcLineLength(length, frequency, BufferLineSize);
  626. linelengths[oidx++] = count;
  627. totalSamples += count;
  628. /* The early vector all-pass line. */
  629. length = EARLY_ALLPASS_LENGTHS.back() * multiplier;
  630. count = pipeline.mEarly.VecAp.Delay.calcLineLength(length, frequency, 0);
  631. linelengths[oidx++] = count;
  632. totalSamples += count;
  633. /* The early reflection line. */
  634. length = EARLY_LINE_LENGTHS.back() * multiplier;
  635. count = pipeline.mEarly.Delay.calcLineLength(length, frequency, MAX_UPDATE_SAMPLES);
  636. linelengths[oidx++] = count;
  637. totalSamples += count;
  638. /* The late vector all-pass line. */
  639. length = LATE_ALLPASS_LENGTHS.back() * multiplier;
  640. count = pipeline.mLate.VecAp.Delay.calcLineLength(length, frequency, 0);
  641. linelengths[oidx++] = count;
  642. totalSamples += count;
  643. /* The late delay lines are calculated from the largest maximum density
  644. * line length, and the maximum modulation delay. Four additional
  645. * samples are needed for resampling the modulator delay.
  646. */
  647. length = LATE_LINE_LENGTHS.back()*multiplier + max_mod_delay;
  648. count = pipeline.mLate.Delay.calcLineLength(length, frequency, 4);
  649. linelengths[oidx++] = count;
  650. totalSamples += count;
  651. }
  652. assert(oidx == linelengths.size());
  653. if(totalSamples != mSampleBuffer.size())
  654. decltype(mSampleBuffer)(totalSamples).swap(mSampleBuffer);
  655. /* Clear the sample buffer. */
  656. std::fill(mSampleBuffer.begin(), mSampleBuffer.end(), 0.0f);
  657. /* Update all delays to reflect the new sample buffer. */
  658. auto bufferspan = al::span{mSampleBuffer};
  659. oidx = 0;
  660. mMainDelay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
  661. bufferspan = bufferspan.subspan(linelengths[oidx++]);
  662. for(auto &pipeline : mPipelines)
  663. {
  664. pipeline.mLateDelayIn.realizeLineOffset(bufferspan.first(linelengths[oidx]));
  665. bufferspan = bufferspan.subspan(linelengths[oidx++]);
  666. pipeline.mEarly.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
  667. bufferspan = bufferspan.subspan(linelengths[oidx++]);
  668. pipeline.mEarly.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
  669. bufferspan = bufferspan.subspan(linelengths[oidx++]);
  670. pipeline.mLate.VecAp.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
  671. bufferspan = bufferspan.subspan(linelengths[oidx++]);
  672. pipeline.mLate.Delay.realizeLineOffset(bufferspan.first(linelengths[oidx]));
  673. bufferspan = bufferspan.subspan(linelengths[oidx++]);
  674. }
  675. assert(oidx == linelengths.size());
  676. }
  677. void ReverbState::deviceUpdate(const DeviceBase *device, const BufferStorage*)
  678. {
  679. const auto frequency = static_cast<float>(device->mSampleRate);
  680. /* Allocate the delay lines. */
  681. allocLines(frequency);
  682. std::for_each(mPipelines.begin(), mPipelines.end(), std::mem_fn(&ReverbPipeline::clear));
  683. mPipelineState = DeviceClear;
  684. /* Reset offset base. */
  685. mOffset = 0;
  686. if(device->mAmbiOrder > 1)
  687. {
  688. mUpmixOutput = true;
  689. mOrderScales = AmbiScale::GetHFOrderScales(1, device->mAmbiOrder, device->m2DMixing);
  690. }
  691. else
  692. {
  693. mUpmixOutput = false;
  694. mOrderScales.fill(1.0f);
  695. }
  696. auto splitter = BandSplitter{device->mXOverFreq / frequency};
  697. auto set_splitters = [&splitter](ReverbPipeline &pipeline)
  698. {
  699. std::fill(pipeline.mAmbiSplitter[0].begin(), pipeline.mAmbiSplitter[0].end(), splitter);
  700. std::fill(pipeline.mAmbiSplitter[1].begin(), pipeline.mAmbiSplitter[1].end(), splitter);
  701. };
  702. std::for_each(mPipelines.begin(), mPipelines.end(), set_splitters);
  703. }
  704. /**************************************
  705. * Effect Update *
  706. **************************************/
  707. /* Calculate a decay coefficient given the length of each cycle and the time
  708. * until the decay reaches -60 dB.
  709. */
  710. inline float CalcDecayCoeff(const float length, const float decayTime)
  711. { return std::pow(ReverbDecayGain, length/decayTime); }
  712. /* Calculate a decay length from a coefficient and the time until the decay
  713. * reaches -60 dB.
  714. */
  715. inline float CalcDecayLength(const float coeff, const float decayTime)
  716. {
  717. constexpr float log10_decaygain{-3.0f/*std::log10(ReverbDecayGain)*/};
  718. return std::log10(coeff) * decayTime / log10_decaygain;
  719. }
  720. /* Calculate an attenuation to be applied to the input of any echo models to
  721. * compensate for modal density and decay time.
  722. */
  723. inline float CalcDensityGain(const float a)
  724. {
  725. /* The energy of a signal can be obtained by finding the area under the
  726. * squared signal. This takes the form of Sum(x_n^2), where x is the
  727. * amplitude for the sample n.
  728. *
  729. * Decaying feedback matches exponential decay of the form Sum(a^n),
  730. * where a is the attenuation coefficient, and n is the sample. The area
  731. * under this decay curve can be calculated as: 1 / (1 - a).
  732. *
  733. * Modifying the above equation to find the area under the squared curve
  734. * (for energy) yields: 1 / (1 - a^2). Input attenuation can then be
  735. * calculated by inverting the square root of this approximation,
  736. * yielding: 1 / sqrt(1 / (1 - a^2)), simplified to: sqrt(1 - a^2).
  737. */
  738. return std::sqrt(1.0f - a*a);
  739. }
  740. /* Calculate the scattering matrix coefficients given a diffusion factor. */
  741. inline void CalcMatrixCoeffs(const float diffusion, float *x, float *y)
  742. {
  743. /* The matrix is of order 4, so n is sqrt(4 - 1). */
  744. constexpr float n{al::numbers::sqrt3_v<float>};
  745. const float t{diffusion * std::atan(n)};
  746. /* Calculate the first mixing matrix coefficient. */
  747. *x = std::cos(t);
  748. /* Calculate the second mixing matrix coefficient. */
  749. *y = std::sin(t) / n;
  750. }
  751. /* Calculate the limited HF ratio for use with the late reverb low-pass
  752. * filters.
  753. */
  754. float CalcLimitedHfRatio(const float hfRatio, const float airAbsorptionGainHF,
  755. const float decayTime)
  756. {
  757. /* Find the attenuation due to air absorption in dB (converting delay
  758. * time to meters using the speed of sound). Then reversing the decay
  759. * equation, solve for HF ratio. The delay length is cancelled out of
  760. * the equation, so it can be calculated once for all lines.
  761. */
  762. float limitRatio{1.0f / SpeedOfSoundMetersPerSec /
  763. CalcDecayLength(airAbsorptionGainHF, decayTime)};
  764. /* Using the limit calculated above, apply the upper bound to the HF ratio. */
  765. return std::min(limitRatio, hfRatio);
  766. }
  767. /* Calculates the 3-band T60 damping coefficients for a particular delay line
  768. * of specified length, using a combination of two shelf filter sections given
  769. * decay times for each band split at two reference frequencies.
  770. */
  771. void T60Filter::calcCoeffs(const float length, const float lfDecayTime,
  772. const float mfDecayTime, const float hfDecayTime, const float lf0norm,
  773. const float hf0norm)
  774. {
  775. const float mfGain{CalcDecayCoeff(length, mfDecayTime)};
  776. const float lfGain{CalcDecayCoeff(length, lfDecayTime) / mfGain};
  777. const float hfGain{CalcDecayCoeff(length, hfDecayTime) / mfGain};
  778. MidGain = mfGain;
  779. LFFilter.setParamsFromSlope(BiquadType::LowShelf, lf0norm, lfGain, 1.0f);
  780. HFFilter.setParamsFromSlope(BiquadType::HighShelf, hf0norm, hfGain, 1.0f);
  781. }
  782. /* Update the early reflection line lengths and gain coefficients. */
  783. void EarlyReflections::updateLines(const float density_mult, const float diffusion,
  784. const float decayTime, const float frequency)
  785. {
  786. /* Calculate the all-pass feed-back/forward coefficient. */
  787. VecAp.Coeff = diffusion*diffusion * InvSqrt2;
  788. for(size_t i{0u};i < NUM_LINES;i++)
  789. {
  790. /* Calculate the delay length of each all-pass line. */
  791. float length{EARLY_ALLPASS_LENGTHS[i] * density_mult};
  792. VecAp.Offset[i] = float2uint(length * frequency);
  793. /* Calculate the delay length of each delay line. */
  794. length = EARLY_LINE_LENGTHS[i] * density_mult;
  795. Offset[i] = float2uint(length * frequency);
  796. }
  797. /* Calculate the gain (coefficient) for the secondary reflections based on
  798. * the average delay and decay time.
  799. */
  800. const auto length = std::reduce(EARLY_LINE_LENGTHS.begin(), EARLY_LINE_LENGTHS.end(), 0.0f)
  801. / float{EARLY_LINE_LENGTHS.size()} * density_mult;
  802. Coeff = CalcDecayCoeff(length, decayTime);
  803. }
  804. /* Update the EAX modulation step and depth. Keep in mind that this kind of
  805. * vibrato is additive and not multiplicative as one may expect. The downswing
  806. * will sound stronger than the upswing.
  807. */
  808. void Modulation::updateModulator(float modTime, float modDepth, float frequency)
  809. {
  810. /* Modulation is calculated in two parts.
  811. *
  812. * The modulation time effects the sinus rate, altering the speed of
  813. * frequency changes. An index is incremented for each sample with an
  814. * appropriate step size to generate an LFO, which will vary the feedback
  815. * delay over time.
  816. */
  817. Step = std::max(fastf2u(MOD_FRACONE / (frequency * modTime)), 1u);
  818. /* The modulation depth effects the amount of frequency change over the
  819. * range of the sinus. It needs to be scaled by the modulation time so that
  820. * a given depth produces a consistent change in frequency over all ranges
  821. * of time. Since the depth is applied to a sinus value, it needs to be
  822. * halved once for the sinus range and again for the sinus swing in time
  823. * (half of it is spent decreasing the frequency, half is spent increasing
  824. * it).
  825. */
  826. if(modTime >= DefaultModulationTime)
  827. {
  828. /* To cancel the effects of a long period modulation on the late
  829. * reverberation, the amount of pitch should be varied (decreased)
  830. * according to the modulation time. The natural form is varying
  831. * inversely, in fact resulting in an invariant.
  832. */
  833. Depth = MODULATION_DEPTH_COEFF / 4.0f * DefaultModulationTime * modDepth * frequency;
  834. }
  835. else
  836. Depth = MODULATION_DEPTH_COEFF / 4.0f * modTime * modDepth * frequency;
  837. }
  838. /* Update the late reverb line lengths and T60 coefficients. */
  839. void LateReverb::updateLines(const float density_mult, const float diffusion,
  840. const float lfDecayTime, const float mfDecayTime, const float hfDecayTime,
  841. const float lf0norm, const float hf0norm, const float frequency)
  842. {
  843. /* Scaling factor to convert the normalized reference frequencies from
  844. * representing 0...freq to 0...max_reference.
  845. */
  846. constexpr float MaxHFReference{20000.0f};
  847. const float norm_weight_factor{frequency / MaxHFReference};
  848. const float late_allpass_avg{
  849. std::accumulate(LATE_ALLPASS_LENGTHS.begin(), LATE_ALLPASS_LENGTHS.end(), 0.0f) /
  850. float{NUM_LINES}};
  851. /* To compensate for changes in modal density and decay time of the late
  852. * reverb signal, the input is attenuated based on the maximal energy of
  853. * the outgoing signal. This approximation is used to keep the apparent
  854. * energy of the signal equal for all ranges of density and decay time.
  855. *
  856. * The average length of the delay lines is used to calculate the
  857. * attenuation coefficient.
  858. */
  859. float length{std::accumulate(LATE_LINE_LENGTHS.begin(), LATE_LINE_LENGTHS.end(), 0.0f) /
  860. float{NUM_LINES} + late_allpass_avg};
  861. length *= density_mult;
  862. /* The density gain calculation uses an average decay time weighted by
  863. * approximate bandwidth. This attempts to compensate for losses of energy
  864. * that reduce decay time due to scattering into highly attenuated bands.
  865. */
  866. const float decayTimeWeighted{
  867. lf0norm*norm_weight_factor*lfDecayTime +
  868. (hf0norm - lf0norm)*norm_weight_factor*mfDecayTime +
  869. (1.0f - hf0norm*norm_weight_factor)*hfDecayTime};
  870. DensityGain = CalcDensityGain(CalcDecayCoeff(length, decayTimeWeighted));
  871. /* Calculate the all-pass feed-back/forward coefficient. */
  872. VecAp.Coeff = diffusion*diffusion * InvSqrt2;
  873. for(size_t i{0u};i < NUM_LINES;i++)
  874. {
  875. /* Calculate the delay length of each all-pass line. */
  876. length = LATE_ALLPASS_LENGTHS[i] * density_mult;
  877. VecAp.Offset[i] = float2uint(length * frequency);
  878. /* Calculate the delay length of each feedback delay line. A cubic
  879. * resampler is used for modulation on the feedback delay, which
  880. * includes one sample of delay. Reduce by one to compensate.
  881. */
  882. length = LATE_LINE_LENGTHS[i] * density_mult;
  883. Offset[i] = std::max(float2uint(length*frequency + 0.5f), 1u) - 1u;
  884. /* Approximate the absorption that the vector all-pass would exhibit
  885. * given the current diffusion so we don't have to process a full T60
  886. * filter for each of its four lines. Also include the average
  887. * modulation delay (depth is half the max delay in samples).
  888. */
  889. length += lerpf(LATE_ALLPASS_LENGTHS[i], late_allpass_avg, diffusion)*density_mult +
  890. Mod.Depth/frequency;
  891. /* Calculate the T60 damping coefficients for each line. */
  892. T60[i].calcCoeffs(length, lfDecayTime, mfDecayTime, hfDecayTime, lf0norm, hf0norm);
  893. }
  894. }
  895. /* Update the offsets for the main effect delay line. */
  896. void ReverbPipeline::updateDelayLine(const float gain, const float earlyDelay,
  897. const float lateDelay, const float density_mult, const float frequency)
  898. {
  899. /* Early reflection taps are decorrelated by means of an average room
  900. * reflection approximation described above the definition of the taps.
  901. * This approximation is linear and so the above density multiplier can
  902. * be applied to adjust the width of the taps. A single-band decay
  903. * coefficient is applied to simulate initial attenuation and absorption.
  904. *
  905. * Late reverb taps are based on the late line lengths to allow a zero-
  906. * delay path and offsets that would continue the propagation naturally
  907. * into the late lines.
  908. */
  909. mEarlyDelayCoeff[1] = gain;
  910. for(size_t i{0u};i < NUM_LINES;i++)
  911. {
  912. float length{EARLY_TAP_LENGTHS[i]*density_mult};
  913. mEarlyDelayTap[i][1] = float2uint((earlyDelay+length) * frequency);
  914. /* Reduce the late delay tap by the shortest early delay line length to
  915. * compensate for the late line input being fed by the delayed early
  916. * output.
  917. */
  918. length = (LATE_LINE_LENGTHS[i] - LATE_LINE_LENGTHS.front())/float{NUM_LINES}*density_mult +
  919. lateDelay;
  920. mLateDelayTap[i][1] = float2uint(length * frequency);
  921. }
  922. }
  923. /* Creates a transform matrix given a reverb vector. The vector pans the reverb
  924. * reflections toward the given direction, using its magnitude (up to 1) as a
  925. * focal strength. This function results in a B-Format transformation matrix
  926. * that spatially focuses the signal in the desired direction.
  927. */
  928. std::array<std::array<float,4>,4> GetTransformFromVector(const al::span<const float,3> vec)
  929. {
  930. /* Normalize the panning vector according to the N3D scale, which has an
  931. * extra sqrt(3) term on the directional components. Converting from OpenAL
  932. * to B-Format also requires negating X (ACN 1) and Z (ACN 3). Note however
  933. * that the reverb panning vectors use left-handed coordinates, unlike the
  934. * rest of OpenAL which use right-handed. This is fixed by negating Z,
  935. * which cancels out with the B-Format Z negation.
  936. */
  937. std::array<float,3> norm{{vec[0], vec[1], vec[2]}};
  938. float mag{std::sqrt(vec[0]*vec[0] + vec[1]*vec[1] + vec[2]*vec[2])};
  939. if(mag > 1.0f)
  940. {
  941. const float scale{al::numbers::sqrt3_v<float> / mag};
  942. norm[0] *= -scale;
  943. norm[1] *= scale;
  944. norm[2] *= scale;
  945. mag = 1.0f;
  946. }
  947. else
  948. {
  949. /* If the magnitude is less than or equal to 1, just apply the sqrt(3)
  950. * term. There's no need to renormalize the magnitude since it would
  951. * just be reapplied in the matrix.
  952. */
  953. norm[0] *= -al::numbers::sqrt3_v<float>;
  954. norm[1] *= al::numbers::sqrt3_v<float>;
  955. norm[2] *= al::numbers::sqrt3_v<float>;
  956. }
  957. return std::array<std::array<float,4>,4>{{
  958. {{1.0f, 0.0f, 0.0f, 0.0f}},
  959. {{norm[0], 1.0f-mag, 0.0f, 0.0f}},
  960. {{norm[1], 0.0f, 1.0f-mag, 0.0f}},
  961. {{norm[2], 0.0f, 0.0f, 1.0f-mag}}
  962. }};
  963. }
  964. /* Update the early and late 3D panning gains. */
  965. void ReverbPipeline::update3DPanning(const al::span<const float,3> ReflectionsPan,
  966. const al::span<const float,3> LateReverbPan, const float earlyGain, const float lateGain,
  967. const bool doUpmix, const MixParams *mainMix)
  968. {
  969. /* Create matrices that transform a B-Format signal according to the
  970. * panning vectors.
  971. */
  972. const auto earlymat = GetTransformFromVector(ReflectionsPan);
  973. const auto latemat = GetTransformFromVector(LateReverbPan);
  974. const auto get_coeffs = [&]
  975. {
  976. if(doUpmix)
  977. {
  978. /* When upsampling, combine the early and late transforms with the
  979. * first-order upsample matrix. This results in panning gains that
  980. * apply the panning transform to first-order B-Format, which is
  981. * then upsampled.
  982. */
  983. auto mult_matrix = [](const al::span<const std::array<float,4>,4> mtx1)
  984. {
  985. std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
  986. const auto mtx2 = al::span{AmbiScale::FirstOrderUp};
  987. for(size_t i{0};i < mtx1[0].size();++i)
  988. {
  989. const al::span dst{res[i]};
  990. static_assert(dst.size() >= std::tuple_size_v<decltype(mtx2)::element_type>);
  991. for(size_t k{0};k < mtx1.size();++k)
  992. {
  993. const float a{mtx1[k][i]};
  994. std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(),
  995. [a](const float in, const float out) noexcept -> float
  996. { return a*in + out; });
  997. }
  998. }
  999. return res;
  1000. };
  1001. return std::array{mult_matrix(earlymat), mult_matrix(latemat)};
  1002. }
  1003. /* When not upsampling, combine the early and late A-to-B-Format
  1004. * conversions with their respective transform. This results panning
  1005. * gains that convert A-Format to B-Format, which is then panned.
  1006. */
  1007. auto mult_matrix = [](const al::span<const std::array<float,NUM_LINES>,4> mtx1,
  1008. const al::span<const std::array<float,4>,4> mtx2)
  1009. {
  1010. std::array<std::array<float,MaxAmbiChannels>,NUM_LINES> res{};
  1011. for(size_t i{0};i < mtx1[0].size();++i)
  1012. {
  1013. const al::span dst{res[i]};
  1014. static_assert(dst.size() >= std::tuple_size_v<decltype(mtx2)::element_type>);
  1015. for(size_t k{0};k < mtx1.size();++k)
  1016. {
  1017. const float a{mtx1[k][i]};
  1018. std::transform(mtx2[k].begin(), mtx2[k].end(), dst.begin(), dst.begin(),
  1019. [a](const float in, const float out) noexcept -> float
  1020. { return a*in + out; });
  1021. }
  1022. }
  1023. return res;
  1024. };
  1025. return std::array{mult_matrix(EarlyA2B, earlymat), mult_matrix(LateA2B, latemat)};
  1026. };
  1027. const auto [earlycoeffs, latecoeffs] = get_coeffs();
  1028. auto earlygains = mEarly.Gains.begin();
  1029. for(auto &coeffs : earlycoeffs)
  1030. ComputePanGains(mainMix, coeffs, earlyGain, (earlygains++)->Target);
  1031. auto lategains = mLate.Gains.begin();
  1032. for(auto &coeffs : latecoeffs)
  1033. ComputePanGains(mainMix, coeffs, lateGain, (lategains++)->Target);
  1034. }
  1035. void ReverbState::update(const ContextBase *Context, const EffectSlot *Slot,
  1036. const EffectProps *props_, const EffectTarget target)
  1037. {
  1038. auto &props = std::get<ReverbProps>(*props_);
  1039. const DeviceBase *Device{Context->mDevice};
  1040. const auto frequency = static_cast<float>(Device->mSampleRate);
  1041. /* If the HF limit parameter is flagged, calculate an appropriate limit
  1042. * based on the air absorption parameter.
  1043. */
  1044. float hfRatio{props.DecayHFRatio};
  1045. if(props.DecayHFLimit && props.AirAbsorptionGainHF < 1.0f)
  1046. hfRatio = CalcLimitedHfRatio(hfRatio, props.AirAbsorptionGainHF, props.DecayTime);
  1047. /* Calculate the LF/HF decay times. */
  1048. constexpr float MinDecayTime{0.1f}, MaxDecayTime{20.0f};
  1049. const float lfDecayTime{std::clamp(props.DecayTime*props.DecayLFRatio, MinDecayTime,
  1050. MaxDecayTime)};
  1051. const float hfDecayTime{std::clamp(props.DecayTime*hfRatio, MinDecayTime, MaxDecayTime)};
  1052. /* Determine if a full update is required. */
  1053. const bool fullUpdate{mPipelineState == DeviceClear ||
  1054. /* Density is essentially a master control for the feedback delays, so
  1055. * changes the offsets of many delay lines.
  1056. */
  1057. mParams.Density != props.Density ||
  1058. /* Diffusion and decay times influences the decay rate (gain) of the
  1059. * late reverb T60 filter.
  1060. */
  1061. mParams.Diffusion != props.Diffusion ||
  1062. mParams.DecayTime != props.DecayTime ||
  1063. mParams.HFDecayTime != hfDecayTime ||
  1064. mParams.LFDecayTime != lfDecayTime ||
  1065. /* Modulation time and depth both require fading the modulation delay. */
  1066. mParams.ModulationTime != props.ModulationTime ||
  1067. mParams.ModulationDepth != props.ModulationDepth ||
  1068. /* HF/LF References control the weighting used to calculate the density
  1069. * gain.
  1070. */
  1071. mParams.HFReference != props.HFReference ||
  1072. mParams.LFReference != props.LFReference};
  1073. if(fullUpdate)
  1074. {
  1075. mParams.Density = props.Density;
  1076. mParams.Diffusion = props.Diffusion;
  1077. mParams.DecayTime = props.DecayTime;
  1078. mParams.HFDecayTime = hfDecayTime;
  1079. mParams.LFDecayTime = lfDecayTime;
  1080. mParams.ModulationTime = props.ModulationTime;
  1081. mParams.ModulationDepth = props.ModulationDepth;
  1082. mParams.HFReference = props.HFReference;
  1083. mParams.LFReference = props.LFReference;
  1084. mPipelineState = (mPipelineState != DeviceClear) ? StartFade : Normal;
  1085. mCurrentPipeline = !mCurrentPipeline;
  1086. auto &oldpipeline = mPipelines[!mCurrentPipeline];
  1087. oldpipeline.mEarlyDelayCoeff[1] = 0.0f;
  1088. }
  1089. auto &pipeline = mPipelines[mCurrentPipeline];
  1090. /* The density-based room size (delay length) multiplier. */
  1091. const float density_mult{CalcDelayLengthMult(props.Density)};
  1092. /* Update the main effect delay and associated taps. */
  1093. pipeline.updateDelayLine(props.Gain, props.ReflectionsDelay, props.LateReverbDelay,
  1094. density_mult, frequency);
  1095. /* Update early and late 3D panning. */
  1096. mOutTarget = target.Main->Buffer;
  1097. const float gain{Slot->Gain * ReverbBoost};
  1098. pipeline.update3DPanning(props.ReflectionsPan, props.LateReverbPan, props.ReflectionsGain*gain,
  1099. props.LateReverbGain*gain, mUpmixOutput, target.Main);
  1100. /* Calculate the master filters */
  1101. float hf0norm{std::min(props.HFReference/frequency, 0.49f)};
  1102. pipeline.mFilter[0].Lp.setParamsFromSlope(BiquadType::HighShelf, hf0norm, props.GainHF, 1.0f);
  1103. float lf0norm{std::min(props.LFReference/frequency, 0.49f)};
  1104. pipeline.mFilter[0].Hp.setParamsFromSlope(BiquadType::LowShelf, lf0norm, props.GainLF, 1.0f);
  1105. for(size_t i{1u};i < NUM_LINES;i++)
  1106. {
  1107. pipeline.mFilter[i].Lp.copyParamsFrom(pipeline.mFilter[0].Lp);
  1108. pipeline.mFilter[i].Hp.copyParamsFrom(pipeline.mFilter[0].Hp);
  1109. }
  1110. if(fullUpdate)
  1111. {
  1112. /* Update the early lines. */
  1113. pipeline.mEarly.updateLines(density_mult, props.Diffusion, props.DecayTime, frequency);
  1114. /* Get the mixing matrix coefficients. */
  1115. CalcMatrixCoeffs(props.Diffusion, &pipeline.mMixX, &pipeline.mMixY);
  1116. /* Update the modulator rate and depth. */
  1117. pipeline.mLate.Mod.updateModulator(props.ModulationTime, props.ModulationDepth, frequency);
  1118. /* Update the late lines. */
  1119. pipeline.mLate.updateLines(density_mult, props.Diffusion, lfDecayTime, props.DecayTime,
  1120. hfDecayTime, lf0norm, hf0norm, frequency);
  1121. }
  1122. /* Calculate the gain at the start of the late reverb stage, and the gain
  1123. * difference from the decay target (0.001, or -60dB).
  1124. */
  1125. const float decayBase{props.ReflectionsGain * props.LateReverbGain};
  1126. const float decayDiff{ReverbDecayGain / decayBase};
  1127. /* Given the DecayTime (the amount of time for the late reverb to decay by
  1128. * -60dB), calculate the time to decay to -60dB from the start of the late
  1129. * reverb.
  1130. *
  1131. * Otherwise, if the late reverb already starts at -60dB or less, only
  1132. * include the time to get to the late reverb.
  1133. */
  1134. const float diffTime{!(decayDiff < 1.0f) ? 0.0f
  1135. : (std::log10(decayDiff)*(20.0f / -60.0f) * props.DecayTime)};
  1136. const float decaySamples{(props.ReflectionsDelay+props.LateReverbDelay+diffTime)
  1137. * frequency};
  1138. /* Limit to 100,000 samples (a touch over 2 seconds at 48khz) to avoid
  1139. * excessive double-processing.
  1140. */
  1141. pipeline.mFadeSampleCount = static_cast<size_t>(std::min(decaySamples, 100'000.0f));
  1142. }
  1143. /**************************************
  1144. * Effect Processing *
  1145. **************************************/
  1146. /* Applies a scattering matrix to the 4-line (vector) input. This is used
  1147. * for both the below vector all-pass model and to perform modal feed-back
  1148. * delay network (FDN) mixing.
  1149. *
  1150. * The matrix is derived from a skew-symmetric matrix to form a 4D rotation
  1151. * matrix with a single unitary rotational parameter:
  1152. *
  1153. * [ d, a, b, c ] 1 = a^2 + b^2 + c^2 + d^2
  1154. * [ -a, d, c, -b ]
  1155. * [ -b, -c, d, a ]
  1156. * [ -c, b, -a, d ]
  1157. *
  1158. * The rotation is constructed from the effect's diffusion parameter,
  1159. * yielding:
  1160. *
  1161. * 1 = x^2 + 3 y^2
  1162. *
  1163. * Where a, b, and c are the coefficient y with differing signs, and d is the
  1164. * coefficient x. The final matrix is thus:
  1165. *
  1166. * [ x, y, -y, y ] n = sqrt(matrix_order - 1)
  1167. * [ -y, x, y, y ] t = diffusion_parameter * atan(n)
  1168. * [ y, -y, x, y ] x = cos(t)
  1169. * [ -y, -y, -y, x ] y = sin(t) / n
  1170. *
  1171. * Any square orthogonal matrix with an order that is a power of two will
  1172. * work (where ^T is transpose, ^-1 is inverse):
  1173. *
  1174. * M^T = M^-1
  1175. *
  1176. * Using that knowledge, finding an appropriate matrix can be accomplished
  1177. * naively by searching all combinations of:
  1178. *
  1179. * M = D + S - S^T
  1180. *
  1181. * Where D is a diagonal matrix (of x), and S is a triangular matrix (of y)
  1182. * whose combination of signs are being iterated.
  1183. */
  1184. inline auto VectorPartialScatter(const std::array<float,NUM_LINES> &in, const float xCoeff,
  1185. const float yCoeff) noexcept -> std::array<float,NUM_LINES>
  1186. {
  1187. return std::array{
  1188. xCoeff*in[0] + yCoeff*( in[1] + -in[2] + in[3]),
  1189. xCoeff*in[1] + yCoeff*(-in[0] + in[2] + in[3]),
  1190. xCoeff*in[2] + yCoeff*( in[0] + -in[1] + in[3]),
  1191. xCoeff*in[3] + yCoeff*(-in[0] + -in[1] + -in[2] )
  1192. };
  1193. }
  1194. /* Utilizes the above, but also applies a line-based reflection on the input
  1195. * channels (swapping 0<->3 and 1<->2).
  1196. */
  1197. void VectorScatterRev(const float xCoeff, const float yCoeff,
  1198. const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t count) noexcept
  1199. {
  1200. ASSUME(count > 0);
  1201. for(size_t i{0u};i < count;++i)
  1202. {
  1203. std::array src{samples[0][i], samples[1][i], samples[2][i], samples[3][i]};
  1204. src = VectorPartialScatter(std::array{src[3], src[2], src[1], src[0]}, xCoeff, yCoeff);
  1205. samples[0][i] = src[0];
  1206. samples[1][i] = src[1];
  1207. samples[2][i] = src[2];
  1208. samples[3][i] = src[3];
  1209. }
  1210. }
  1211. /* This applies a Gerzon multiple-in/multiple-out (MIMO) vector all-pass
  1212. * filter to the 4-line input.
  1213. *
  1214. * It works by vectorizing a regular all-pass filter and replacing the delay
  1215. * element with a scattering matrix (like the one above) and a diagonal
  1216. * matrix of delay elements.
  1217. */
  1218. void VecAllpass::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, size_t main_offset,
  1219. const float xCoeff, const float yCoeff, const size_t todo) const noexcept
  1220. {
  1221. const auto linelen = size_t{Delay.mLine.size()/NUM_LINES};
  1222. const float feedCoeff{Coeff};
  1223. ASSUME(todo > 0);
  1224. for(size_t i{0u};i < todo;)
  1225. {
  1226. std::array<size_t,NUM_LINES> vap_offset{};
  1227. std::transform(Offset.cbegin(), Offset.cend(), vap_offset.begin(),
  1228. [main_offset,mask=linelen-1](const size_t delay) noexcept -> size_t
  1229. { return (main_offset-delay) & mask; });
  1230. main_offset &= linelen-1;
  1231. const auto maxoff = std::accumulate(vap_offset.cbegin(), vap_offset.cend(), main_offset,
  1232. [](const size_t offset, const size_t apoffset) { return std::max(offset, apoffset); });
  1233. size_t td{std::min(linelen - maxoff, todo - i)};
  1234. auto delayIn = Delay.mLine.begin();
  1235. auto delayOut = Delay.mLine.begin() + ptrdiff_t(main_offset*NUM_LINES);
  1236. main_offset += td;
  1237. do {
  1238. std::array<float,NUM_LINES> f{};
  1239. for(size_t j{0u};j < NUM_LINES;j++)
  1240. {
  1241. const float input{samples[j][i]};
  1242. const float out{delayIn[vap_offset[j]*NUM_LINES + j] - feedCoeff*input};
  1243. f[j] = input + feedCoeff*out;
  1244. samples[j][i] = out;
  1245. }
  1246. delayIn += NUM_LINES;
  1247. ++i;
  1248. f = VectorPartialScatter(f, xCoeff, yCoeff);
  1249. delayOut = std::copy_n(f.cbegin(), f.size(), delayOut);
  1250. } while(--td);
  1251. }
  1252. }
  1253. /* This applies a more typical all-pass to each line, without the scattering
  1254. * matrix.
  1255. */
  1256. void Allpass4::process(const al::span<ReverbUpdateLine,NUM_LINES> samples, const size_t offset,
  1257. const size_t todo) const noexcept
  1258. {
  1259. const DelayLineU delay{Delay};
  1260. const float feedCoeff{Coeff};
  1261. ASSUME(todo > 0);
  1262. for(size_t j{0u};j < NUM_LINES;j++)
  1263. {
  1264. auto smpiter = samples[j].begin();
  1265. const auto buffer = delay.get(j);
  1266. size_t dstoffset{offset};
  1267. size_t vap_offset{offset - Offset[j]};
  1268. for(size_t i{0u};i < todo;)
  1269. {
  1270. vap_offset &= buffer.size()-1;
  1271. dstoffset &= buffer.size()-1;
  1272. const size_t maxoff{std::max(dstoffset, vap_offset)};
  1273. const size_t td{std::min(buffer.size() - maxoff, todo - i)};
  1274. auto proc_sample = [buffer,feedCoeff,&vap_offset,&dstoffset](const float x) -> float
  1275. {
  1276. const float y{buffer[vap_offset++] - feedCoeff*x};
  1277. buffer[dstoffset++] = x + feedCoeff*y;
  1278. return y;
  1279. };
  1280. smpiter = std::transform(smpiter, smpiter+td, smpiter, proc_sample);
  1281. i += td;
  1282. }
  1283. }
  1284. }
  1285. /* This generates early reflections.
  1286. *
  1287. * This is done by obtaining the primary reflections (those arriving from the
  1288. * same direction as the source) from the main delay line. These are
  1289. * attenuated and all-pass filtered (based on the diffusion parameter).
  1290. *
  1291. * The early lines are then reflected about the origin to create the secondary
  1292. * reflections (those arriving from the opposite direction as the source).
  1293. *
  1294. * The early response is then completed by combining the primary reflections
  1295. * with the delayed and attenuated output from the early lines.
  1296. *
  1297. * Finally, the early response is reflected, scattered (based on diffusion),
  1298. * and fed into the late reverb section of the main delay line.
  1299. */
  1300. void ReverbPipeline::processEarly(const DelayLineU &main_delay, size_t offset,
  1301. const size_t samplesToDo, const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
  1302. const al::span<FloatBufferLine, NUM_LINES> outSamples)
  1303. {
  1304. const DelayLineU early_delay{mEarly.Delay};
  1305. const DelayLineU in_delay{main_delay};
  1306. const float mixX{mMixX};
  1307. const float mixY{mMixY};
  1308. ASSUME(samplesToDo <= BufferLineSize);
  1309. for(size_t base{0};base < samplesToDo;)
  1310. {
  1311. const size_t todo{std::min(samplesToDo-base, MAX_UPDATE_SAMPLES)};
  1312. /* First, load decorrelated samples from the main delay line as the
  1313. * primary reflections.
  1314. */
  1315. const auto fadeStep = 1.0f / static_cast<float>(todo);
  1316. const auto earlycoeff0 = float{mEarlyDelayCoeff[0]};
  1317. const auto earlycoeff1 = float{mEarlyDelayCoeff[1]};
  1318. mEarlyDelayCoeff[0] = mEarlyDelayCoeff[1];
  1319. for(size_t j{0_uz};j < NUM_LINES;j++)
  1320. {
  1321. const auto input = in_delay.get(j);
  1322. auto early_delay_tap0 = size_t{offset - mEarlyDelayTap[j][0]};
  1323. auto early_delay_tap1 = size_t{offset - mEarlyDelayTap[j][1]};
  1324. mEarlyDelayTap[j][0] = mEarlyDelayTap[j][1];
  1325. auto fadeCount = 0.0f;
  1326. auto tmp = tempSamples[j].begin();
  1327. for(size_t i{0_uz};i < todo;)
  1328. {
  1329. early_delay_tap0 &= input.size()-1;
  1330. early_delay_tap1 &= input.size()-1;
  1331. const auto max_tap = size_t{std::max(early_delay_tap0, early_delay_tap1)};
  1332. const auto td = size_t{std::min(input.size()-max_tap, todo-i)};
  1333. const auto intap0 = input.subspan(early_delay_tap0, td);
  1334. const auto intap1 = input.subspan(early_delay_tap1, td);
  1335. auto do_blend = [earlycoeff0,earlycoeff1,fadeStep,&fadeCount](const float in0,
  1336. const float in1) noexcept -> float
  1337. {
  1338. const auto ret = lerpf(in0*earlycoeff0, in1*earlycoeff1, fadeStep*fadeCount);
  1339. fadeCount += 1.0f;
  1340. return ret;
  1341. };
  1342. tmp = std::transform(intap0.begin(), intap0.end(), intap1.begin(), tmp, do_blend);
  1343. early_delay_tap0 += td;
  1344. early_delay_tap1 += td;
  1345. i += td;
  1346. }
  1347. /* Band-pass the incoming samples. */
  1348. auto&& filter = DualBiquad{mFilter[j].Lp, mFilter[j].Hp};
  1349. filter.process(al::span{tempSamples[j]}.first(todo), tempSamples[j]);
  1350. }
  1351. /* Apply an all-pass, to help color the initial reflections. */
  1352. mEarly.VecAp.process(tempSamples, offset, todo);
  1353. /* Apply a delay and bounce to generate secondary reflections. */
  1354. early_delay.writeReflected(offset, tempSamples, todo);
  1355. const auto feedb_coeff = mEarly.Coeff;
  1356. for(size_t j{0_uz};j < NUM_LINES;j++)
  1357. {
  1358. const auto input = early_delay.get(j);
  1359. auto feedb_tap = size_t{offset - mEarly.Offset[j]};
  1360. auto out = outSamples[j].begin() + base;
  1361. auto tmp = tempSamples[j].begin();
  1362. for(size_t i{0_uz};i < todo;)
  1363. {
  1364. feedb_tap &= input.size()-1;
  1365. const auto td = size_t{std::min(input.size() - feedb_tap, todo - i)};
  1366. const auto delaySrc = input.subspan(feedb_tap, td);
  1367. /* Combine the main input with the attenuated delayed echo for
  1368. * the early output.
  1369. */
  1370. out = std::transform(delaySrc.begin(), delaySrc.end(), tmp, out,
  1371. [feedb_coeff](const float delayspl, const float mainspl) noexcept -> float
  1372. { return delayspl*feedb_coeff + mainspl; });
  1373. /* Move the (non-attenuated) delayed echo to the temp buffer
  1374. * for feeding the late reverb.
  1375. */
  1376. tmp = std::copy_n(delaySrc.begin(), delaySrc.size(), tmp);
  1377. feedb_tap += td;
  1378. i += td;
  1379. }
  1380. }
  1381. /* Finally, apply a scatter and bounce to improve the initial diffusion
  1382. * in the late reverb, writing the result to the late delay line input.
  1383. */
  1384. VectorScatterRev(mixX, mixY, tempSamples, todo);
  1385. for(size_t j{0_uz};j < NUM_LINES;j++)
  1386. mLateDelayIn.write(offset, j, al::span{tempSamples[j]}.first(todo));
  1387. base += todo;
  1388. offset += todo;
  1389. }
  1390. }
  1391. auto Modulation::calcDelays(size_t todo) -> al::span<const uint>
  1392. {
  1393. auto idx = Index;
  1394. const auto step = Step;
  1395. const auto depth = Depth * float{gCubicTable.sTableSteps};
  1396. const auto delays = al::span{ModDelays}.first(todo);
  1397. std::generate(delays.begin(), delays.end(), [step,depth,&idx]
  1398. {
  1399. idx += step;
  1400. const auto x = static_cast<float>(idx&MOD_FRACMASK) * (1.0f/MOD_FRACONE);
  1401. /* Approximate sin(x*2pi). As long as it roughly fits a sinusoid shape
  1402. * and stays within [-1...+1], it needn't be perfect.
  1403. */
  1404. const auto lfo = !(idx&(MOD_FRACONE>>1))
  1405. ? ((-16.0f * x * x) + (8.0f * x))
  1406. : ((16.0f * x * x) + (-8.0f * x) + (-16.0f * x) + 8.0f);
  1407. return float2uint((lfo+1.0f) * depth);
  1408. });
  1409. Index = idx;
  1410. return delays;
  1411. }
  1412. /* This generates the reverb tail using a modified feed-back delay network
  1413. * (FDN).
  1414. *
  1415. * Results from the early reflections are mixed with the output from the
  1416. * modulated late delay lines.
  1417. *
  1418. * The late response is then completed by T60 and all-pass filtering the mix.
  1419. *
  1420. * Finally, the lines are reversed (so they feed their opposite directions)
  1421. * and scattered with the FDN matrix before re-feeding the delay lines.
  1422. */
  1423. void ReverbPipeline::processLate(size_t offset, const size_t samplesToDo,
  1424. const al::span<ReverbUpdateLine, NUM_LINES> tempSamples,
  1425. const al::span<FloatBufferLine, NUM_LINES> outSamples)
  1426. {
  1427. const DelayLineU late_delay{mLate.Delay};
  1428. const DelayLineU in_delay{mLateDelayIn};
  1429. const float mixX{mMixX};
  1430. const float mixY{mMixY};
  1431. ASSUME(samplesToDo <= BufferLineSize);
  1432. for(size_t base{0};base < samplesToDo;)
  1433. {
  1434. const size_t todo{std::min(std::min(mLate.Offset[0], MAX_UPDATE_SAMPLES),
  1435. samplesToDo-base)};
  1436. ASSUME(todo > 0);
  1437. /* First, calculate the modulated delays for the late feedback. */
  1438. const auto delays = mLate.Mod.calcDelays(todo);
  1439. /* Now load samples from the feedback delay lines. Filter the signal to
  1440. * apply its frequency-dependent decay.
  1441. */
  1442. for(size_t j{0_uz};j < NUM_LINES;++j)
  1443. {
  1444. const auto input = late_delay.get(j);
  1445. const auto midGain = mLate.T60[j].MidGain;
  1446. auto late_feedb_tap = size_t{offset - mLate.Offset[j]};
  1447. auto proc_sample = [input,midGain,&late_feedb_tap](const size_t idelay) -> float
  1448. {
  1449. /* Calculate the read sample offset and sub-sample offset
  1450. * between it and the next sample.
  1451. */
  1452. const auto delay = late_feedb_tap - (idelay>>gCubicTable.sTableBits);
  1453. const auto delayoffset = size_t{idelay & gCubicTable.sTableMask};
  1454. ++late_feedb_tap;
  1455. /* Get the samples around the delayed offset, interpolated for
  1456. * output.
  1457. */
  1458. const auto out0 = float{input[(delay ) & (input.size()-1)]};
  1459. const auto out1 = float{input[(delay-1) & (input.size()-1)]};
  1460. const auto out2 = float{input[(delay-2) & (input.size()-1)]};
  1461. const auto out3 = float{input[(delay-3) & (input.size()-1)]};
  1462. const auto out = out0*gCubicTable.getCoeff0(delayoffset)
  1463. + out1*gCubicTable.getCoeff1(delayoffset)
  1464. + out2*gCubicTable.getCoeff2(delayoffset)
  1465. + out3*gCubicTable.getCoeff3(delayoffset);
  1466. return out * midGain;
  1467. };
  1468. std::transform(delays.begin(), delays.end(), tempSamples[j].begin(), proc_sample);
  1469. mLate.T60[j].process(al::span{tempSamples[j]}.first(todo));
  1470. }
  1471. /* Next load decorrelated samples from the main delay lines. */
  1472. const float fadeStep{1.0f / static_cast<float>(todo)};
  1473. for(size_t j{0_uz};j < NUM_LINES;++j)
  1474. {
  1475. const auto input = in_delay.get(j);
  1476. auto late_delay_tap0 = size_t{offset - mLateDelayTap[j][0]};
  1477. auto late_delay_tap1 = size_t{offset - mLateDelayTap[j][1]};
  1478. mLateDelayTap[j][0] = mLateDelayTap[j][1];
  1479. const auto densityGain = mLate.DensityGain;
  1480. const auto densityStep = late_delay_tap0 != late_delay_tap1
  1481. ? densityGain*fadeStep : 0.0f;
  1482. auto fadeCount = 0.0f;
  1483. auto samples = tempSamples[j].begin();
  1484. for(size_t i{0u};i < todo;)
  1485. {
  1486. late_delay_tap0 &= input.size()-1;
  1487. late_delay_tap1 &= input.size()-1;
  1488. const auto td = size_t{std::min(todo - i,
  1489. input.size() - std::max(late_delay_tap0, late_delay_tap1))};
  1490. auto proc_sample = [input,densityGain,densityStep,&late_delay_tap0,
  1491. &late_delay_tap1,&fadeCount](const float sample) noexcept -> float
  1492. {
  1493. const auto fade0 = float{densityGain - densityStep*fadeCount};
  1494. const auto fade1 = float{densityStep*fadeCount};
  1495. fadeCount += 1.0f;
  1496. return input[late_delay_tap0++]*fade0 + input[late_delay_tap1++]*fade1
  1497. + sample;
  1498. };
  1499. samples = std::transform(samples, samples+ptrdiff_t(td), samples, proc_sample);
  1500. i += td;
  1501. }
  1502. }
  1503. /* Apply a vector all-pass to improve micro-surface diffusion, and
  1504. * write out the results for mixing.
  1505. */
  1506. mLate.VecAp.process(tempSamples, offset, mixX, mixY, todo);
  1507. for(size_t j{0_uz};j < NUM_LINES;++j)
  1508. std::copy_n(tempSamples[j].begin(), todo, outSamples[j].begin()+base);
  1509. /* Finally, scatter and bounce the results to refeed the feedback buffer. */
  1510. VectorScatterRev(mixX, mixY, tempSamples, todo);
  1511. for(size_t j{0_uz};j < NUM_LINES;++j)
  1512. late_delay.write(offset, j, al::span{tempSamples[j]}.first(todo));
  1513. base += todo;
  1514. offset += todo;
  1515. }
  1516. }
  1517. void ReverbState::process(const size_t samplesToDo, const al::span<const FloatBufferLine> samplesIn, const al::span<FloatBufferLine> samplesOut)
  1518. {
  1519. const size_t offset{mOffset};
  1520. ASSUME(samplesToDo <= BufferLineSize);
  1521. auto &oldpipeline = mPipelines[!mCurrentPipeline];
  1522. auto &pipeline = mPipelines[mCurrentPipeline];
  1523. /* Convert B-Format to A-Format for processing. */
  1524. const size_t numInput{std::min(samplesIn.size(), NUM_LINES)};
  1525. const al::span<float> tmpspan{al::assume_aligned<16>(mTempLine.data()), samplesToDo};
  1526. for(size_t c{0u};c < NUM_LINES;++c)
  1527. {
  1528. std::fill(tmpspan.begin(), tmpspan.end(), 0.0f);
  1529. for(size_t i{0};i < numInput;++i)
  1530. {
  1531. const float gain{B2A[c][i]};
  1532. auto mix_sample = [gain](const float sample, const float in) noexcept -> float
  1533. { return sample + in*gain; };
  1534. std::transform(tmpspan.begin(), tmpspan.end(), samplesIn[i].begin(), tmpspan.begin(),
  1535. mix_sample);
  1536. }
  1537. mMainDelay.write(offset, c, tmpspan);
  1538. }
  1539. mPipelineState = std::max(Fading, mPipelineState);
  1540. /* Process reverb for these samples. and mix them to the output. */
  1541. pipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples);
  1542. pipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
  1543. mixOut(pipeline, samplesOut, samplesToDo);
  1544. if(mPipelineState != Normal)
  1545. {
  1546. if(mPipelineState == Cleanup)
  1547. {
  1548. size_t numSamples{mSampleBuffer.size()/2};
  1549. const auto bufferspan = al::span{mSampleBuffer}.subspan(numSamples * !mCurrentPipeline,
  1550. numSamples);
  1551. std::fill_n(bufferspan.begin(), bufferspan.size(), 0.0f);
  1552. oldpipeline.clear();
  1553. mPipelineState = Normal;
  1554. }
  1555. else
  1556. {
  1557. /* If this is the final mix for this old pipeline, set the target
  1558. * gains to 0 to ensure a complete fade out, and set the state to
  1559. * Cleanup so the next invocation cleans up the delay buffers and
  1560. * filters.
  1561. */
  1562. if(samplesToDo >= oldpipeline.mFadeSampleCount)
  1563. {
  1564. for(auto &gains : oldpipeline.mEarly.Gains)
  1565. std::fill(gains.Target.begin(), gains.Target.end(), 0.0f);
  1566. for(auto &gains : oldpipeline.mLate.Gains)
  1567. std::fill(gains.Target.begin(), gains.Target.end(), 0.0f);
  1568. oldpipeline.mFadeSampleCount = 0;
  1569. mPipelineState = Cleanup;
  1570. }
  1571. else
  1572. oldpipeline.mFadeSampleCount -= samplesToDo;
  1573. /* Process the old reverb for these samples. */
  1574. oldpipeline.processEarly(mMainDelay, offset, samplesToDo, mTempSamples, mEarlySamples);
  1575. oldpipeline.processLate(offset, samplesToDo, mTempSamples, mLateSamples);
  1576. mixOut(oldpipeline, samplesOut, samplesToDo);
  1577. }
  1578. }
  1579. mOffset = offset + samplesToDo;
  1580. }
  1581. struct ReverbStateFactory final : public EffectStateFactory {
  1582. al::intrusive_ptr<EffectState> create() override
  1583. { return al::intrusive_ptr<EffectState>{new ReverbState{}}; }
  1584. };
  1585. } // namespace
  1586. EffectStateFactory *ReverbStateFactory_getFactory()
  1587. {
  1588. static ReverbStateFactory ReverbFactory{};
  1589. return &ReverbFactory;
  1590. }