| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220 |
- /*
- Formatting library for C++
- Copyright (c) 2012 - present, Victor Zverovich
- Permission is hereby granted, free of charge, to any person obtaining
- a copy of this software and associated documentation files (the
- "Software"), to deal in the Software without restriction, including
- without limitation the rights to use, copy, modify, merge, publish,
- distribute, sublicense, and/or sell copies of the Software, and to
- permit persons to whom the Software is furnished to do so, subject to
- the following conditions:
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
- LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
- OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
- WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- --- Optional exception to the license ---
- As an exception, if, as a result of your compiling your source code, portions
- of this Software are embedded into a machine-executable object form of such
- source code, you may redistribute such embedded portions in such object form
- without including the above copyright and permission notices.
- */
- #ifndef FMT_FORMAT_H_
- #define FMT_FORMAT_H_
- #ifndef _LIBCPP_REMOVE_TRANSITIVE_INCLUDES
- # define _LIBCPP_REMOVE_TRANSITIVE_INCLUDES
- # define FMT_REMOVE_TRANSITIVE_INCLUDES
- #endif
- #include "base.h"
- #ifndef FMT_MODULE
- # include <cmath> // std::signbit
- # include <cstddef> // std::byte
- # include <cstdint> // uint32_t
- # include <cstring> // std::memcpy
- # include <limits> // std::numeric_limits
- # include <new> // std::bad_alloc
- # if defined(__GLIBCXX__) && !defined(_GLIBCXX_USE_DUAL_ABI)
- // Workaround for pre gcc 5 libstdc++.
- # include <memory> // std::allocator_traits
- # endif
- # include <stdexcept> // std::runtime_error
- # include <string> // std::string
- # include <system_error> // std::system_error
- // Check FMT_CPLUSPLUS to avoid a warning in MSVC.
- # if FMT_HAS_INCLUDE(<bit>) && FMT_CPLUSPLUS > 201703L
- # include <bit> // std::bit_cast
- # endif
- // libc++ supports string_view in pre-c++17.
- # if FMT_HAS_INCLUDE(<string_view>) && \
- (FMT_CPLUSPLUS >= 201703L || defined(_LIBCPP_VERSION))
- # include <string_view>
- # define FMT_USE_STRING_VIEW
- # endif
- # if FMT_MSC_VERSION
- # include <intrin.h> // _BitScanReverse[64], _umul128
- # endif
- #endif // FMT_MODULE
- #if defined(FMT_USE_NONTYPE_TEMPLATE_ARGS)
- // Use the provided definition.
- #elif defined(__NVCOMPILER)
- # define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
- #elif FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L
- # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
- #elif defined(__cpp_nontype_template_args) && \
- __cpp_nontype_template_args >= 201911L
- # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
- #elif FMT_CLANG_VERSION >= 1200 && FMT_CPLUSPLUS >= 202002L
- # define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
- #else
- # define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
- #endif
- #if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
- # define FMT_INLINE_VARIABLE inline
- #else
- # define FMT_INLINE_VARIABLE
- #endif
- // Check if RTTI is disabled.
- #ifdef FMT_USE_RTTI
- // Use the provided definition.
- #elif defined(__GXX_RTTI) || FMT_HAS_FEATURE(cxx_rtti) || defined(_CPPRTTI) || \
- defined(__INTEL_RTTI__) || defined(__RTTI)
- // __RTTI is for EDG compilers. _CPPRTTI is for MSVC.
- # define FMT_USE_RTTI 1
- #else
- # define FMT_USE_RTTI 0
- #endif
- // Visibility when compiled as a shared library/object.
- #if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
- # define FMT_SO_VISIBILITY(value) FMT_VISIBILITY(value)
- #else
- # define FMT_SO_VISIBILITY(value)
- #endif
- #if FMT_GCC_VERSION || FMT_CLANG_VERSION
- # define FMT_NOINLINE __attribute__((noinline))
- #else
- # define FMT_NOINLINE
- #endif
- namespace std {
- template <typename T> struct iterator_traits<fmt::basic_appender<T>> {
- using iterator_category = output_iterator_tag;
- using value_type = T;
- using difference_type =
- decltype(static_cast<int*>(nullptr) - static_cast<int*>(nullptr));
- using pointer = void;
- using reference = void;
- };
- } // namespace std
- #ifndef FMT_THROW
- # if FMT_USE_EXCEPTIONS
- # if FMT_MSC_VERSION || defined(__NVCC__)
- FMT_BEGIN_NAMESPACE
- namespace detail {
- template <typename Exception> inline void do_throw(const Exception& x) {
- // Silence unreachable code warnings in MSVC and NVCC because these
- // are nearly impossible to fix in a generic code.
- volatile bool b = true;
- if (b) throw x;
- }
- } // namespace detail
- FMT_END_NAMESPACE
- # define FMT_THROW(x) detail::do_throw(x)
- # else
- # define FMT_THROW(x) throw x
- # endif
- # else
- # define FMT_THROW(x) \
- ::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what())
- # endif // FMT_USE_EXCEPTIONS
- #endif // FMT_THROW
- // Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
- // integer formatter template instantiations to just one by only using the
- // largest integer type. This results in a reduction in binary size but will
- // cause a decrease in integer formatting performance.
- #if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
- # define FMT_REDUCE_INT_INSTANTIATIONS 0
- #endif
- FMT_BEGIN_NAMESPACE
- template <typename Char, typename Traits, typename Allocator>
- struct is_contiguous<std::basic_string<Char, Traits, Allocator>>
- : std::true_type {};
- namespace detail {
- // __builtin_clz is broken in clang with Microsoft codegen:
- // https://github.com/fmtlib/fmt/issues/519.
- #if !FMT_MSC_VERSION
- # if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
- # define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
- # endif
- # if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
- # define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
- # endif
- #endif
- // Some compilers masquerade as both MSVC and GCC but otherwise support
- // __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
- // MSVC intrinsics if the clz and clzll builtins are not available.
- #if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL)
- // Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
- # ifndef __clang__
- # pragma intrinsic(_BitScanReverse)
- # ifdef _WIN64
- # pragma intrinsic(_BitScanReverse64)
- # endif
- # endif
- inline auto clz(uint32_t x) -> int {
- FMT_ASSERT(x != 0, "");
- FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
- unsigned long r = 0;
- _BitScanReverse(&r, x);
- return 31 ^ static_cast<int>(r);
- }
- # define FMT_BUILTIN_CLZ(n) detail::clz(n)
- inline auto clzll(uint64_t x) -> int {
- FMT_ASSERT(x != 0, "");
- FMT_MSC_WARNING(suppress : 6102) // Suppress a bogus static analysis warning.
- unsigned long r = 0;
- # ifdef _WIN64
- _BitScanReverse64(&r, x);
- # else
- // Scan the high 32 bits.
- if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
- return 63 ^ static_cast<int>(r + 32);
- // Scan the low 32 bits.
- _BitScanReverse(&r, static_cast<uint32_t>(x));
- # endif
- return 63 ^ static_cast<int>(r);
- }
- # define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
- #endif // FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL)
- FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
- ignore_unused(condition);
- #ifdef FMT_FUZZ
- if (condition) throw std::runtime_error("fuzzing limit reached");
- #endif
- }
- #if defined(FMT_USE_STRING_VIEW)
- template <typename Char> using std_string_view = std::basic_string_view<Char>;
- #else
- template <typename T> struct std_string_view {};
- #endif
- template <typename Char, Char... C> struct string_literal {
- static constexpr Char value[sizeof...(C)] = {C...};
- constexpr operator basic_string_view<Char>() const {
- return {value, sizeof...(C)};
- }
- };
- #if FMT_CPLUSPLUS < 201703L
- template <typename Char, Char... C>
- constexpr Char string_literal<Char, C...>::value[sizeof...(C)];
- #endif
- // Implementation of std::bit_cast for pre-C++20.
- template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
- FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
- #ifdef __cpp_lib_bit_cast
- if (is_constant_evaluated()) return std::bit_cast<To>(from);
- #endif
- auto to = To();
- // The cast suppresses a bogus -Wclass-memaccess on GCC.
- std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
- return to;
- }
- inline auto is_big_endian() -> bool {
- #ifdef _WIN32
- return false;
- #elif defined(__BIG_ENDIAN__)
- return true;
- #elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
- return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
- #else
- struct bytes {
- char data[sizeof(int)];
- };
- return bit_cast<bytes>(1).data[0] == 0;
- #endif
- }
- class uint128_fallback {
- private:
- uint64_t lo_, hi_;
- public:
- constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
- constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
- constexpr auto high() const noexcept -> uint64_t { return hi_; }
- constexpr auto low() const noexcept -> uint64_t { return lo_; }
- template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
- constexpr explicit operator T() const {
- return static_cast<T>(lo_);
- }
- friend constexpr auto operator==(const uint128_fallback& lhs,
- const uint128_fallback& rhs) -> bool {
- return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
- }
- friend constexpr auto operator!=(const uint128_fallback& lhs,
- const uint128_fallback& rhs) -> bool {
- return !(lhs == rhs);
- }
- friend constexpr auto operator>(const uint128_fallback& lhs,
- const uint128_fallback& rhs) -> bool {
- return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
- }
- friend constexpr auto operator|(const uint128_fallback& lhs,
- const uint128_fallback& rhs)
- -> uint128_fallback {
- return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
- }
- friend constexpr auto operator&(const uint128_fallback& lhs,
- const uint128_fallback& rhs)
- -> uint128_fallback {
- return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
- }
- friend constexpr auto operator~(const uint128_fallback& n)
- -> uint128_fallback {
- return {~n.hi_, ~n.lo_};
- }
- friend FMT_CONSTEXPR auto operator+(const uint128_fallback& lhs,
- const uint128_fallback& rhs)
- -> uint128_fallback {
- auto result = uint128_fallback(lhs);
- result += rhs;
- return result;
- }
- friend FMT_CONSTEXPR auto operator*(const uint128_fallback& lhs, uint32_t rhs)
- -> uint128_fallback {
- FMT_ASSERT(lhs.hi_ == 0, "");
- uint64_t hi = (lhs.lo_ >> 32) * rhs;
- uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
- uint64_t new_lo = (hi << 32) + lo;
- return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
- }
- friend constexpr auto operator-(const uint128_fallback& lhs, uint64_t rhs)
- -> uint128_fallback {
- return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
- }
- FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
- if (shift == 64) return {0, hi_};
- if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
- return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
- }
- FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
- if (shift == 64) return {lo_, 0};
- if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
- return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
- }
- FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
- return *this = *this >> shift;
- }
- FMT_CONSTEXPR void operator+=(uint128_fallback n) {
- uint64_t new_lo = lo_ + n.lo_;
- uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
- FMT_ASSERT(new_hi >= hi_, "");
- lo_ = new_lo;
- hi_ = new_hi;
- }
- FMT_CONSTEXPR void operator&=(uint128_fallback n) {
- lo_ &= n.lo_;
- hi_ &= n.hi_;
- }
- FMT_CONSTEXPR20 auto operator+=(uint64_t n) noexcept -> uint128_fallback& {
- if (is_constant_evaluated()) {
- lo_ += n;
- hi_ += (lo_ < n ? 1 : 0);
- return *this;
- }
- #if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
- unsigned long long carry;
- lo_ = __builtin_addcll(lo_, n, 0, &carry);
- hi_ += carry;
- #elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
- unsigned long long result;
- auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
- lo_ = result;
- hi_ += carry;
- #elif defined(_MSC_VER) && defined(_M_X64)
- auto carry = _addcarry_u64(0, lo_, n, &lo_);
- _addcarry_u64(carry, hi_, 0, &hi_);
- #else
- lo_ += n;
- hi_ += (lo_ < n ? 1 : 0);
- #endif
- return *this;
- }
- };
- using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;
- #ifdef UINTPTR_MAX
- using uintptr_t = ::uintptr_t;
- #else
- using uintptr_t = uint128_t;
- #endif
- // Returns the largest possible value for type T. Same as
- // std::numeric_limits<T>::max() but shorter and not affected by the max macro.
- template <typename T> constexpr auto max_value() -> T {
- return (std::numeric_limits<T>::max)();
- }
- template <typename T> constexpr auto num_bits() -> int {
- return std::numeric_limits<T>::digits;
- }
- // std::numeric_limits<T>::digits may return 0 for 128-bit ints.
- template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
- template <> constexpr auto num_bits<uint128_opt>() -> int { return 128; }
- template <> constexpr auto num_bits<uint128_fallback>() -> int { return 128; }
- // A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
- // and 128-bit pointers to uint128_fallback.
- template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
- inline auto bit_cast(const From& from) -> To {
- constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned short));
- struct data_t {
- unsigned short value[static_cast<unsigned>(size)];
- } data = bit_cast<data_t>(from);
- auto result = To();
- if (const_check(is_big_endian())) {
- for (int i = 0; i < size; ++i)
- result = (result << num_bits<unsigned short>()) | data.value[i];
- } else {
- for (int i = size - 1; i >= 0; --i)
- result = (result << num_bits<unsigned short>()) | data.value[i];
- }
- return result;
- }
- template <typename UInt>
- FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int {
- int lz = 0;
- constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1);
- for (; (n & msb_mask) == 0; n <<= 1) lz++;
- return lz;
- }
- FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int {
- #ifdef FMT_BUILTIN_CLZ
- if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n);
- #endif
- return countl_zero_fallback(n);
- }
- FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int {
- #ifdef FMT_BUILTIN_CLZLL
- if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n);
- #endif
- return countl_zero_fallback(n);
- }
- FMT_INLINE void assume(bool condition) {
- (void)condition;
- #if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
- __builtin_assume(condition);
- #elif FMT_GCC_VERSION
- if (!condition) __builtin_unreachable();
- #endif
- }
- // Attempts to reserve space for n extra characters in the output range.
- // Returns a pointer to the reserved range or a reference to it.
- template <typename OutputIt,
- FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value&&
- is_contiguous<typename OutputIt::container>::value)>
- #if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
- __attribute__((no_sanitize("undefined")))
- #endif
- FMT_CONSTEXPR20 inline auto
- reserve(OutputIt it, size_t n) -> typename OutputIt::value_type* {
- auto& c = get_container(it);
- size_t size = c.size();
- c.resize(size + n);
- return &c[size];
- }
- template <typename T>
- FMT_CONSTEXPR20 inline auto reserve(basic_appender<T> it, size_t n)
- -> basic_appender<T> {
- buffer<T>& buf = get_container(it);
- buf.try_reserve(buf.size() + n);
- return it;
- }
- template <typename Iterator>
- constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
- return it;
- }
- template <typename OutputIt>
- using reserve_iterator =
- remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
- template <typename T, typename OutputIt>
- constexpr auto to_pointer(OutputIt, size_t) -> T* {
- return nullptr;
- }
- template <typename T>
- FMT_CONSTEXPR20 auto to_pointer(basic_appender<T> it, size_t n) -> T* {
- buffer<T>& buf = get_container(it);
- buf.try_reserve(buf.size() + n);
- auto size = buf.size();
- if (buf.capacity() < size + n) return nullptr;
- buf.try_resize(size + n);
- return buf.data() + size;
- }
- template <typename OutputIt,
- FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value&&
- is_contiguous<typename OutputIt::container>::value)>
- inline auto base_iterator(OutputIt it,
- typename OutputIt::container_type::value_type*)
- -> OutputIt {
- return it;
- }
- template <typename Iterator>
- constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
- return it;
- }
- // <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
- // instead (#1998).
- template <typename OutputIt, typename Size, typename T>
- FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
- -> OutputIt {
- for (Size i = 0; i < count; ++i) *out++ = value;
- return out;
- }
- template <typename T, typename Size>
- FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
- if (is_constant_evaluated()) return fill_n<T*, Size, T>(out, count, value);
- std::memset(out, value, to_unsigned(count));
- return out + count;
- }
- template <typename OutChar, typename InputIt, typename OutputIt>
- FMT_CONSTEXPR FMT_NOINLINE auto copy_noinline(InputIt begin, InputIt end,
- OutputIt out) -> OutputIt {
- return copy<OutChar>(begin, end, out);
- }
- // A public domain branchless UTF-8 decoder by Christopher Wellons:
- // https://github.com/skeeto/branchless-utf8
- /* Decode the next character, c, from s, reporting errors in e.
- *
- * Since this is a branchless decoder, four bytes will be read from the
- * buffer regardless of the actual length of the next character. This
- * means the buffer _must_ have at least three bytes of zero padding
- * following the end of the data stream.
- *
- * Errors are reported in e, which will be non-zero if the parsed
- * character was somehow invalid: invalid byte sequence, non-canonical
- * encoding, or a surrogate half.
- *
- * The function returns a pointer to the next character. When an error
- * occurs, this pointer will be a guess that depends on the particular
- * error, but it will always advance at least one byte.
- */
- FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
- -> const char* {
- constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
- constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
- constexpr const int shiftc[] = {0, 18, 12, 6, 0};
- constexpr const int shifte[] = {0, 6, 4, 2, 0};
- int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4"
- [static_cast<unsigned char>(*s) >> 3];
- // Compute the pointer to the next character early so that the next
- // iteration can start working on the next character. Neither Clang
- // nor GCC figure out this reordering on their own.
- const char* next = s + len + !len;
- using uchar = unsigned char;
- // Assume a four-byte character and load four bytes. Unused bits are
- // shifted out.
- *c = uint32_t(uchar(s[0]) & masks[len]) << 18;
- *c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
- *c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
- *c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
- *c >>= shiftc[len];
- // Accumulate the various error conditions.
- *e = (*c < mins[len]) << 6; // non-canonical encoding
- *e |= ((*c >> 11) == 0x1b) << 7; // surrogate half?
- *e |= (*c > 0x10FFFF) << 8; // out of range?
- *e |= (uchar(s[1]) & 0xc0) >> 2;
- *e |= (uchar(s[2]) & 0xc0) >> 4;
- *e |= uchar(s[3]) >> 6;
- *e ^= 0x2a; // top two bits of each tail byte correct?
- *e >>= shifte[len];
- return next;
- }
- constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t();
- // Invokes f(cp, sv) for every code point cp in s with sv being the string view
- // corresponding to the code point. cp is invalid_code_point on error.
- template <typename F>
- FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
- auto decode = [f](const char* buf_ptr, const char* ptr) {
- auto cp = uint32_t();
- auto error = 0;
- auto end = utf8_decode(buf_ptr, &cp, &error);
- bool result = f(error ? invalid_code_point : cp,
- string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
- return result ? (error ? buf_ptr + 1 : end) : nullptr;
- };
- auto p = s.data();
- const size_t block_size = 4; // utf8_decode always reads blocks of 4 chars.
- if (s.size() >= block_size) {
- for (auto end = p + s.size() - block_size + 1; p < end;) {
- p = decode(p, p);
- if (!p) return;
- }
- }
- auto num_chars_left = to_unsigned(s.data() + s.size() - p);
- if (num_chars_left == 0) return;
- // Suppress bogus -Wstringop-overflow.
- if (FMT_GCC_VERSION) num_chars_left &= 3;
- char buf[2 * block_size - 1] = {};
- copy<char>(p, p + num_chars_left, buf);
- const char* buf_ptr = buf;
- do {
- auto end = decode(buf_ptr, p);
- if (!end) return;
- p += end - buf_ptr;
- buf_ptr = end;
- } while (buf_ptr < buf + num_chars_left);
- }
- template <typename Char>
- inline auto compute_width(basic_string_view<Char> s) -> size_t {
- return s.size();
- }
- // Computes approximate display width of a UTF-8 string.
- FMT_CONSTEXPR inline auto compute_width(string_view s) -> size_t {
- size_t num_code_points = 0;
- // It is not a lambda for compatibility with C++14.
- struct count_code_points {
- size_t* count;
- FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
- *count += to_unsigned(
- 1 +
- (cp >= 0x1100 &&
- (cp <= 0x115f || // Hangul Jamo init. consonants
- cp == 0x2329 || // LEFT-POINTING ANGLE BRACKET
- cp == 0x232a || // RIGHT-POINTING ANGLE BRACKET
- // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
- (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
- (cp >= 0xac00 && cp <= 0xd7a3) || // Hangul Syllables
- (cp >= 0xf900 && cp <= 0xfaff) || // CJK Compatibility Ideographs
- (cp >= 0xfe10 && cp <= 0xfe19) || // Vertical Forms
- (cp >= 0xfe30 && cp <= 0xfe6f) || // CJK Compatibility Forms
- (cp >= 0xff00 && cp <= 0xff60) || // Fullwidth Forms
- (cp >= 0xffe0 && cp <= 0xffe6) || // Fullwidth Forms
- (cp >= 0x20000 && cp <= 0x2fffd) || // CJK
- (cp >= 0x30000 && cp <= 0x3fffd) ||
- // Miscellaneous Symbols and Pictographs + Emoticons:
- (cp >= 0x1f300 && cp <= 0x1f64f) ||
- // Supplemental Symbols and Pictographs:
- (cp >= 0x1f900 && cp <= 0x1f9ff))));
- return true;
- }
- };
- // We could avoid branches by using utf8_decode directly.
- for_each_codepoint(s, count_code_points{&num_code_points});
- return num_code_points;
- }
- template <typename Char>
- inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
- return min_of(n, s.size());
- }
- // Calculates the index of the nth code point in a UTF-8 string.
- inline auto code_point_index(string_view s, size_t n) -> size_t {
- size_t result = s.size();
- const char* begin = s.begin();
- for_each_codepoint(s, [begin, &n, &result](uint32_t, string_view sv) {
- if (n != 0) {
- --n;
- return true;
- }
- result = to_unsigned(sv.begin() - begin);
- return false;
- });
- return result;
- }
- template <typename T> struct is_integral : std::is_integral<T> {};
- template <> struct is_integral<int128_opt> : std::true_type {};
- template <> struct is_integral<uint128_t> : std::true_type {};
- template <typename T>
- using is_signed =
- std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
- std::is_same<T, int128_opt>::value>;
- template <typename T>
- using is_integer =
- bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
- !std::is_same<T, char>::value &&
- !std::is_same<T, wchar_t>::value>;
- #if defined(FMT_USE_FLOAT128)
- // Use the provided definition.
- #elif FMT_CLANG_VERSION && FMT_HAS_INCLUDE(<quadmath.h>)
- # define FMT_USE_FLOAT128 1
- #elif FMT_GCC_VERSION && defined(_GLIBCXX_USE_FLOAT128) && \
- !defined(__STRICT_ANSI__)
- # define FMT_USE_FLOAT128 1
- #else
- # define FMT_USE_FLOAT128 0
- #endif
- #if FMT_USE_FLOAT128
- using float128 = __float128;
- #else
- struct float128 {};
- #endif
- template <typename T> using is_float128 = std::is_same<T, float128>;
- template <typename T>
- using is_floating_point =
- bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;
- template <typename T, bool = std::is_floating_point<T>::value>
- struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
- sizeof(T) <= sizeof(double)> {};
- template <typename T> struct is_fast_float<T, false> : std::false_type {};
- template <typename T>
- using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;
- #ifndef FMT_USE_FULL_CACHE_DRAGONBOX
- # define FMT_USE_FULL_CACHE_DRAGONBOX 0
- #endif
- // An allocator that uses malloc/free to allow removing dependency on the C++
- // standard libary runtime.
- template <typename T> struct allocator {
- using value_type = T;
- T* allocate(size_t n) {
- FMT_ASSERT(n <= max_value<size_t>() / sizeof(T), "");
- T* p = static_cast<T*>(malloc(n * sizeof(T)));
- if (!p) FMT_THROW(std::bad_alloc());
- return p;
- }
- void deallocate(T* p, size_t) { free(p); }
- };
- } // namespace detail
- FMT_BEGIN_EXPORT
- // The number of characters to store in the basic_memory_buffer object itself
- // to avoid dynamic memory allocation.
- enum { inline_buffer_size = 500 };
- /**
- * A dynamically growing memory buffer for trivially copyable/constructible
- * types with the first `SIZE` elements stored in the object itself. Most
- * commonly used via the `memory_buffer` alias for `char`.
- *
- * **Example**:
- *
- * auto out = fmt::memory_buffer();
- * fmt::format_to(std::back_inserter(out), "The answer is {}.", 42);
- *
- * This will append "The answer is 42." to `out`. The buffer content can be
- * converted to `std::string` with `to_string(out)`.
- */
- template <typename T, size_t SIZE = inline_buffer_size,
- typename Allocator = detail::allocator<T>>
- class basic_memory_buffer : public detail::buffer<T> {
- private:
- T store_[SIZE];
- // Don't inherit from Allocator to avoid generating type_info for it.
- FMT_NO_UNIQUE_ADDRESS Allocator alloc_;
- // Deallocate memory allocated by the buffer.
- FMT_CONSTEXPR20 void deallocate() {
- T* data = this->data();
- if (data != store_) alloc_.deallocate(data, this->capacity());
- }
- static FMT_CONSTEXPR20 void grow(detail::buffer<T>& buf, size_t size) {
- detail::abort_fuzzing_if(size > 5000);
- auto& self = static_cast<basic_memory_buffer&>(buf);
- const size_t max_size =
- std::allocator_traits<Allocator>::max_size(self.alloc_);
- size_t old_capacity = buf.capacity();
- size_t new_capacity = old_capacity + old_capacity / 2;
- if (size > new_capacity)
- new_capacity = size;
- else if (new_capacity > max_size)
- new_capacity = max_of(size, max_size);
- T* old_data = buf.data();
- T* new_data = self.alloc_.allocate(new_capacity);
- // Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
- detail::assume(buf.size() <= new_capacity);
- // The following code doesn't throw, so the raw pointer above doesn't leak.
- memcpy(new_data, old_data, buf.size() * sizeof(T));
- self.set(new_data, new_capacity);
- // deallocate must not throw according to the standard, but even if it does,
- // the buffer already uses the new storage and will deallocate it in
- // destructor.
- if (old_data != self.store_) self.alloc_.deallocate(old_data, old_capacity);
- }
- public:
- using value_type = T;
- using const_reference = const T&;
- FMT_CONSTEXPR explicit basic_memory_buffer(
- const Allocator& alloc = Allocator())
- : detail::buffer<T>(grow), alloc_(alloc) {
- this->set(store_, SIZE);
- if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
- }
- FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
- private:
- // Move data from other to this buffer.
- FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
- alloc_ = std::move(other.alloc_);
- T* data = other.data();
- size_t size = other.size(), capacity = other.capacity();
- if (data == other.store_) {
- this->set(store_, capacity);
- detail::copy<T>(other.store_, other.store_ + size, store_);
- } else {
- this->set(data, capacity);
- // Set pointer to the inline array so that delete is not called
- // when deallocating.
- other.set(other.store_, 0);
- other.clear();
- }
- this->resize(size);
- }
- public:
- /// Constructs a `basic_memory_buffer` object moving the content of the other
- /// object to it.
- FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept
- : detail::buffer<T>(grow) {
- move(other);
- }
- /// Moves the content of the other `basic_memory_buffer` object to this one.
- auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
- FMT_ASSERT(this != &other, "");
- deallocate();
- move(other);
- return *this;
- }
- // Returns a copy of the allocator associated with this buffer.
- auto get_allocator() const -> Allocator { return alloc_; }
- /// Resizes the buffer to contain `count` elements. If T is a POD type new
- /// elements may not be initialized.
- FMT_CONSTEXPR void resize(size_t count) { this->try_resize(count); }
- /// Increases the buffer capacity to `new_capacity`.
- void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
- using detail::buffer<T>::append;
- template <typename ContiguousRange>
- FMT_CONSTEXPR20 void append(const ContiguousRange& range) {
- append(range.data(), range.data() + range.size());
- }
- };
- using memory_buffer = basic_memory_buffer<char>;
- template <size_t SIZE>
- FMT_NODISCARD auto to_string(const basic_memory_buffer<char, SIZE>& buf)
- -> std::string {
- auto size = buf.size();
- detail::assume(size < std::string().max_size());
- return {buf.data(), size};
- }
- // A writer to a buffered stream. It doesn't own the underlying stream.
- class writer {
- private:
- detail::buffer<char>* buf_;
- // We cannot create a file buffer in advance because any write to a FILE may
- // invalidate it.
- FILE* file_;
- public:
- inline writer(FILE* f) : buf_(nullptr), file_(f) {}
- inline writer(detail::buffer<char>& buf) : buf_(&buf) {}
- /// Formats `args` according to specifications in `fmt` and writes the
- /// output to the file.
- template <typename... T> void print(format_string<T...> fmt, T&&... args) {
- if (buf_)
- fmt::format_to(appender(*buf_), fmt, std::forward<T>(args)...);
- else
- fmt::print(file_, fmt, std::forward<T>(args)...);
- }
- };
- class string_buffer {
- private:
- std::string str_;
- detail::container_buffer<std::string> buf_;
- public:
- inline string_buffer() : buf_(str_) {}
- inline operator writer() { return buf_; }
- inline std::string& str() { return str_; }
- };
- template <typename T, size_t SIZE, typename Allocator>
- struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
- };
- // Suppress a misleading warning in older versions of clang.
- FMT_PRAGMA_CLANG(diagnostic ignored "-Wweak-vtables")
- /// An error reported from a formatting function.
- class FMT_SO_VISIBILITY("default") format_error : public std::runtime_error {
- public:
- using std::runtime_error::runtime_error;
- };
- class loc_value;
- FMT_END_EXPORT
- namespace detail {
- FMT_API auto write_console(int fd, string_view text) -> bool;
- FMT_API void print(FILE*, string_view);
- } // namespace detail
- namespace detail {
- template <typename Char, size_t N> struct fixed_string {
- FMT_CONSTEXPR20 fixed_string(const Char (&s)[N]) {
- detail::copy<Char, const Char*, Char*>(static_cast<const Char*>(s), s + N,
- data);
- }
- Char data[N] = {};
- };
- // Converts a compile-time string to basic_string_view.
- FMT_EXPORT template <typename Char, size_t N>
- constexpr auto compile_string_to_view(const Char (&s)[N])
- -> basic_string_view<Char> {
- // Remove trailing NUL character if needed. Won't be present if this is used
- // with a raw character array (i.e. not defined as a string).
- return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
- }
- FMT_EXPORT template <typename Char>
- constexpr auto compile_string_to_view(basic_string_view<Char> s)
- -> basic_string_view<Char> {
- return s;
- }
- // Returns true if value is negative, false otherwise.
- // Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
- template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
- constexpr auto is_negative(T value) -> bool {
- return value < 0;
- }
- template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
- constexpr auto is_negative(T) -> bool {
- return false;
- }
- // Smallest of uint32_t, uint64_t, uint128_t that is large enough to
- // represent all values of an integral type T.
- template <typename T>
- using uint32_or_64_or_128_t =
- conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
- uint32_t,
- conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
- template <typename T>
- using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
- #define FMT_POWERS_OF_10(factor) \
- factor * 10, (factor) * 100, (factor) * 1000, (factor) * 10000, \
- (factor) * 100000, (factor) * 1000000, (factor) * 10000000, \
- (factor) * 100000000, (factor) * 1000000000
- // Converts value in the range [0, 100) to a string.
- // GCC generates slightly better code when value is pointer-size.
- inline auto digits2(size_t value) -> const char* {
- // Align data since unaligned access may be slower when crossing a
- // hardware-specific boundary.
- alignas(2) static const char data[] =
- "0001020304050607080910111213141516171819"
- "2021222324252627282930313233343536373839"
- "4041424344454647484950515253545556575859"
- "6061626364656667686970717273747576777879"
- "8081828384858687888990919293949596979899";
- return &data[value * 2];
- }
- template <typename Char> constexpr auto getsign(sign s) -> Char {
- return static_cast<char>(((' ' << 24) | ('+' << 16) | ('-' << 8)) >>
- (static_cast<int>(s) * 8));
- }
- template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
- int count = 1;
- for (;;) {
- // Integer division is slow so do it for a group of four digits instead
- // of for every digit. The idea comes from the talk by Alexandrescu
- // "Three Optimization Tips for C++". See speed-test for a comparison.
- if (n < 10) return count;
- if (n < 100) return count + 1;
- if (n < 1000) return count + 2;
- if (n < 10000) return count + 3;
- n /= 10000u;
- count += 4;
- }
- }
- #if FMT_USE_INT128
- FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
- return count_digits_fallback(n);
- }
- #endif
- #ifdef FMT_BUILTIN_CLZLL
- // It is a separate function rather than a part of count_digits to workaround
- // the lack of static constexpr in constexpr functions.
- inline auto do_count_digits(uint64_t n) -> int {
- // This has comparable performance to the version by Kendall Willets
- // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
- // but uses smaller tables.
- // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
- static constexpr uint8_t bsr2log10[] = {
- 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5,
- 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10,
- 10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
- 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
- auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
- static constexpr const uint64_t zero_or_powers_of_10[] = {
- 0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
- 10000000000000000000ULL};
- return t - (n < zero_or_powers_of_10[t]);
- }
- #endif
- // Returns the number of decimal digits in n. Leading zeros are not counted
- // except for n == 0 in which case count_digits returns 1.
- FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
- #ifdef FMT_BUILTIN_CLZLL
- if (!is_constant_evaluated() && !FMT_OPTIMIZE_SIZE) return do_count_digits(n);
- #endif
- return count_digits_fallback(n);
- }
- // Counts the number of digits in n. BITS = log2(radix).
- template <int BITS, typename UInt>
- FMT_CONSTEXPR auto count_digits(UInt n) -> int {
- #ifdef FMT_BUILTIN_CLZ
- if (!is_constant_evaluated() && num_bits<UInt>() == 32)
- return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
- #endif
- // Lambda avoids unreachable code warnings from NVHPC.
- return [](UInt m) {
- int num_digits = 0;
- do {
- ++num_digits;
- } while ((m >>= BITS) != 0);
- return num_digits;
- }(n);
- }
- #ifdef FMT_BUILTIN_CLZ
- // It is a separate function rather than a part of count_digits to workaround
- // the lack of static constexpr in constexpr functions.
- FMT_INLINE auto do_count_digits(uint32_t n) -> int {
- // An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
- // This increments the upper 32 bits (log10(T) - 1) when >= T is added.
- # define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
- static constexpr uint64_t table[] = {
- FMT_INC(0), FMT_INC(0), FMT_INC(0), // 8
- FMT_INC(10), FMT_INC(10), FMT_INC(10), // 64
- FMT_INC(100), FMT_INC(100), FMT_INC(100), // 512
- FMT_INC(1000), FMT_INC(1000), FMT_INC(1000), // 4096
- FMT_INC(10000), FMT_INC(10000), FMT_INC(10000), // 32k
- FMT_INC(100000), FMT_INC(100000), FMT_INC(100000), // 256k
- FMT_INC(1000000), FMT_INC(1000000), FMT_INC(1000000), // 2048k
- FMT_INC(10000000), FMT_INC(10000000), FMT_INC(10000000), // 16M
- FMT_INC(100000000), FMT_INC(100000000), FMT_INC(100000000), // 128M
- FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000), // 1024M
- FMT_INC(1000000000), FMT_INC(1000000000) // 4B
- };
- auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
- return static_cast<int>((n + inc) >> 32);
- }
- #endif
- // Optional version of count_digits for better performance on 32-bit platforms.
- FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
- #ifdef FMT_BUILTIN_CLZ
- if (!is_constant_evaluated() && !FMT_OPTIMIZE_SIZE) return do_count_digits(n);
- #endif
- return count_digits_fallback(n);
- }
- template <typename Int> constexpr auto digits10() noexcept -> int {
- return std::numeric_limits<Int>::digits10;
- }
- template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
- template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }
- template <typename Char> struct thousands_sep_result {
- std::string grouping;
- Char thousands_sep;
- };
- template <typename Char>
- FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
- template <typename Char>
- inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
- auto result = thousands_sep_impl<char>(loc);
- return {result.grouping, Char(result.thousands_sep)};
- }
- template <>
- inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
- return thousands_sep_impl<wchar_t>(loc);
- }
- template <typename Char>
- FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
- template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
- return Char(decimal_point_impl<char>(loc));
- }
- template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
- return decimal_point_impl<wchar_t>(loc);
- }
- #ifndef FMT_HEADER_ONLY
- FMT_BEGIN_EXPORT
- extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
- -> thousands_sep_result<char>;
- extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
- -> thousands_sep_result<wchar_t>;
- extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
- extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
- FMT_END_EXPORT
- #endif // FMT_HEADER_ONLY
- // Compares two characters for equality.
- template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
- return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
- }
- inline auto equal2(const char* lhs, const char* rhs) -> bool {
- return memcmp(lhs, rhs, 2) == 0;
- }
- // Writes a two-digit value to out.
- template <typename Char>
- FMT_CONSTEXPR20 FMT_INLINE void write2digits(Char* out, size_t value) {
- if (!is_constant_evaluated() && std::is_same<Char, char>::value &&
- !FMT_OPTIMIZE_SIZE) {
- memcpy(out, digits2(value), 2);
- return;
- }
- *out++ = static_cast<Char>('0' + value / 10);
- *out = static_cast<Char>('0' + value % 10);
- }
- // Formats a decimal unsigned integer value writing to out pointing to a buffer
- // of specified size. The caller must ensure that the buffer is large enough.
- template <typename Char, typename UInt>
- FMT_CONSTEXPR20 auto do_format_decimal(Char* out, UInt value, int size)
- -> Char* {
- FMT_ASSERT(size >= count_digits(value), "invalid digit count");
- unsigned n = to_unsigned(size);
- while (value >= 100) {
- // Integer division is slow so do it for a group of two digits instead
- // of for every digit. The idea comes from the talk by Alexandrescu
- // "Three Optimization Tips for C++". See speed-test for a comparison.
- n -= 2;
- write2digits(out + n, static_cast<unsigned>(value % 100));
- value /= 100;
- }
- if (value >= 10) {
- n -= 2;
- write2digits(out + n, static_cast<unsigned>(value));
- } else {
- out[--n] = static_cast<Char>('0' + value);
- }
- return out + n;
- }
- template <typename Char, typename UInt>
- FMT_CONSTEXPR FMT_INLINE auto format_decimal(Char* out, UInt value,
- int num_digits) -> Char* {
- do_format_decimal(out, value, num_digits);
- return out + num_digits;
- }
- template <typename Char, typename UInt, typename OutputIt,
- FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value)>
- FMT_CONSTEXPR auto format_decimal(OutputIt out, UInt value, int num_digits)
- -> OutputIt {
- if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
- do_format_decimal(ptr, value, num_digits);
- return out;
- }
- // Buffer is large enough to hold all digits (digits10 + 1).
- char buffer[digits10<UInt>() + 1];
- if (is_constant_evaluated()) fill_n(buffer, sizeof(buffer), '\0');
- do_format_decimal(buffer, value, num_digits);
- return copy_noinline<Char>(buffer, buffer + num_digits, out);
- }
- template <typename Char, typename UInt>
- FMT_CONSTEXPR auto do_format_base2e(int base_bits, Char* out, UInt value,
- int size, bool upper = false) -> Char* {
- out += size;
- do {
- const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
- unsigned digit = static_cast<unsigned>(value & ((1 << base_bits) - 1));
- *--out = static_cast<Char>(base_bits < 4 ? static_cast<char>('0' + digit)
- : digits[digit]);
- } while ((value >>= base_bits) != 0);
- return out;
- }
- // Formats an unsigned integer in the power of two base (binary, octal, hex).
- template <typename Char, typename UInt>
- FMT_CONSTEXPR auto format_base2e(int base_bits, Char* out, UInt value,
- int num_digits, bool upper = false) -> Char* {
- do_format_base2e(base_bits, out, value, num_digits, upper);
- return out + num_digits;
- }
- template <typename Char, typename OutputIt, typename UInt,
- FMT_ENABLE_IF(is_back_insert_iterator<OutputIt>::value)>
- FMT_CONSTEXPR inline auto format_base2e(int base_bits, OutputIt out, UInt value,
- int num_digits, bool upper = false)
- -> OutputIt {
- if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
- format_base2e(base_bits, ptr, value, num_digits, upper);
- return out;
- }
- // Make buffer large enough for any base.
- char buffer[num_bits<UInt>()];
- if (is_constant_evaluated()) fill_n(buffer, sizeof(buffer), '\0');
- format_base2e(base_bits, buffer, value, num_digits, upper);
- return detail::copy_noinline<Char>(buffer, buffer + num_digits, out);
- }
- // A converter from UTF-8 to UTF-16.
- class utf8_to_utf16 {
- private:
- basic_memory_buffer<wchar_t> buffer_;
- public:
- FMT_API explicit utf8_to_utf16(string_view s);
- inline operator basic_string_view<wchar_t>() const {
- return {&buffer_[0], size()};
- }
- inline auto size() const -> size_t { return buffer_.size() - 1; }
- inline auto c_str() const -> const wchar_t* { return &buffer_[0]; }
- inline auto str() const -> std::wstring { return {&buffer_[0], size()}; }
- };
- enum class to_utf8_error_policy { abort, replace };
- // A converter from UTF-16/UTF-32 (host endian) to UTF-8.
- template <typename WChar, typename Buffer = memory_buffer> class to_utf8 {
- private:
- Buffer buffer_;
- public:
- to_utf8() {}
- explicit to_utf8(basic_string_view<WChar> s,
- to_utf8_error_policy policy = to_utf8_error_policy::abort) {
- static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
- "Expect utf16 or utf32");
- if (!convert(s, policy))
- FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
- : "invalid utf32"));
- }
- operator string_view() const { return string_view(&buffer_[0], size()); }
- auto size() const -> size_t { return buffer_.size() - 1; }
- auto c_str() const -> const char* { return &buffer_[0]; }
- auto str() const -> std::string { return std::string(&buffer_[0], size()); }
- // Performs conversion returning a bool instead of throwing exception on
- // conversion error. This method may still throw in case of memory allocation
- // error.
- auto convert(basic_string_view<WChar> s,
- to_utf8_error_policy policy = to_utf8_error_policy::abort)
- -> bool {
- if (!convert(buffer_, s, policy)) return false;
- buffer_.push_back(0);
- return true;
- }
- static auto convert(Buffer& buf, basic_string_view<WChar> s,
- to_utf8_error_policy policy = to_utf8_error_policy::abort)
- -> bool {
- for (auto p = s.begin(); p != s.end(); ++p) {
- uint32_t c = static_cast<uint32_t>(*p);
- if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
- // Handle a surrogate pair.
- ++p;
- if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
- if (policy == to_utf8_error_policy::abort) return false;
- buf.append(string_view("\xEF\xBF\xBD"));
- --p;
- continue;
- } else {
- c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
- }
- }
- if (c < 0x80) {
- buf.push_back(static_cast<char>(c));
- } else if (c < 0x800) {
- buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
- buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
- } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
- buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
- buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
- buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
- } else if (c >= 0x10000 && c <= 0x10ffff) {
- buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
- buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
- buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
- buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
- } else {
- return false;
- }
- }
- return true;
- }
- };
- // Computes 128-bit result of multiplication of two 64-bit unsigned integers.
- inline auto umul128(uint64_t x, uint64_t y) noexcept -> uint128_fallback {
- #if FMT_USE_INT128
- auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
- return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
- #elif defined(_MSC_VER) && defined(_M_X64)
- auto hi = uint64_t();
- auto lo = _umul128(x, y, &hi);
- return {hi, lo};
- #else
- const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
- uint64_t a = x >> 32;
- uint64_t b = x & mask;
- uint64_t c = y >> 32;
- uint64_t d = y & mask;
- uint64_t ac = a * c;
- uint64_t bc = b * c;
- uint64_t ad = a * d;
- uint64_t bd = b * d;
- uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
- return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
- (intermediate << 32) + (bd & mask)};
- #endif
- }
- namespace dragonbox {
- // Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
- // https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
- inline auto floor_log10_pow2(int e) noexcept -> int {
- FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
- static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
- return (e * 315653) >> 20;
- }
- inline auto floor_log2_pow10(int e) noexcept -> int {
- FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
- return (e * 1741647) >> 19;
- }
- // Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
- inline auto umul128_upper64(uint64_t x, uint64_t y) noexcept -> uint64_t {
- #if FMT_USE_INT128
- auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
- return static_cast<uint64_t>(p >> 64);
- #elif defined(_MSC_VER) && defined(_M_X64)
- return __umulh(x, y);
- #else
- return umul128(x, y).high();
- #endif
- }
- // Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
- // 128-bit unsigned integer.
- inline auto umul192_upper128(uint64_t x, uint128_fallback y) noexcept
- -> uint128_fallback {
- uint128_fallback r = umul128(x, y.high());
- r += umul128_upper64(x, y.low());
- return r;
- }
- FMT_API auto get_cached_power(int k) noexcept -> uint128_fallback;
- // Type-specific information that Dragonbox uses.
- template <typename T, typename Enable = void> struct float_info;
- template <> struct float_info<float> {
- using carrier_uint = uint32_t;
- static const int exponent_bits = 8;
- static const int kappa = 1;
- static const int big_divisor = 100;
- static const int small_divisor = 10;
- static const int min_k = -31;
- static const int max_k = 46;
- static const int shorter_interval_tie_lower_threshold = -35;
- static const int shorter_interval_tie_upper_threshold = -35;
- };
- template <> struct float_info<double> {
- using carrier_uint = uint64_t;
- static const int exponent_bits = 11;
- static const int kappa = 2;
- static const int big_divisor = 1000;
- static const int small_divisor = 100;
- static const int min_k = -292;
- static const int max_k = 341;
- static const int shorter_interval_tie_lower_threshold = -77;
- static const int shorter_interval_tie_upper_threshold = -77;
- };
- // An 80- or 128-bit floating point number.
- template <typename T>
- struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
- std::numeric_limits<T>::digits == 113 ||
- is_float128<T>::value>> {
- using carrier_uint = detail::uint128_t;
- static const int exponent_bits = 15;
- };
- // A double-double floating point number.
- template <typename T>
- struct float_info<T, enable_if_t<is_double_double<T>::value>> {
- using carrier_uint = detail::uint128_t;
- };
- template <typename T> struct decimal_fp {
- using significand_type = typename float_info<T>::carrier_uint;
- significand_type significand;
- int exponent;
- };
- template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
- } // namespace dragonbox
- // Returns true iff Float has the implicit bit which is not stored.
- template <typename Float> constexpr auto has_implicit_bit() -> bool {
- // An 80-bit FP number has a 64-bit significand an no implicit bit.
- return std::numeric_limits<Float>::digits != 64;
- }
- // Returns the number of significand bits stored in Float. The implicit bit is
- // not counted since it is not stored.
- template <typename Float> constexpr auto num_significand_bits() -> int {
- // std::numeric_limits may not support __float128.
- return is_float128<Float>() ? 112
- : (std::numeric_limits<Float>::digits -
- (has_implicit_bit<Float>() ? 1 : 0));
- }
- template <typename Float>
- constexpr auto exponent_mask() ->
- typename dragonbox::float_info<Float>::carrier_uint {
- using float_uint = typename dragonbox::float_info<Float>::carrier_uint;
- return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
- << num_significand_bits<Float>();
- }
- template <typename Float> constexpr auto exponent_bias() -> int {
- // std::numeric_limits may not support __float128.
- return is_float128<Float>() ? 16383
- : std::numeric_limits<Float>::max_exponent - 1;
- }
- // Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write_exponent(int exp, OutputIt out) -> OutputIt {
- FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
- if (exp < 0) {
- *out++ = static_cast<Char>('-');
- exp = -exp;
- } else {
- *out++ = static_cast<Char>('+');
- }
- auto uexp = static_cast<uint32_t>(exp);
- if (is_constant_evaluated()) {
- if (uexp < 10) *out++ = '0';
- return format_decimal<Char>(out, uexp, count_digits(uexp));
- }
- if (uexp >= 100u) {
- const char* top = digits2(uexp / 100);
- if (uexp >= 1000u) *out++ = static_cast<Char>(top[0]);
- *out++ = static_cast<Char>(top[1]);
- uexp %= 100;
- }
- const char* d = digits2(uexp);
- *out++ = static_cast<Char>(d[0]);
- *out++ = static_cast<Char>(d[1]);
- return out;
- }
- // A floating-point number f * pow(2, e) where F is an unsigned type.
- template <typename F> struct basic_fp {
- F f;
- int e;
- static constexpr const int num_significand_bits =
- static_cast<int>(sizeof(F) * num_bits<unsigned char>());
- constexpr basic_fp() : f(0), e(0) {}
- constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
- // Constructs fp from an IEEE754 floating-point number.
- template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
- // Assigns n to this and return true iff predecessor is closer than successor.
- template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
- FMT_CONSTEXPR auto assign(Float n) -> bool {
- static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
- // Assume Float is in the format [sign][exponent][significand].
- using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
- const auto num_float_significand_bits =
- detail::num_significand_bits<Float>();
- const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
- const auto significand_mask = implicit_bit - 1;
- auto u = bit_cast<carrier_uint>(n);
- f = static_cast<F>(u & significand_mask);
- auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
- num_float_significand_bits);
- // The predecessor is closer if n is a normalized power of 2 (f == 0)
- // other than the smallest normalized number (biased_e > 1).
- auto is_predecessor_closer = f == 0 && biased_e > 1;
- if (biased_e == 0)
- biased_e = 1; // Subnormals use biased exponent 1 (min exponent).
- else if (has_implicit_bit<Float>())
- f += static_cast<F>(implicit_bit);
- e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
- if (!has_implicit_bit<Float>()) ++e;
- return is_predecessor_closer;
- }
- template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
- FMT_CONSTEXPR auto assign(Float n) -> bool {
- static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
- return assign(static_cast<double>(n));
- }
- };
- using fp = basic_fp<unsigned long long>;
- // Normalizes the value converted from double and multiplied by (1 << SHIFT).
- template <int SHIFT = 0, typename F>
- FMT_CONSTEXPR auto normalize(basic_fp<F> value) -> basic_fp<F> {
- // Handle subnormals.
- const auto implicit_bit = F(1) << num_significand_bits<double>();
- const auto shifted_implicit_bit = implicit_bit << SHIFT;
- while ((value.f & shifted_implicit_bit) == 0) {
- value.f <<= 1;
- --value.e;
- }
- // Subtract 1 to account for hidden bit.
- const auto offset = basic_fp<F>::num_significand_bits -
- num_significand_bits<double>() - SHIFT - 1;
- value.f <<= offset;
- value.e -= offset;
- return value;
- }
- // Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
- FMT_CONSTEXPR inline auto multiply(uint64_t lhs, uint64_t rhs) -> uint64_t {
- #if FMT_USE_INT128
- auto product = static_cast<__uint128_t>(lhs) * rhs;
- auto f = static_cast<uint64_t>(product >> 64);
- return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
- #else
- // Multiply 32-bit parts of significands.
- uint64_t mask = (1ULL << 32) - 1;
- uint64_t a = lhs >> 32, b = lhs & mask;
- uint64_t c = rhs >> 32, d = rhs & mask;
- uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
- // Compute mid 64-bit of result and round.
- uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
- return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
- #endif
- }
- FMT_CONSTEXPR inline auto operator*(fp x, fp y) -> fp {
- return {multiply(x.f, y.f), x.e + y.e + 64};
- }
- template <typename T, bool doublish = num_bits<T>() == num_bits<double>()>
- using convert_float_result =
- conditional_t<std::is_same<T, float>::value || doublish, double, T>;
- template <typename T>
- constexpr auto convert_float(T value) -> convert_float_result<T> {
- return static_cast<convert_float_result<T>>(value);
- }
- template <typename Char, typename OutputIt>
- FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
- const basic_specs& specs) -> OutputIt {
- auto fill_size = specs.fill_size();
- if (fill_size == 1) return detail::fill_n(it, n, specs.fill_unit<Char>());
- if (const Char* data = specs.fill<Char>()) {
- for (size_t i = 0; i < n; ++i) it = copy<Char>(data, data + fill_size, it);
- }
- return it;
- }
- // Writes the output of f, padded according to format specifications in specs.
- // size: output size in code units.
- // width: output display width in (terminal) column positions.
- template <typename Char, align default_align = align::left, typename OutputIt,
- typename F>
- FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs& specs,
- size_t size, size_t width, F&& f) -> OutputIt {
- static_assert(default_align == align::left || default_align == align::right,
- "");
- unsigned spec_width = to_unsigned(specs.width);
- size_t padding = spec_width > width ? spec_width - width : 0;
- // Shifts are encoded as string literals because static constexpr is not
- // supported in constexpr functions.
- auto* shifts =
- default_align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
- size_t left_padding = padding >> shifts[static_cast<int>(specs.align())];
- size_t right_padding = padding - left_padding;
- auto it = reserve(out, size + padding * specs.fill_size());
- if (left_padding != 0) it = fill<Char>(it, left_padding, specs);
- it = f(it);
- if (right_padding != 0) it = fill<Char>(it, right_padding, specs);
- return base_iterator(out, it);
- }
- template <typename Char, align default_align = align::left, typename OutputIt,
- typename F>
- constexpr auto write_padded(OutputIt out, const format_specs& specs,
- size_t size, F&& f) -> OutputIt {
- return write_padded<Char, default_align>(out, specs, size, size, f);
- }
- template <typename Char, align default_align = align::left, typename OutputIt>
- FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
- const format_specs& specs = {}) -> OutputIt {
- return write_padded<Char, default_align>(
- out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
- const char* data = bytes.data();
- return copy<Char>(data, data + bytes.size(), it);
- });
- }
- template <typename Char, typename OutputIt, typename UIntPtr>
- auto write_ptr(OutputIt out, UIntPtr value, const format_specs* specs)
- -> OutputIt {
- int num_digits = count_digits<4>(value);
- auto size = to_unsigned(num_digits) + size_t(2);
- auto write = [=](reserve_iterator<OutputIt> it) {
- *it++ = static_cast<Char>('0');
- *it++ = static_cast<Char>('x');
- return format_base2e<Char>(4, it, value, num_digits);
- };
- return specs ? write_padded<Char, align::right>(out, *specs, size, write)
- : base_iterator(out, write(reserve(out, size)));
- }
- // Returns true iff the code point cp is printable.
- FMT_API auto is_printable(uint32_t cp) -> bool;
- inline auto needs_escape(uint32_t cp) -> bool {
- if (cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\') return true;
- if (const_check(FMT_OPTIMIZE_SIZE > 1)) return false;
- return !is_printable(cp);
- }
- template <typename Char> struct find_escape_result {
- const Char* begin;
- const Char* end;
- uint32_t cp;
- };
- template <typename Char>
- auto find_escape(const Char* begin, const Char* end)
- -> find_escape_result<Char> {
- for (; begin != end; ++begin) {
- uint32_t cp = static_cast<unsigned_char<Char>>(*begin);
- if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
- if (needs_escape(cp)) return {begin, begin + 1, cp};
- }
- return {begin, nullptr, 0};
- }
- inline auto find_escape(const char* begin, const char* end)
- -> find_escape_result<char> {
- if (const_check(!use_utf8)) return find_escape<char>(begin, end);
- auto result = find_escape_result<char>{end, nullptr, 0};
- for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
- [&](uint32_t cp, string_view sv) {
- if (needs_escape(cp)) {
- result = {sv.begin(), sv.end(), cp};
- return false;
- }
- return true;
- });
- return result;
- }
- template <size_t width, typename Char, typename OutputIt>
- auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
- *out++ = static_cast<Char>('\\');
- *out++ = static_cast<Char>(prefix);
- Char buf[width];
- fill_n(buf, width, static_cast<Char>('0'));
- format_base2e(4, buf, cp, width);
- return copy<Char>(buf, buf + width, out);
- }
- template <typename OutputIt, typename Char>
- auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
- -> OutputIt {
- auto c = static_cast<Char>(escape.cp);
- switch (escape.cp) {
- case '\n':
- *out++ = static_cast<Char>('\\');
- c = static_cast<Char>('n');
- break;
- case '\r':
- *out++ = static_cast<Char>('\\');
- c = static_cast<Char>('r');
- break;
- case '\t':
- *out++ = static_cast<Char>('\\');
- c = static_cast<Char>('t');
- break;
- case '"': FMT_FALLTHROUGH;
- case '\'': FMT_FALLTHROUGH;
- case '\\': *out++ = static_cast<Char>('\\'); break;
- default:
- if (escape.cp < 0x100) return write_codepoint<2, Char>(out, 'x', escape.cp);
- if (escape.cp < 0x10000)
- return write_codepoint<4, Char>(out, 'u', escape.cp);
- if (escape.cp < 0x110000)
- return write_codepoint<8, Char>(out, 'U', escape.cp);
- for (Char escape_char : basic_string_view<Char>(
- escape.begin, to_unsigned(escape.end - escape.begin))) {
- out = write_codepoint<2, Char>(out, 'x',
- static_cast<uint32_t>(escape_char) & 0xFF);
- }
- return out;
- }
- *out++ = c;
- return out;
- }
- template <typename Char, typename OutputIt>
- auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
- -> OutputIt {
- *out++ = static_cast<Char>('"');
- auto begin = str.begin(), end = str.end();
- do {
- auto escape = find_escape(begin, end);
- out = copy<Char>(begin, escape.begin, out);
- begin = escape.end;
- if (!begin) break;
- out = write_escaped_cp<OutputIt, Char>(out, escape);
- } while (begin != end);
- *out++ = static_cast<Char>('"');
- return out;
- }
- template <typename Char, typename OutputIt>
- auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
- Char v_array[1] = {v};
- *out++ = static_cast<Char>('\'');
- if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
- v == static_cast<Char>('\'')) {
- out = write_escaped_cp(out,
- find_escape_result<Char>{v_array, v_array + 1,
- static_cast<uint32_t>(v)});
- } else {
- *out++ = v;
- }
- *out++ = static_cast<Char>('\'');
- return out;
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
- const format_specs& specs) -> OutputIt {
- bool is_debug = specs.type() == presentation_type::debug;
- return write_padded<Char>(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
- if (is_debug) return write_escaped_char(it, value);
- *it++ = value;
- return it;
- });
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, Char value, const format_specs& specs,
- locale_ref loc = {}) -> OutputIt {
- // char is formatted as unsigned char for consistency across platforms.
- using unsigned_type =
- conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>;
- return check_char_specs(specs)
- ? write_char<Char>(out, value, specs)
- : write<Char>(out, static_cast<unsigned_type>(value), specs, loc);
- }
- template <typename Char> class digit_grouping {
- private:
- std::string grouping_;
- std::basic_string<Char> thousands_sep_;
- struct next_state {
- std::string::const_iterator group;
- int pos;
- };
- auto initial_state() const -> next_state { return {grouping_.begin(), 0}; }
- // Returns the next digit group separator position.
- auto next(next_state& state) const -> int {
- if (thousands_sep_.empty()) return max_value<int>();
- if (state.group == grouping_.end()) return state.pos += grouping_.back();
- if (*state.group <= 0 || *state.group == max_value<char>())
- return max_value<int>();
- state.pos += *state.group++;
- return state.pos;
- }
- public:
- explicit digit_grouping(locale_ref loc, bool localized = true) {
- if (!localized) return;
- auto sep = thousands_sep<Char>(loc);
- grouping_ = sep.grouping;
- if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep);
- }
- digit_grouping(std::string grouping, std::basic_string<Char> sep)
- : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}
- auto has_separator() const -> bool { return !thousands_sep_.empty(); }
- auto count_separators(int num_digits) const -> int {
- int count = 0;
- auto state = initial_state();
- while (num_digits > next(state)) ++count;
- return count;
- }
- // Applies grouping to digits and write the output to out.
- template <typename Out, typename C>
- auto apply(Out out, basic_string_view<C> digits) const -> Out {
- auto num_digits = static_cast<int>(digits.size());
- auto separators = basic_memory_buffer<int>();
- separators.push_back(0);
- auto state = initial_state();
- while (int i = next(state)) {
- if (i >= num_digits) break;
- separators.push_back(i);
- }
- for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
- i < num_digits; ++i) {
- if (num_digits - i == separators[sep_index]) {
- out = copy<Char>(thousands_sep_.data(),
- thousands_sep_.data() + thousands_sep_.size(), out);
- --sep_index;
- }
- *out++ = static_cast<Char>(digits[to_unsigned(i)]);
- }
- return out;
- }
- };
- FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
- prefix |= prefix != 0 ? value << 8 : value;
- prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
- }
- // Writes a decimal integer with digit grouping.
- template <typename OutputIt, typename UInt, typename Char>
- auto write_int(OutputIt out, UInt value, unsigned prefix,
- const format_specs& specs, const digit_grouping<Char>& grouping)
- -> OutputIt {
- static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
- int num_digits = 0;
- auto buffer = memory_buffer();
- switch (specs.type()) {
- default: FMT_ASSERT(false, ""); FMT_FALLTHROUGH;
- case presentation_type::none:
- case presentation_type::dec:
- num_digits = count_digits(value);
- format_decimal<char>(appender(buffer), value, num_digits);
- break;
- case presentation_type::hex:
- if (specs.alt())
- prefix_append(prefix, unsigned(specs.upper() ? 'X' : 'x') << 8 | '0');
- num_digits = count_digits<4>(value);
- format_base2e<char>(4, appender(buffer), value, num_digits, specs.upper());
- break;
- case presentation_type::oct:
- num_digits = count_digits<3>(value);
- // Octal prefix '0' is counted as a digit, so only add it if precision
- // is not greater than the number of digits.
- if (specs.alt() && specs.precision <= num_digits && value != 0)
- prefix_append(prefix, '0');
- format_base2e<char>(3, appender(buffer), value, num_digits);
- break;
- case presentation_type::bin:
- if (specs.alt())
- prefix_append(prefix, unsigned(specs.upper() ? 'B' : 'b') << 8 | '0');
- num_digits = count_digits<1>(value);
- format_base2e<char>(1, appender(buffer), value, num_digits);
- break;
- case presentation_type::chr:
- return write_char<Char>(out, static_cast<Char>(value), specs);
- }
- unsigned size = (prefix != 0 ? prefix >> 24 : 0) + to_unsigned(num_digits) +
- to_unsigned(grouping.count_separators(num_digits));
- return write_padded<Char, align::right>(
- out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
- for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
- *it++ = static_cast<Char>(p & 0xff);
- return grouping.apply(it, string_view(buffer.data(), buffer.size()));
- });
- }
- #if FMT_USE_LOCALE
- // Writes a localized value.
- FMT_API auto write_loc(appender out, loc_value value, const format_specs& specs,
- locale_ref loc) -> bool;
- #endif
- template <typename OutputIt>
- inline auto write_loc(OutputIt, const loc_value&, const format_specs&,
- locale_ref) -> bool {
- return false;
- }
- template <typename UInt> struct write_int_arg {
- UInt abs_value;
- unsigned prefix;
- };
- template <typename T>
- FMT_CONSTEXPR auto make_write_int_arg(T value, sign s)
- -> write_int_arg<uint32_or_64_or_128_t<T>> {
- auto prefix = 0u;
- auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
- if (is_negative(value)) {
- prefix = 0x01000000 | '-';
- abs_value = 0 - abs_value;
- } else {
- constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
- 0x1000000u | ' '};
- prefix = prefixes[static_cast<int>(s)];
- }
- return {abs_value, prefix};
- }
- template <typename Char = char> struct loc_writer {
- basic_appender<Char> out;
- const format_specs& specs;
- std::basic_string<Char> sep;
- std::string grouping;
- std::basic_string<Char> decimal_point;
- template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
- auto operator()(T value) -> bool {
- auto arg = make_write_int_arg(value, specs.sign());
- write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix,
- specs, digit_grouping<Char>(grouping, sep));
- return true;
- }
- template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
- auto operator()(T) -> bool {
- return false;
- }
- };
- // Size and padding computation separate from write_int to avoid template bloat.
- struct size_padding {
- unsigned size;
- unsigned padding;
- FMT_CONSTEXPR size_padding(int num_digits, unsigned prefix,
- const format_specs& specs)
- : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
- if (specs.align() == align::numeric) {
- auto width = to_unsigned(specs.width);
- if (width > size) {
- padding = width - size;
- size = width;
- }
- } else if (specs.precision > num_digits) {
- size = (prefix >> 24) + to_unsigned(specs.precision);
- padding = to_unsigned(specs.precision - num_digits);
- }
- }
- };
- template <typename Char, typename OutputIt, typename T>
- FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
- const format_specs& specs) -> OutputIt {
- static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
- constexpr int buffer_size = num_bits<T>();
- char buffer[buffer_size];
- if (is_constant_evaluated()) fill_n(buffer, buffer_size, '\0');
- const char* begin = nullptr;
- const char* end = buffer + buffer_size;
- auto abs_value = arg.abs_value;
- auto prefix = arg.prefix;
- switch (specs.type()) {
- default: FMT_ASSERT(false, ""); FMT_FALLTHROUGH;
- case presentation_type::none:
- case presentation_type::dec:
- begin = do_format_decimal(buffer, abs_value, buffer_size);
- break;
- case presentation_type::hex:
- begin = do_format_base2e(4, buffer, abs_value, buffer_size, specs.upper());
- if (specs.alt())
- prefix_append(prefix, unsigned(specs.upper() ? 'X' : 'x') << 8 | '0');
- break;
- case presentation_type::oct: {
- begin = do_format_base2e(3, buffer, abs_value, buffer_size);
- // Octal prefix '0' is counted as a digit, so only add it if precision
- // is not greater than the number of digits.
- auto num_digits = end - begin;
- if (specs.alt() && specs.precision <= num_digits && abs_value != 0)
- prefix_append(prefix, '0');
- break;
- }
- case presentation_type::bin:
- begin = do_format_base2e(1, buffer, abs_value, buffer_size);
- if (specs.alt())
- prefix_append(prefix, unsigned(specs.upper() ? 'B' : 'b') << 8 | '0');
- break;
- case presentation_type::chr:
- return write_char<Char>(out, static_cast<Char>(abs_value), specs);
- }
- // Write an integer in the format
- // <left-padding><prefix><numeric-padding><digits><right-padding>
- // prefix contains chars in three lower bytes and the size in the fourth byte.
- int num_digits = static_cast<int>(end - begin);
- // Slightly faster check for specs.width == 0 && specs.precision == -1.
- if ((specs.width | (specs.precision + 1)) == 0) {
- auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
- for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
- *it++ = static_cast<Char>(p & 0xff);
- return base_iterator(out, copy<Char>(begin, end, it));
- }
- auto sp = size_padding(num_digits, prefix, specs);
- unsigned padding = sp.padding;
- return write_padded<Char, align::right>(
- out, specs, sp.size, [=](reserve_iterator<OutputIt> it) {
- for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
- *it++ = static_cast<Char>(p & 0xff);
- it = detail::fill_n(it, padding, static_cast<Char>('0'));
- return copy<Char>(begin, end, it);
- });
- }
- template <typename Char, typename OutputIt, typename T>
- FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(OutputIt out,
- write_int_arg<T> arg,
- const format_specs& specs)
- -> OutputIt {
- return write_int<Char>(out, arg, specs);
- }
- template <typename Char, typename T,
- FMT_ENABLE_IF(is_integral<T>::value &&
- !std::is_same<T, bool>::value &&
- !std::is_same<T, Char>::value)>
- FMT_CONSTEXPR FMT_INLINE auto write(basic_appender<Char> out, T value,
- const format_specs& specs, locale_ref loc)
- -> basic_appender<Char> {
- if (specs.localized() && write_loc(out, value, specs, loc)) return out;
- return write_int_noinline<Char>(out, make_write_int_arg(value, specs.sign()),
- specs);
- }
- // An inlined version of write used in format string compilation.
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_integral<T>::value &&
- !std::is_same<T, bool>::value &&
- !std::is_same<T, Char>::value &&
- !std::is_same<OutputIt, basic_appender<Char>>::value)>
- FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
- const format_specs& specs, locale_ref loc)
- -> OutputIt {
- if (specs.localized() && write_loc(out, value, specs, loc)) return out;
- return write_int<Char>(out, make_write_int_arg(value, specs.sign()), specs);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
- const format_specs& specs) -> OutputIt {
- auto data = s.data();
- auto size = s.size();
- if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
- size = code_point_index(s, to_unsigned(specs.precision));
- bool is_debug = specs.type() == presentation_type::debug;
- if (is_debug) {
- auto buf = counting_buffer<Char>();
- write_escaped_string(basic_appender<Char>(buf), s);
- size = buf.count();
- }
- size_t width = 0;
- if (specs.width != 0) {
- width =
- is_debug ? size : compute_width(basic_string_view<Char>(data, size));
- }
- return write_padded<Char>(
- out, specs, size, width, [=](reserve_iterator<OutputIt> it) {
- return is_debug ? write_escaped_string(it, s)
- : copy<Char>(data, data + size, it);
- });
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
- const format_specs& specs, locale_ref) -> OutputIt {
- return write<Char>(out, s, specs);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, const Char* s, const format_specs& specs,
- locale_ref) -> OutputIt {
- if (specs.type() == presentation_type::pointer)
- return write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
- if (!s) report_error("string pointer is null");
- return write<Char>(out, basic_string_view<Char>(s), specs, {});
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_integral<T>::value &&
- !std::is_same<T, bool>::value &&
- !std::is_same<T, Char>::value)>
- FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
- auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
- bool negative = is_negative(value);
- // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
- if (negative) abs_value = ~abs_value + 1;
- int num_digits = count_digits(abs_value);
- auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
- if (auto ptr = to_pointer<Char>(out, size)) {
- if (negative) *ptr++ = static_cast<Char>('-');
- format_decimal<Char>(ptr, abs_value, num_digits);
- return out;
- }
- if (negative) *out++ = static_cast<Char>('-');
- return format_decimal<Char>(out, abs_value, num_digits);
- }
- template <typename Char>
- FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
- format_specs& specs) -> const Char* {
- FMT_ASSERT(begin != end, "");
- auto alignment = align::none;
- auto p = begin + code_point_length(begin);
- if (end - p <= 0) p = begin;
- for (;;) {
- switch (to_ascii(*p)) {
- case '<': alignment = align::left; break;
- case '>': alignment = align::right; break;
- case '^': alignment = align::center; break;
- }
- if (alignment != align::none) {
- if (p != begin) {
- auto c = *begin;
- if (c == '}') return begin;
- if (c == '{') {
- report_error("invalid fill character '{'");
- return begin;
- }
- specs.set_fill(basic_string_view<Char>(begin, to_unsigned(p - begin)));
- begin = p + 1;
- } else {
- ++begin;
- }
- break;
- } else if (p == begin) {
- break;
- }
- p = begin;
- }
- specs.set_align(alignment);
- return begin;
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
- format_specs specs, sign s) -> OutputIt {
- auto str =
- isnan ? (specs.upper() ? "NAN" : "nan") : (specs.upper() ? "INF" : "inf");
- constexpr size_t str_size = 3;
- auto size = str_size + (s != sign::none ? 1 : 0);
- // Replace '0'-padding with space for non-finite values.
- const bool is_zero_fill =
- specs.fill_size() == 1 && specs.fill_unit<Char>() == '0';
- if (is_zero_fill) specs.set_fill(' ');
- return write_padded<Char>(out, specs, size,
- [=](reserve_iterator<OutputIt> it) {
- if (s != sign::none)
- *it++ = detail::getsign<Char>(s);
- return copy<Char>(str, str + str_size, it);
- });
- }
- // A decimal floating-point number significand * pow(10, exp).
- struct big_decimal_fp {
- const char* significand;
- int significand_size;
- int exponent;
- };
- constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
- return f.significand_size;
- }
- template <typename T>
- inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
- return count_digits(f.significand);
- }
- template <typename Char, typename OutputIt>
- constexpr auto write_significand(OutputIt out, const char* significand,
- int significand_size) -> OutputIt {
- return copy<Char>(significand, significand + significand_size, out);
- }
- template <typename Char, typename OutputIt, typename UInt>
- inline auto write_significand(OutputIt out, UInt significand,
- int significand_size) -> OutputIt {
- return format_decimal<Char>(out, significand, significand_size);
- }
- template <typename Char, typename OutputIt, typename T, typename Grouping>
- FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
- int significand_size, int exponent,
- const Grouping& grouping) -> OutputIt {
- if (!grouping.has_separator()) {
- out = write_significand<Char>(out, significand, significand_size);
- return detail::fill_n(out, exponent, static_cast<Char>('0'));
- }
- auto buffer = memory_buffer();
- write_significand<char>(appender(buffer), significand, significand_size);
- detail::fill_n(appender(buffer), exponent, '0');
- return grouping.apply(out, string_view(buffer.data(), buffer.size()));
- }
- template <typename Char, typename UInt,
- FMT_ENABLE_IF(std::is_integral<UInt>::value)>
- inline auto write_significand(Char* out, UInt significand, int significand_size,
- int integral_size, Char decimal_point) -> Char* {
- if (!decimal_point) return format_decimal(out, significand, significand_size);
- out += significand_size + 1;
- Char* end = out;
- int floating_size = significand_size - integral_size;
- for (int i = floating_size / 2; i > 0; --i) {
- out -= 2;
- write2digits(out, static_cast<std::size_t>(significand % 100));
- significand /= 100;
- }
- if (floating_size % 2 != 0) {
- *--out = static_cast<Char>('0' + significand % 10);
- significand /= 10;
- }
- *--out = decimal_point;
- format_decimal(out - integral_size, significand, integral_size);
- return end;
- }
- template <typename OutputIt, typename UInt, typename Char,
- FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
- inline auto write_significand(OutputIt out, UInt significand,
- int significand_size, int integral_size,
- Char decimal_point) -> OutputIt {
- // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
- Char buffer[digits10<UInt>() + 2];
- auto end = write_significand(buffer, significand, significand_size,
- integral_size, decimal_point);
- return detail::copy_noinline<Char>(buffer, end, out);
- }
- template <typename OutputIt, typename Char>
- FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
- int significand_size, int integral_size,
- Char decimal_point) -> OutputIt {
- out = detail::copy_noinline<Char>(significand, significand + integral_size,
- out);
- if (!decimal_point) return out;
- *out++ = decimal_point;
- return detail::copy_noinline<Char>(significand + integral_size,
- significand + significand_size, out);
- }
- template <typename OutputIt, typename Char, typename T, typename Grouping>
- FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
- int significand_size, int integral_size,
- Char decimal_point,
- const Grouping& grouping) -> OutputIt {
- if (!grouping.has_separator()) {
- return write_significand(out, significand, significand_size, integral_size,
- decimal_point);
- }
- auto buffer = basic_memory_buffer<Char>();
- write_significand(basic_appender<Char>(buffer), significand, significand_size,
- integral_size, decimal_point);
- grouping.apply(
- out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
- return detail::copy_noinline<Char>(buffer.data() + integral_size,
- buffer.end(), out);
- }
- template <typename Char, typename OutputIt, typename DecimalFP,
- typename Grouping = digit_grouping<Char>>
- FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
- const format_specs& specs, sign s,
- locale_ref loc) -> OutputIt {
- auto significand = f.significand;
- int significand_size = get_significand_size(f);
- const Char zero = static_cast<Char>('0');
- size_t size = to_unsigned(significand_size) + (s != sign::none ? 1 : 0);
- using iterator = reserve_iterator<OutputIt>;
- Char decimal_point = specs.localized() ? detail::decimal_point<Char>(loc)
- : static_cast<Char>('.');
- int output_exp = f.exponent + significand_size - 1;
- auto use_exp_format = [=]() {
- if (specs.type() == presentation_type::exp) return true;
- if (specs.type() == presentation_type::fixed) return false;
- // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
- // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
- const int exp_lower = -4, exp_upper = 16;
- return output_exp < exp_lower ||
- output_exp >= (specs.precision > 0 ? specs.precision : exp_upper);
- };
- if (use_exp_format()) {
- int num_zeros = 0;
- if (specs.alt()) {
- num_zeros = specs.precision - significand_size;
- if (num_zeros < 0) num_zeros = 0;
- size += to_unsigned(num_zeros);
- } else if (significand_size == 1) {
- decimal_point = Char();
- }
- auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
- int exp_digits = 2;
- if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
- size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
- char exp_char = specs.upper() ? 'E' : 'e';
- auto write = [=](iterator it) {
- if (s != sign::none) *it++ = detail::getsign<Char>(s);
- // Insert a decimal point after the first digit and add an exponent.
- it = write_significand(it, significand, significand_size, 1,
- decimal_point);
- if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
- *it++ = static_cast<Char>(exp_char);
- return write_exponent<Char>(output_exp, it);
- };
- return specs.width > 0
- ? write_padded<Char, align::right>(out, specs, size, write)
- : base_iterator(out, write(reserve(out, size)));
- }
- int exp = f.exponent + significand_size;
- if (f.exponent >= 0) {
- // 1234e5 -> 123400000[.0+]
- size += to_unsigned(f.exponent);
- int num_zeros = specs.precision - exp;
- abort_fuzzing_if(num_zeros > 5000);
- if (specs.alt()) {
- ++size;
- if (num_zeros <= 0 && specs.type() != presentation_type::fixed)
- num_zeros = 0;
- if (num_zeros > 0) size += to_unsigned(num_zeros);
- }
- auto grouping = Grouping(loc, specs.localized());
- size += to_unsigned(grouping.count_separators(exp));
- return write_padded<Char, align::right>(out, specs, size, [&](iterator it) {
- if (s != sign::none) *it++ = detail::getsign<Char>(s);
- it = write_significand<Char>(it, significand, significand_size,
- f.exponent, grouping);
- if (!specs.alt()) return it;
- *it++ = decimal_point;
- return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
- });
- } else if (exp > 0) {
- // 1234e-2 -> 12.34[0+]
- int num_zeros = specs.alt() ? specs.precision - significand_size : 0;
- size += 1 + static_cast<unsigned>(max_of(num_zeros, 0));
- auto grouping = Grouping(loc, specs.localized());
- size += to_unsigned(grouping.count_separators(exp));
- return write_padded<Char, align::right>(out, specs, size, [&](iterator it) {
- if (s != sign::none) *it++ = detail::getsign<Char>(s);
- it = write_significand(it, significand, significand_size, exp,
- decimal_point, grouping);
- return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
- });
- }
- // 1234e-6 -> 0.001234
- int num_zeros = -exp;
- if (significand_size == 0 && specs.precision >= 0 &&
- specs.precision < num_zeros) {
- num_zeros = specs.precision;
- }
- bool pointy = num_zeros != 0 || significand_size != 0 || specs.alt();
- size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
- return write_padded<Char, align::right>(out, specs, size, [&](iterator it) {
- if (s != sign::none) *it++ = detail::getsign<Char>(s);
- *it++ = zero;
- if (!pointy) return it;
- *it++ = decimal_point;
- it = detail::fill_n(it, num_zeros, zero);
- return write_significand<Char>(it, significand, significand_size);
- });
- }
- template <typename Char> class fallback_digit_grouping {
- public:
- constexpr fallback_digit_grouping(locale_ref, bool) {}
- constexpr auto has_separator() const -> bool { return false; }
- constexpr auto count_separators(int) const -> int { return 0; }
- template <typename Out, typename C>
- constexpr auto apply(Out out, basic_string_view<C>) const -> Out {
- return out;
- }
- };
- template <typename Char, typename OutputIt, typename DecimalFP>
- FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
- const format_specs& specs, sign s,
- locale_ref loc) -> OutputIt {
- if (is_constant_evaluated()) {
- return do_write_float<Char, OutputIt, DecimalFP,
- fallback_digit_grouping<Char>>(out, f, specs, s, loc);
- } else {
- return do_write_float<Char>(out, f, specs, s, loc);
- }
- }
- template <typename T> constexpr auto isnan(T value) -> bool {
- return value != value; // std::isnan doesn't support __float128.
- }
- template <typename T, typename Enable = void>
- struct has_isfinite : std::false_type {};
- template <typename T>
- struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
- : std::true_type {};
- template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
- has_isfinite<T>::value)>
- FMT_CONSTEXPR20 auto isfinite(T value) -> bool {
- constexpr T inf = T(std::numeric_limits<double>::infinity());
- if (is_constant_evaluated())
- return !detail::isnan(value) && value < inf && value > -inf;
- return std::isfinite(value);
- }
- template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
- FMT_CONSTEXPR auto isfinite(T value) -> bool {
- T inf = T(std::numeric_limits<double>::infinity());
- // std::isfinite doesn't support __float128.
- return !detail::isnan(value) && value < inf && value > -inf;
- }
- template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
- FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
- if (is_constant_evaluated()) {
- #ifdef __cpp_if_constexpr
- if constexpr (std::numeric_limits<double>::is_iec559) {
- auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
- return (bits >> (num_bits<uint64_t>() - 1)) != 0;
- }
- #endif
- }
- return std::signbit(static_cast<double>(value));
- }
- inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
- // Adjust fixed precision by exponent because it is relative to decimal
- // point.
- if (exp10 > 0 && precision > max_value<int>() - exp10)
- FMT_THROW(format_error("number is too big"));
- precision += exp10;
- }
- class bigint {
- private:
- // A bigint is a number in the form bigit_[N - 1] ... bigit_[0] * 32^exp_.
- using bigit = uint32_t; // A big digit.
- using double_bigit = uint64_t;
- enum { bigit_bits = num_bits<bigit>() };
- enum { bigits_capacity = 32 };
- basic_memory_buffer<bigit, bigits_capacity> bigits_;
- int exp_;
- friend struct formatter<bigint>;
- FMT_CONSTEXPR auto get_bigit(int i) const -> bigit {
- return i >= exp_ && i < num_bigits() ? bigits_[i - exp_] : 0;
- }
- FMT_CONSTEXPR void subtract_bigits(int index, bigit other, bigit& borrow) {
- auto result = double_bigit(bigits_[index]) - other - borrow;
- bigits_[index] = static_cast<bigit>(result);
- borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
- }
- FMT_CONSTEXPR void remove_leading_zeros() {
- int num_bigits = static_cast<int>(bigits_.size()) - 1;
- while (num_bigits > 0 && bigits_[num_bigits] == 0) --num_bigits;
- bigits_.resize(to_unsigned(num_bigits + 1));
- }
- // Computes *this -= other assuming aligned bigints and *this >= other.
- FMT_CONSTEXPR void subtract_aligned(const bigint& other) {
- FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
- FMT_ASSERT(compare(*this, other) >= 0, "");
- bigit borrow = 0;
- int i = other.exp_ - exp_;
- for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
- subtract_bigits(i, other.bigits_[j], borrow);
- if (borrow != 0) subtract_bigits(i, 0, borrow);
- FMT_ASSERT(borrow == 0, "");
- remove_leading_zeros();
- }
- FMT_CONSTEXPR void multiply(uint32_t value) {
- bigit carry = 0;
- const double_bigit wide_value = value;
- for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
- double_bigit result = bigits_[i] * wide_value + carry;
- bigits_[i] = static_cast<bigit>(result);
- carry = static_cast<bigit>(result >> bigit_bits);
- }
- if (carry != 0) bigits_.push_back(carry);
- }
- template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
- std::is_same<UInt, uint128_t>::value)>
- FMT_CONSTEXPR void multiply(UInt value) {
- using half_uint =
- conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
- const int shift = num_bits<half_uint>() - bigit_bits;
- const UInt lower = static_cast<half_uint>(value);
- const UInt upper = value >> num_bits<half_uint>();
- UInt carry = 0;
- for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
- UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
- carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
- (carry >> bigit_bits);
- bigits_[i] = static_cast<bigit>(result);
- }
- while (carry != 0) {
- bigits_.push_back(static_cast<bigit>(carry));
- carry >>= bigit_bits;
- }
- }
- template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
- std::is_same<UInt, uint128_t>::value)>
- FMT_CONSTEXPR void assign(UInt n) {
- size_t num_bigits = 0;
- do {
- bigits_[num_bigits++] = static_cast<bigit>(n);
- n >>= bigit_bits;
- } while (n != 0);
- bigits_.resize(num_bigits);
- exp_ = 0;
- }
- public:
- FMT_CONSTEXPR bigint() : exp_(0) {}
- explicit bigint(uint64_t n) { assign(n); }
- bigint(const bigint&) = delete;
- void operator=(const bigint&) = delete;
- FMT_CONSTEXPR void assign(const bigint& other) {
- auto size = other.bigits_.size();
- bigits_.resize(size);
- auto data = other.bigits_.data();
- copy<bigit>(data, data + size, bigits_.data());
- exp_ = other.exp_;
- }
- template <typename Int> FMT_CONSTEXPR void operator=(Int n) {
- FMT_ASSERT(n > 0, "");
- assign(uint64_or_128_t<Int>(n));
- }
- FMT_CONSTEXPR auto num_bigits() const -> int {
- return static_cast<int>(bigits_.size()) + exp_;
- }
- FMT_CONSTEXPR auto operator<<=(int shift) -> bigint& {
- FMT_ASSERT(shift >= 0, "");
- exp_ += shift / bigit_bits;
- shift %= bigit_bits;
- if (shift == 0) return *this;
- bigit carry = 0;
- for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
- bigit c = bigits_[i] >> (bigit_bits - shift);
- bigits_[i] = (bigits_[i] << shift) + carry;
- carry = c;
- }
- if (carry != 0) bigits_.push_back(carry);
- return *this;
- }
- template <typename Int> FMT_CONSTEXPR auto operator*=(Int value) -> bigint& {
- FMT_ASSERT(value > 0, "");
- multiply(uint32_or_64_or_128_t<Int>(value));
- return *this;
- }
- friend FMT_CONSTEXPR auto compare(const bigint& b1, const bigint& b2) -> int {
- int num_bigits1 = b1.num_bigits(), num_bigits2 = b2.num_bigits();
- if (num_bigits1 != num_bigits2) return num_bigits1 > num_bigits2 ? 1 : -1;
- int i = static_cast<int>(b1.bigits_.size()) - 1;
- int j = static_cast<int>(b2.bigits_.size()) - 1;
- int end = i - j;
- if (end < 0) end = 0;
- for (; i >= end; --i, --j) {
- bigit b1_bigit = b1.bigits_[i], b2_bigit = b2.bigits_[j];
- if (b1_bigit != b2_bigit) return b1_bigit > b2_bigit ? 1 : -1;
- }
- if (i != j) return i > j ? 1 : -1;
- return 0;
- }
- // Returns compare(lhs1 + lhs2, rhs).
- friend FMT_CONSTEXPR auto add_compare(const bigint& lhs1, const bigint& lhs2,
- const bigint& rhs) -> int {
- int max_lhs_bigits = max_of(lhs1.num_bigits(), lhs2.num_bigits());
- int num_rhs_bigits = rhs.num_bigits();
- if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
- if (max_lhs_bigits > num_rhs_bigits) return 1;
- double_bigit borrow = 0;
- int min_exp = min_of(min_of(lhs1.exp_, lhs2.exp_), rhs.exp_);
- for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
- double_bigit sum = double_bigit(lhs1.get_bigit(i)) + lhs2.get_bigit(i);
- bigit rhs_bigit = rhs.get_bigit(i);
- if (sum > rhs_bigit + borrow) return 1;
- borrow = rhs_bigit + borrow - sum;
- if (borrow > 1) return -1;
- borrow <<= bigit_bits;
- }
- return borrow != 0 ? -1 : 0;
- }
- // Assigns pow(10, exp) to this bigint.
- FMT_CONSTEXPR20 void assign_pow10(int exp) {
- FMT_ASSERT(exp >= 0, "");
- if (exp == 0) return *this = 1;
- int bitmask = 1 << (num_bits<unsigned>() -
- countl_zero(static_cast<uint32_t>(exp)) - 1);
- // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
- // repeated squaring and multiplication.
- *this = 5;
- bitmask >>= 1;
- while (bitmask != 0) {
- square();
- if ((exp & bitmask) != 0) *this *= 5;
- bitmask >>= 1;
- }
- *this <<= exp; // Multiply by pow(2, exp) by shifting.
- }
- FMT_CONSTEXPR20 void square() {
- int num_bigits = static_cast<int>(bigits_.size());
- int num_result_bigits = 2 * num_bigits;
- basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
- bigits_.resize(to_unsigned(num_result_bigits));
- auto sum = uint128_t();
- for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
- // Compute bigit at position bigit_index of the result by adding
- // cross-product terms n[i] * n[j] such that i + j == bigit_index.
- for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
- // Most terms are multiplied twice which can be optimized in the future.
- sum += double_bigit(n[i]) * n[j];
- }
- bigits_[bigit_index] = static_cast<bigit>(sum);
- sum >>= num_bits<bigit>(); // Compute the carry.
- }
- // Do the same for the top half.
- for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
- ++bigit_index) {
- for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
- sum += double_bigit(n[i++]) * n[j--];
- bigits_[bigit_index] = static_cast<bigit>(sum);
- sum >>= num_bits<bigit>();
- }
- remove_leading_zeros();
- exp_ *= 2;
- }
- // If this bigint has a bigger exponent than other, adds trailing zero to make
- // exponents equal. This simplifies some operations such as subtraction.
- FMT_CONSTEXPR void align(const bigint& other) {
- int exp_difference = exp_ - other.exp_;
- if (exp_difference <= 0) return;
- int num_bigits = static_cast<int>(bigits_.size());
- bigits_.resize(to_unsigned(num_bigits + exp_difference));
- for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
- bigits_[j] = bigits_[i];
- memset(bigits_.data(), 0, to_unsigned(exp_difference) * sizeof(bigit));
- exp_ -= exp_difference;
- }
- // Divides this bignum by divisor, assigning the remainder to this and
- // returning the quotient.
- FMT_CONSTEXPR auto divmod_assign(const bigint& divisor) -> int {
- FMT_ASSERT(this != &divisor, "");
- if (compare(*this, divisor) < 0) return 0;
- FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
- align(divisor);
- int quotient = 0;
- do {
- subtract_aligned(divisor);
- ++quotient;
- } while (compare(*this, divisor) >= 0);
- return quotient;
- }
- };
- // format_dragon flags.
- enum dragon {
- predecessor_closer = 1,
- fixup = 2, // Run fixup to correct exp10 which can be off by one.
- fixed = 4,
- };
- // Formats a floating-point number using a variation of the Fixed-Precision
- // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
- // https://fmt.dev/papers/p372-steele.pdf.
- FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
- unsigned flags, int num_digits,
- buffer<char>& buf, int& exp10) {
- bigint numerator; // 2 * R in (FPP)^2.
- bigint denominator; // 2 * S in (FPP)^2.
- // lower and upper are differences between value and corresponding boundaries.
- bigint lower; // (M^- in (FPP)^2).
- bigint upper_store; // upper's value if different from lower.
- bigint* upper = nullptr; // (M^+ in (FPP)^2).
- // Shift numerator and denominator by an extra bit or two (if lower boundary
- // is closer) to make lower and upper integers. This eliminates multiplication
- // by 2 during later computations.
- bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
- int shift = is_predecessor_closer ? 2 : 1;
- if (value.e >= 0) {
- numerator = value.f;
- numerator <<= value.e + shift;
- lower = 1;
- lower <<= value.e;
- if (is_predecessor_closer) {
- upper_store = 1;
- upper_store <<= value.e + 1;
- upper = &upper_store;
- }
- denominator.assign_pow10(exp10);
- denominator <<= shift;
- } else if (exp10 < 0) {
- numerator.assign_pow10(-exp10);
- lower.assign(numerator);
- if (is_predecessor_closer) {
- upper_store.assign(numerator);
- upper_store <<= 1;
- upper = &upper_store;
- }
- numerator *= value.f;
- numerator <<= shift;
- denominator = 1;
- denominator <<= shift - value.e;
- } else {
- numerator = value.f;
- numerator <<= shift;
- denominator.assign_pow10(exp10);
- denominator <<= shift - value.e;
- lower = 1;
- if (is_predecessor_closer) {
- upper_store = 1ULL << 1;
- upper = &upper_store;
- }
- }
- int even = static_cast<int>((value.f & 1) == 0);
- if (!upper) upper = &lower;
- bool shortest = num_digits < 0;
- if ((flags & dragon::fixup) != 0) {
- if (add_compare(numerator, *upper, denominator) + even <= 0) {
- --exp10;
- numerator *= 10;
- if (num_digits < 0) {
- lower *= 10;
- if (upper != &lower) *upper *= 10;
- }
- }
- if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
- }
- // Invariant: value == (numerator / denominator) * pow(10, exp10).
- if (shortest) {
- // Generate the shortest representation.
- num_digits = 0;
- char* data = buf.data();
- for (;;) {
- int digit = numerator.divmod_assign(denominator);
- bool low = compare(numerator, lower) - even < 0; // numerator <[=] lower.
- // numerator + upper >[=] pow10:
- bool high = add_compare(numerator, *upper, denominator) + even > 0;
- data[num_digits++] = static_cast<char>('0' + digit);
- if (low || high) {
- if (!low) {
- ++data[num_digits - 1];
- } else if (high) {
- int result = add_compare(numerator, numerator, denominator);
- // Round half to even.
- if (result > 0 || (result == 0 && (digit % 2) != 0))
- ++data[num_digits - 1];
- }
- buf.try_resize(to_unsigned(num_digits));
- exp10 -= num_digits - 1;
- return;
- }
- numerator *= 10;
- lower *= 10;
- if (upper != &lower) *upper *= 10;
- }
- }
- // Generate the given number of digits.
- exp10 -= num_digits - 1;
- if (num_digits <= 0) {
- auto digit = '0';
- if (num_digits == 0) {
- denominator *= 10;
- digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
- }
- buf.push_back(digit);
- return;
- }
- buf.try_resize(to_unsigned(num_digits));
- for (int i = 0; i < num_digits - 1; ++i) {
- int digit = numerator.divmod_assign(denominator);
- buf[i] = static_cast<char>('0' + digit);
- numerator *= 10;
- }
- int digit = numerator.divmod_assign(denominator);
- auto result = add_compare(numerator, numerator, denominator);
- if (result > 0 || (result == 0 && (digit % 2) != 0)) {
- if (digit == 9) {
- const auto overflow = '0' + 10;
- buf[num_digits - 1] = overflow;
- // Propagate the carry.
- for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
- buf[i] = '0';
- ++buf[i - 1];
- }
- if (buf[0] == overflow) {
- buf[0] = '1';
- if ((flags & dragon::fixed) != 0)
- buf.push_back('0');
- else
- ++exp10;
- }
- return;
- }
- ++digit;
- }
- buf[num_digits - 1] = static_cast<char>('0' + digit);
- }
- // Formats a floating-point number using the hexfloat format.
- template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
- FMT_CONSTEXPR20 void format_hexfloat(Float value, format_specs specs,
- buffer<char>& buf) {
- // float is passed as double to reduce the number of instantiations and to
- // simplify implementation.
- static_assert(!std::is_same<Float, float>::value, "");
- using info = dragonbox::float_info<Float>;
- // Assume Float is in the format [sign][exponent][significand].
- using carrier_uint = typename info::carrier_uint;
- const auto num_float_significand_bits = detail::num_significand_bits<Float>();
- basic_fp<carrier_uint> f(value);
- f.e += num_float_significand_bits;
- if (!has_implicit_bit<Float>()) --f.e;
- const auto num_fraction_bits =
- num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0);
- const auto num_xdigits = (num_fraction_bits + 3) / 4;
- const auto leading_shift = ((num_xdigits - 1) * 4);
- const auto leading_mask = carrier_uint(0xF) << leading_shift;
- const auto leading_xdigit =
- static_cast<uint32_t>((f.f & leading_mask) >> leading_shift);
- if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1);
- int print_xdigits = num_xdigits - 1;
- if (specs.precision >= 0 && print_xdigits > specs.precision) {
- const int shift = ((print_xdigits - specs.precision - 1) * 4);
- const auto mask = carrier_uint(0xF) << shift;
- const auto v = static_cast<uint32_t>((f.f & mask) >> shift);
- if (v >= 8) {
- const auto inc = carrier_uint(1) << (shift + 4);
- f.f += inc;
- f.f &= ~(inc - 1);
- }
- // Check long double overflow
- if (!has_implicit_bit<Float>()) {
- const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
- if ((f.f & implicit_bit) == implicit_bit) {
- f.f >>= 4;
- f.e += 4;
- }
- }
- print_xdigits = specs.precision;
- }
- char xdigits[num_bits<carrier_uint>() / 4];
- detail::fill_n(xdigits, sizeof(xdigits), '0');
- format_base2e(4, xdigits, f.f, num_xdigits, specs.upper());
- // Remove zero tail
- while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits;
- buf.push_back('0');
- buf.push_back(specs.upper() ? 'X' : 'x');
- buf.push_back(xdigits[0]);
- if (specs.alt() || print_xdigits > 0 || print_xdigits < specs.precision)
- buf.push_back('.');
- buf.append(xdigits + 1, xdigits + 1 + print_xdigits);
- for (; print_xdigits < specs.precision; ++print_xdigits) buf.push_back('0');
- buf.push_back(specs.upper() ? 'P' : 'p');
- uint32_t abs_e;
- if (f.e < 0) {
- buf.push_back('-');
- abs_e = static_cast<uint32_t>(-f.e);
- } else {
- buf.push_back('+');
- abs_e = static_cast<uint32_t>(f.e);
- }
- format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e));
- }
- template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
- FMT_CONSTEXPR20 void format_hexfloat(Float value, format_specs specs,
- buffer<char>& buf) {
- format_hexfloat(static_cast<double>(value), specs, buf);
- }
- constexpr auto fractional_part_rounding_thresholds(int index) -> uint32_t {
- // For checking rounding thresholds.
- // The kth entry is chosen to be the smallest integer such that the
- // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
- // It is equal to ceil(2^31 + 2^32/10^(k + 1)).
- // These are stored in a string literal because we cannot have static arrays
- // in constexpr functions and non-static ones are poorly optimized.
- return U"\x9999999a\x828f5c29\x80418938\x80068db9\x8000a7c6\x800010c7"
- U"\x800001ae\x8000002b"[index];
- }
- template <typename Float>
- FMT_CONSTEXPR20 auto format_float(Float value, int precision,
- const format_specs& specs, bool binary32,
- buffer<char>& buf) -> int {
- // float is passed as double to reduce the number of instantiations.
- static_assert(!std::is_same<Float, float>::value, "");
- auto converted_value = convert_float(value);
- const bool fixed = specs.type() == presentation_type::fixed;
- if (value == 0) {
- if (precision <= 0 || !fixed) {
- buf.push_back('0');
- return 0;
- }
- buf.try_resize(to_unsigned(precision));
- fill_n(buf.data(), precision, '0');
- return -precision;
- }
- int exp = 0;
- bool use_dragon = true;
- unsigned dragon_flags = 0;
- if (!is_fast_float<Float>() || is_constant_evaluated()) {
- const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10)
- using info = dragonbox::float_info<decltype(converted_value)>;
- const auto f = basic_fp<typename info::carrier_uint>(converted_value);
- // Compute exp, an approximate power of 10, such that
- // 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
- // This is based on log10(value) == log2(value) / log2(10) and approximation
- // of log2(value) by e + num_fraction_bits idea from double-conversion.
- auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10;
- exp = static_cast<int>(e);
- if (e > exp) ++exp; // Compute ceil.
- dragon_flags = dragon::fixup;
- } else {
- // Extract significand bits and exponent bits.
- using info = dragonbox::float_info<double>;
- auto br = bit_cast<uint64_t>(static_cast<double>(value));
- const uint64_t significand_mask =
- (static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1;
- uint64_t significand = (br & significand_mask);
- int exponent = static_cast<int>((br & exponent_mask<double>()) >>
- num_significand_bits<double>());
- if (exponent != 0) { // Check if normal.
- exponent -= exponent_bias<double>() + num_significand_bits<double>();
- significand |=
- (static_cast<uint64_t>(1) << num_significand_bits<double>());
- significand <<= 1;
- } else {
- // Normalize subnormal inputs.
- FMT_ASSERT(significand != 0, "zeros should not appear here");
- int shift = countl_zero(significand);
- FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
- "");
- shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2);
- exponent = (std::numeric_limits<double>::min_exponent -
- num_significand_bits<double>()) -
- shift;
- significand <<= shift;
- }
- // Compute the first several nonzero decimal significand digits.
- // We call the number we get the first segment.
- const int k = info::kappa - dragonbox::floor_log10_pow2(exponent);
- exp = -k;
- const int beta = exponent + dragonbox::floor_log2_pow10(k);
- uint64_t first_segment;
- bool has_more_segments;
- int digits_in_the_first_segment;
- {
- const auto r = dragonbox::umul192_upper128(
- significand << beta, dragonbox::get_cached_power(k));
- first_segment = r.high();
- has_more_segments = r.low() != 0;
- // The first segment can have 18 ~ 19 digits.
- if (first_segment >= 1000000000000000000ULL) {
- digits_in_the_first_segment = 19;
- } else {
- // When it is of 18-digits, we align it to 19-digits by adding a bogus
- // zero at the end.
- digits_in_the_first_segment = 18;
- first_segment *= 10;
- }
- }
- // Compute the actual number of decimal digits to print.
- if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment);
- // Use Dragon4 only when there might be not enough digits in the first
- // segment.
- if (digits_in_the_first_segment > precision) {
- use_dragon = false;
- if (precision <= 0) {
- exp += digits_in_the_first_segment;
- if (precision < 0) {
- // Nothing to do, since all we have are just leading zeros.
- buf.try_resize(0);
- } else {
- // We may need to round-up.
- buf.try_resize(1);
- if ((first_segment | static_cast<uint64_t>(has_more_segments)) >
- 5000000000000000000ULL) {
- buf[0] = '1';
- } else {
- buf[0] = '0';
- }
- }
- } // precision <= 0
- else {
- exp += digits_in_the_first_segment - precision;
- // When precision > 0, we divide the first segment into three
- // subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
- // in 32-bits which usually allows faster calculation than in
- // 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
- // division-by-constant for large 64-bit divisors, we do it here
- // manually. The magic number 7922816251426433760 below is equal to
- // ceil(2^(64+32) / 10^10).
- const uint32_t first_subsegment = static_cast<uint32_t>(
- dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >>
- 32);
- const uint64_t second_third_subsegments =
- first_segment - first_subsegment * 10000000000ULL;
- uint64_t prod;
- uint32_t digits;
- bool should_round_up;
- int number_of_digits_to_print = min_of(precision, 9);
- // Print a 9-digits subsegment, either the first or the second.
- auto print_subsegment = [&](uint32_t subsegment, char* buffer) {
- int number_of_digits_printed = 0;
- // If we want to print an odd number of digits from the subsegment,
- if ((number_of_digits_to_print & 1) != 0) {
- // Convert to 64-bit fixed-point fractional form with 1-digit
- // integer part. The magic number 720575941 is a good enough
- // approximation of 2^(32 + 24) / 10^8; see
- // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
- // for details.
- prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1;
- digits = static_cast<uint32_t>(prod >> 32);
- *buffer = static_cast<char>('0' + digits);
- number_of_digits_printed++;
- }
- // If we want to print an even number of digits from the
- // first_subsegment,
- else {
- // Convert to 64-bit fixed-point fractional form with 2-digits
- // integer part. The magic number 450359963 is a good enough
- // approximation of 2^(32 + 20) / 10^7; see
- // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
- // for details.
- prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1;
- digits = static_cast<uint32_t>(prod >> 32);
- write2digits(buffer, digits);
- number_of_digits_printed += 2;
- }
- // Print all digit pairs.
- while (number_of_digits_printed < number_of_digits_to_print) {
- prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100);
- digits = static_cast<uint32_t>(prod >> 32);
- write2digits(buffer + number_of_digits_printed, digits);
- number_of_digits_printed += 2;
- }
- };
- // Print first subsegment.
- print_subsegment(first_subsegment, buf.data());
- // Perform rounding if the first subsegment is the last subsegment to
- // print.
- if (precision <= 9) {
- // Rounding inside the subsegment.
- // We round-up if:
- // - either the fractional part is strictly larger than 1/2, or
- // - the fractional part is exactly 1/2 and the last digit is odd.
- // We rely on the following observations:
- // - If fractional_part >= threshold, then the fractional part is
- // strictly larger than 1/2.
- // - If the MSB of fractional_part is set, then the fractional part
- // must be at least 1/2.
- // - When the MSB of fractional_part is set, either
- // second_third_subsegments being nonzero or has_more_segments
- // being true means there are further digits not printed, so the
- // fractional part is strictly larger than 1/2.
- if (precision < 9) {
- uint32_t fractional_part = static_cast<uint32_t>(prod);
- should_round_up =
- fractional_part >= fractional_part_rounding_thresholds(
- 8 - number_of_digits_to_print) ||
- ((fractional_part >> 31) &
- ((digits & 1) | (second_third_subsegments != 0) |
- has_more_segments)) != 0;
- }
- // Rounding at the subsegment boundary.
- // In this case, the fractional part is at least 1/2 if and only if
- // second_third_subsegments >= 5000000000ULL, and is strictly larger
- // than 1/2 if we further have either second_third_subsegments >
- // 5000000000ULL or has_more_segments == true.
- else {
- should_round_up = second_third_subsegments > 5000000000ULL ||
- (second_third_subsegments == 5000000000ULL &&
- ((digits & 1) != 0 || has_more_segments));
- }
- }
- // Otherwise, print the second subsegment.
- else {
- // Compilers are not aware of how to leverage the maximum value of
- // second_third_subsegments to find out a better magic number which
- // allows us to eliminate an additional shift. 1844674407370955162 =
- // ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
- const uint32_t second_subsegment =
- static_cast<uint32_t>(dragonbox::umul128_upper64(
- second_third_subsegments, 1844674407370955162ULL));
- const uint32_t third_subsegment =
- static_cast<uint32_t>(second_third_subsegments) -
- second_subsegment * 10;
- number_of_digits_to_print = precision - 9;
- print_subsegment(second_subsegment, buf.data() + 9);
- // Rounding inside the subsegment.
- if (precision < 18) {
- // The condition third_subsegment != 0 implies that the segment was
- // of 19 digits, so in this case the third segment should be
- // consisting of a genuine digit from the input.
- uint32_t fractional_part = static_cast<uint32_t>(prod);
- should_round_up =
- fractional_part >= fractional_part_rounding_thresholds(
- 8 - number_of_digits_to_print) ||
- ((fractional_part >> 31) &
- ((digits & 1) | (third_subsegment != 0) |
- has_more_segments)) != 0;
- }
- // Rounding at the subsegment boundary.
- else {
- // In this case, the segment must be of 19 digits, thus
- // the third subsegment should be consisting of a genuine digit from
- // the input.
- should_round_up = third_subsegment > 5 ||
- (third_subsegment == 5 &&
- ((digits & 1) != 0 || has_more_segments));
- }
- }
- // Round-up if necessary.
- if (should_round_up) {
- ++buf[precision - 1];
- for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) {
- buf[i] = '0';
- ++buf[i - 1];
- }
- if (buf[0] > '9') {
- buf[0] = '1';
- if (fixed)
- buf[precision++] = '0';
- else
- ++exp;
- }
- }
- buf.try_resize(to_unsigned(precision));
- }
- } // if (digits_in_the_first_segment > precision)
- else {
- // Adjust the exponent for its use in Dragon4.
- exp += digits_in_the_first_segment - 1;
- }
- }
- if (use_dragon) {
- auto f = basic_fp<uint128_t>();
- bool is_predecessor_closer = binary32 ? f.assign(static_cast<float>(value))
- : f.assign(converted_value);
- if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
- if (fixed) dragon_flags |= dragon::fixed;
- // Limit precision to the maximum possible number of significant digits in
- // an IEEE754 double because we don't need to generate zeros.
- const int max_double_digits = 767;
- if (precision > max_double_digits) precision = max_double_digits;
- format_dragon(f, dragon_flags, precision, buf, exp);
- }
- if (!fixed && !specs.alt()) {
- // Remove trailing zeros.
- auto num_digits = buf.size();
- while (num_digits > 0 && buf[num_digits - 1] == '0') {
- --num_digits;
- ++exp;
- }
- buf.try_resize(num_digits);
- }
- return exp;
- }
- template <typename Char, typename OutputIt, typename T>
- FMT_CONSTEXPR20 auto write_float(OutputIt out, T value, format_specs specs,
- locale_ref loc) -> OutputIt {
- // Use signbit because value < 0 is false for NaN.
- sign s = detail::signbit(value) ? sign::minus : specs.sign();
- if (!detail::isfinite(value))
- return write_nonfinite<Char>(out, detail::isnan(value), specs, s);
- if (specs.align() == align::numeric && s != sign::none) {
- *out++ = detail::getsign<Char>(s);
- s = sign::none;
- if (specs.width != 0) --specs.width;
- }
- int precision = specs.precision;
- if (precision < 0) {
- if (specs.type() != presentation_type::none) {
- precision = 6;
- } else if (is_fast_float<T>::value && !is_constant_evaluated()) {
- // Use Dragonbox for the shortest format.
- using floaty = conditional_t<sizeof(T) >= sizeof(double), double, float>;
- auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
- return write_float<Char>(out, dec, specs, s, loc);
- }
- }
- memory_buffer buffer;
- if (specs.type() == presentation_type::hexfloat) {
- if (s != sign::none) buffer.push_back(detail::getsign<char>(s));
- format_hexfloat(convert_float(value), specs, buffer);
- return write_bytes<Char, align::right>(out, {buffer.data(), buffer.size()},
- specs);
- }
- if (specs.type() == presentation_type::exp) {
- if (precision == max_value<int>())
- report_error("number is too big");
- else
- ++precision;
- if (specs.precision != 0) specs.set_alt();
- } else if (specs.type() == presentation_type::fixed) {
- if (specs.precision != 0) specs.set_alt();
- } else if (precision == 0) {
- precision = 1;
- }
- int exp = format_float(convert_float(value), precision, specs,
- std::is_same<T, float>(), buffer);
- specs.precision = precision;
- auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
- return write_float<Char>(out, f, specs, s, loc);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_floating_point<T>::value)>
- FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs specs,
- locale_ref loc = {}) -> OutputIt {
- return specs.localized() && write_loc(out, value, specs, loc)
- ? out
- : write_float<Char>(out, value, specs, loc);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_fast_float<T>::value)>
- FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
- if (is_constant_evaluated()) return write<Char>(out, value, format_specs());
- auto s = detail::signbit(value) ? sign::minus : sign::none;
- constexpr auto specs = format_specs();
- using floaty = conditional_t<sizeof(T) >= sizeof(double), double, float>;
- using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint;
- floaty_uint mask = exponent_mask<floaty>();
- if ((bit_cast<floaty_uint>(value) & mask) == mask)
- return write_nonfinite<Char>(out, std::isnan(value), specs, s);
- auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
- return write_float<Char>(out, dec, specs, s, {});
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(is_floating_point<T>::value &&
- !is_fast_float<T>::value)>
- inline auto write(OutputIt out, T value) -> OutputIt {
- return write<Char>(out, value, format_specs());
- }
- template <typename Char, typename OutputIt>
- auto write(OutputIt out, monostate, format_specs = {}, locale_ref = {})
- -> OutputIt {
- FMT_ASSERT(false, "");
- return out;
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
- -> OutputIt {
- return copy_noinline<Char>(value.begin(), value.end(), out);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(has_to_string_view<T>::value)>
- constexpr auto write(OutputIt out, const T& value) -> OutputIt {
- return write<Char>(out, to_string_view(value));
- }
- // FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
- template <
- typename Char, typename OutputIt, typename T,
- bool check = std::is_enum<T>::value && !std::is_same<T, Char>::value &&
- mapped_type_constant<T, Char>::value != type::custom_type,
- FMT_ENABLE_IF(check)>
- FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
- return write<Char>(out, static_cast<underlying_t<T>>(value));
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(std::is_same<T, bool>::value)>
- FMT_CONSTEXPR auto write(OutputIt out, T value, const format_specs& specs = {},
- locale_ref = {}) -> OutputIt {
- return specs.type() != presentation_type::none &&
- specs.type() != presentation_type::string
- ? write<Char>(out, value ? 1 : 0, specs, {})
- : write_bytes<Char>(out, value ? "true" : "false", specs);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
- auto it = reserve(out, 1);
- *it++ = value;
- return base_iterator(out, it);
- }
- template <typename Char, typename OutputIt>
- FMT_CONSTEXPR20 auto write(OutputIt out, const Char* value) -> OutputIt {
- if (value) return write(out, basic_string_view<Char>(value));
- report_error("string pointer is null");
- return out;
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(std::is_same<T, void>::value)>
- auto write(OutputIt out, const T* value, const format_specs& specs = {},
- locale_ref = {}) -> OutputIt {
- return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
- }
- template <typename Char, typename OutputIt, typename T,
- FMT_ENABLE_IF(mapped_type_constant<T, Char>::value ==
- type::custom_type &&
- !std::is_fundamental<T>::value)>
- FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> OutputIt {
- auto f = formatter<T, Char>();
- auto parse_ctx = parse_context<Char>({});
- f.parse(parse_ctx);
- auto ctx = basic_format_context<OutputIt, Char>(out, {}, {});
- return f.format(value, ctx);
- }
- template <typename T>
- using is_builtin =
- bool_constant<std::is_same<T, int>::value || FMT_BUILTIN_TYPES>;
- // An argument visitor that formats the argument and writes it via the output
- // iterator. It's a class and not a generic lambda for compatibility with C++11.
- template <typename Char> struct default_arg_formatter {
- using context = buffered_context<Char>;
- basic_appender<Char> out;
- void operator()(monostate) { report_error("argument not found"); }
- template <typename T, FMT_ENABLE_IF(is_builtin<T>::value)>
- void operator()(T value) {
- write<Char>(out, value);
- }
- template <typename T, FMT_ENABLE_IF(!is_builtin<T>::value)>
- void operator()(T) {
- FMT_ASSERT(false, "");
- }
- void operator()(typename basic_format_arg<context>::handle h) {
- // Use a null locale since the default format must be unlocalized.
- auto parse_ctx = parse_context<Char>({});
- auto format_ctx = context(out, {}, {});
- h.format(parse_ctx, format_ctx);
- }
- };
- template <typename Char> struct arg_formatter {
- basic_appender<Char> out;
- const format_specs& specs;
- FMT_NO_UNIQUE_ADDRESS locale_ref locale;
- template <typename T, FMT_ENABLE_IF(is_builtin<T>::value)>
- FMT_CONSTEXPR FMT_INLINE void operator()(T value) {
- detail::write<Char>(out, value, specs, locale);
- }
- template <typename T, FMT_ENABLE_IF(!is_builtin<T>::value)>
- void operator()(T) {
- FMT_ASSERT(false, "");
- }
- void operator()(typename basic_format_arg<buffered_context<Char>>::handle) {
- // User-defined types are handled separately because they require access
- // to the parse context.
- }
- };
- struct dynamic_spec_getter {
- template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
- FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
- return is_negative(value) ? ~0ull : static_cast<unsigned long long>(value);
- }
- template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
- FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
- report_error("width/precision is not integer");
- return 0;
- }
- };
- template <typename Context, typename ID>
- FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> basic_format_arg<Context> {
- auto arg = ctx.arg(id);
- if (!arg) report_error("argument not found");
- return arg;
- }
- template <typename Context>
- FMT_CONSTEXPR int get_dynamic_spec(
- arg_id_kind kind, const arg_ref<typename Context::char_type>& ref,
- Context& ctx) {
- FMT_ASSERT(kind != arg_id_kind::none, "");
- auto arg =
- kind == arg_id_kind::index ? ctx.arg(ref.index) : ctx.arg(ref.name);
- if (!arg) report_error("argument not found");
- unsigned long long value = arg.visit(dynamic_spec_getter());
- if (value > to_unsigned(max_value<int>()))
- report_error("width/precision is out of range");
- return static_cast<int>(value);
- }
- template <typename Context>
- FMT_CONSTEXPR void handle_dynamic_spec(
- arg_id_kind kind, int& value,
- const arg_ref<typename Context::char_type>& ref, Context& ctx) {
- if (kind != arg_id_kind::none) value = get_dynamic_spec(kind, ref, ctx);
- }
- #if FMT_USE_NONTYPE_TEMPLATE_ARGS
- template <typename T, typename Char, size_t N,
- fmt::detail::fixed_string<Char, N> Str>
- struct static_named_arg : view {
- static constexpr auto name = Str.data;
- const T& value;
- static_named_arg(const T& v) : value(v) {}
- };
- template <typename T, typename Char, size_t N,
- fmt::detail::fixed_string<Char, N> Str>
- struct is_named_arg<static_named_arg<T, Char, N, Str>> : std::true_type {};
- template <typename T, typename Char, size_t N,
- fmt::detail::fixed_string<Char, N> Str>
- struct is_static_named_arg<static_named_arg<T, Char, N, Str>> : std::true_type {
- };
- template <typename Char, size_t N, fmt::detail::fixed_string<Char, N> Str>
- struct udl_arg {
- template <typename T> auto operator=(T&& value) const {
- return static_named_arg<T, Char, N, Str>(std::forward<T>(value));
- }
- };
- #else
- template <typename Char> struct udl_arg {
- const Char* str;
- template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
- return {str, std::forward<T>(value)};
- }
- };
- #endif // FMT_USE_NONTYPE_TEMPLATE_ARGS
- template <typename Char> struct format_handler {
- parse_context<Char> parse_ctx;
- buffered_context<Char> ctx;
- void on_text(const Char* begin, const Char* end) {
- copy_noinline<Char>(begin, end, ctx.out());
- }
- FMT_CONSTEXPR auto on_arg_id() -> int { return parse_ctx.next_arg_id(); }
- FMT_CONSTEXPR auto on_arg_id(int id) -> int {
- parse_ctx.check_arg_id(id);
- return id;
- }
- FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
- parse_ctx.check_arg_id(id);
- int arg_id = ctx.arg_id(id);
- if (arg_id < 0) report_error("argument not found");
- return arg_id;
- }
- FMT_INLINE void on_replacement_field(int id, const Char*) {
- ctx.arg(id).visit(default_arg_formatter<Char>{ctx.out()});
- }
- auto on_format_specs(int id, const Char* begin, const Char* end)
- -> const Char* {
- auto arg = get_arg(ctx, id);
- // Not using a visitor for custom types gives better codegen.
- if (arg.format_custom(begin, parse_ctx, ctx)) return parse_ctx.begin();
- auto specs = dynamic_format_specs<Char>();
- begin = parse_format_specs(begin, end, specs, parse_ctx, arg.type());
- if (specs.dynamic()) {
- handle_dynamic_spec(specs.dynamic_width(), specs.width, specs.width_ref,
- ctx);
- handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
- specs.precision_ref, ctx);
- }
- arg.visit(arg_formatter<Char>{ctx.out(), specs, ctx.locale()});
- return begin;
- }
- FMT_NORETURN void on_error(const char* message) { report_error(message); }
- };
- using format_func = void (*)(detail::buffer<char>&, int, const char*);
- FMT_API void do_report_error(format_func func, int error_code,
- const char* message) noexcept;
- FMT_API void format_error_code(buffer<char>& out, int error_code,
- string_view message) noexcept;
- template <typename T, typename Char, type TYPE>
- template <typename FormatContext>
- FMT_CONSTEXPR auto native_formatter<T, Char, TYPE>::format(
- const T& val, FormatContext& ctx) const -> decltype(ctx.out()) {
- if (!specs_.dynamic())
- return write<Char>(ctx.out(), val, specs_, ctx.locale());
- auto specs = format_specs(specs_);
- handle_dynamic_spec(specs.dynamic_width(), specs.width, specs_.width_ref,
- ctx);
- handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
- specs_.precision_ref, ctx);
- return write<Char>(ctx.out(), val, specs, ctx.locale());
- }
- // DEPRECATED!
- template <typename Char = char> struct vformat_args {
- using type = basic_format_args<buffered_context<Char>>;
- };
- template <> struct vformat_args<char> {
- using type = format_args;
- };
- template <typename Char>
- void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
- typename vformat_args<Char>::type args, locale_ref loc = {}) {
- auto out = basic_appender<Char>(buf);
- parse_format_string(
- fmt, format_handler<Char>{parse_context<Char>(fmt), {out, args, loc}});
- }
- } // namespace detail
- FMT_BEGIN_EXPORT
- // A generic formatting context with custom output iterator and character
- // (code unit) support. Char is the format string code unit type which can be
- // different from OutputIt::value_type.
- template <typename OutputIt, typename Char> class generic_context {
- private:
- OutputIt out_;
- basic_format_args<generic_context> args_;
- detail::locale_ref loc_;
- public:
- using char_type = Char;
- using iterator = OutputIt;
- using parse_context_type FMT_DEPRECATED = parse_context<Char>;
- template <typename T>
- using formatter_type FMT_DEPRECATED = formatter<T, Char>;
- enum { builtin_types = FMT_BUILTIN_TYPES };
- constexpr generic_context(OutputIt out,
- basic_format_args<generic_context> args,
- detail::locale_ref loc = {})
- : out_(out), args_(args), loc_(loc) {}
- generic_context(generic_context&&) = default;
- generic_context(const generic_context&) = delete;
- void operator=(const generic_context&) = delete;
- constexpr auto arg(int id) const -> basic_format_arg<generic_context> {
- return args_.get(id);
- }
- auto arg(basic_string_view<Char> name) const
- -> basic_format_arg<generic_context> {
- return args_.get(name);
- }
- constexpr auto arg_id(basic_string_view<Char> name) const -> int {
- return args_.get_id(name);
- }
- constexpr auto out() const -> iterator { return out_; }
- void advance_to(iterator it) {
- if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
- }
- constexpr auto locale() const -> detail::locale_ref { return loc_; }
- };
- class loc_value {
- private:
- basic_format_arg<context> value_;
- public:
- template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)>
- loc_value(T value) : value_(value) {}
- template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)>
- loc_value(T) {}
- template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) {
- return value_.visit(vis);
- }
- };
- // A locale facet that formats values in UTF-8.
- // It is parameterized on the locale to avoid the heavy <locale> include.
- template <typename Locale> class format_facet : public Locale::facet {
- private:
- std::string separator_;
- std::string grouping_;
- std::string decimal_point_;
- protected:
- virtual auto do_put(appender out, loc_value val,
- const format_specs& specs) const -> bool;
- public:
- static FMT_API typename Locale::id id;
- explicit format_facet(Locale& loc);
- explicit format_facet(string_view sep = "", std::string grouping = "\3",
- std::string decimal_point = ".")
- : separator_(sep.data(), sep.size()),
- grouping_(grouping),
- decimal_point_(decimal_point) {}
- auto put(appender out, loc_value val, const format_specs& specs) const
- -> bool {
- return do_put(out, val, specs);
- }
- };
- #define FMT_FORMAT_AS(Type, Base) \
- template <typename Char> \
- struct formatter<Type, Char> : formatter<Base, Char> { \
- template <typename FormatContext> \
- FMT_CONSTEXPR auto format(Type value, FormatContext& ctx) const \
- -> decltype(ctx.out()) { \
- return formatter<Base, Char>::format(value, ctx); \
- } \
- }
- FMT_FORMAT_AS(signed char, int);
- FMT_FORMAT_AS(unsigned char, unsigned);
- FMT_FORMAT_AS(short, int);
- FMT_FORMAT_AS(unsigned short, unsigned);
- FMT_FORMAT_AS(long, detail::long_type);
- FMT_FORMAT_AS(unsigned long, detail::ulong_type);
- FMT_FORMAT_AS(Char*, const Char*);
- FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
- FMT_FORMAT_AS(std::nullptr_t, const void*);
- FMT_FORMAT_AS(void*, const void*);
- template <typename Char, size_t N>
- struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {};
- template <typename Char, typename Traits, typename Allocator>
- class formatter<std::basic_string<Char, Traits, Allocator>, Char>
- : public formatter<basic_string_view<Char>, Char> {};
- template <int N, typename Char>
- struct formatter<detail::bitint<N>, Char> : formatter<long long, Char> {};
- template <int N, typename Char>
- struct formatter<detail::ubitint<N>, Char>
- : formatter<unsigned long long, Char> {};
- template <typename Char>
- struct formatter<detail::float128, Char>
- : detail::native_formatter<detail::float128, Char,
- detail::type::float_type> {};
- template <typename T, typename Char>
- struct formatter<T, Char, void_t<detail::format_as_result<T>>>
- : formatter<detail::format_as_result<T>, Char> {
- template <typename FormatContext>
- FMT_CONSTEXPR auto format(const T& value, FormatContext& ctx) const
- -> decltype(ctx.out()) {
- auto&& val = format_as(value); // Make an lvalue reference for format.
- return formatter<detail::format_as_result<T>, Char>::format(val, ctx);
- }
- };
- /**
- * Converts `p` to `const void*` for pointer formatting.
- *
- * **Example**:
- *
- * auto s = fmt::format("{}", fmt::ptr(p));
- */
- template <typename T> auto ptr(T p) -> const void* {
- static_assert(std::is_pointer<T>::value, "");
- return detail::bit_cast<const void*>(p);
- }
- /**
- * Converts `e` to the underlying type.
- *
- * **Example**:
- *
- * enum class color { red, green, blue };
- * auto s = fmt::format("{}", fmt::underlying(color::red)); // s == "0"
- */
- template <typename Enum>
- constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
- return static_cast<underlying_t<Enum>>(e);
- }
- namespace enums {
- template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
- constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
- return static_cast<underlying_t<Enum>>(e);
- }
- } // namespace enums
- #ifdef __cpp_lib_byte
- template <> struct formatter<std::byte> : formatter<unsigned> {
- static auto format_as(std::byte b) -> unsigned char {
- return static_cast<unsigned char>(b);
- }
- template <typename Context>
- auto format(std::byte b, Context& ctx) const -> decltype(ctx.out()) {
- return formatter<unsigned>::format(format_as(b), ctx);
- }
- };
- #endif
- struct bytes {
- string_view data;
- inline explicit bytes(string_view s) : data(s) {}
- };
- template <> struct formatter<bytes> {
- private:
- detail::dynamic_format_specs<> specs_;
- public:
- FMT_CONSTEXPR auto parse(parse_context<>& ctx) -> const char* {
- return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
- detail::type::string_type);
- }
- template <typename FormatContext>
- auto format(bytes b, FormatContext& ctx) const -> decltype(ctx.out()) {
- auto specs = specs_;
- detail::handle_dynamic_spec(specs.dynamic_width(), specs.width,
- specs.width_ref, ctx);
- detail::handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
- specs.precision_ref, ctx);
- return detail::write_bytes<char>(ctx.out(), b.data, specs);
- }
- };
- // group_digits_view is not derived from view because it copies the argument.
- template <typename T> struct group_digits_view {
- T value;
- };
- /**
- * Returns a view that formats an integer value using ',' as a
- * locale-independent thousands separator.
- *
- * **Example**:
- *
- * fmt::print("{}", fmt::group_digits(12345));
- * // Output: "12,345"
- */
- template <typename T> auto group_digits(T value) -> group_digits_view<T> {
- return {value};
- }
- template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
- private:
- detail::dynamic_format_specs<> specs_;
- public:
- FMT_CONSTEXPR auto parse(parse_context<>& ctx) -> const char* {
- return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
- detail::type::int_type);
- }
- template <typename FormatContext>
- auto format(group_digits_view<T> view, FormatContext& ctx) const
- -> decltype(ctx.out()) {
- auto specs = specs_;
- detail::handle_dynamic_spec(specs.dynamic_width(), specs.width,
- specs.width_ref, ctx);
- detail::handle_dynamic_spec(specs.dynamic_precision(), specs.precision,
- specs.precision_ref, ctx);
- auto arg = detail::make_write_int_arg(view.value, specs.sign());
- return detail::write_int(
- ctx.out(), static_cast<detail::uint64_or_128_t<T>>(arg.abs_value),
- arg.prefix, specs, detail::digit_grouping<char>("\3", ","));
- }
- };
- template <typename T, typename Char> struct nested_view {
- const formatter<T, Char>* fmt;
- const T* value;
- };
- template <typename T, typename Char>
- struct formatter<nested_view<T, Char>, Char> {
- FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
- return ctx.begin();
- }
- template <typename FormatContext>
- auto format(nested_view<T, Char> view, FormatContext& ctx) const
- -> decltype(ctx.out()) {
- return view.fmt->format(*view.value, ctx);
- }
- };
- template <typename T, typename Char = char> struct nested_formatter {
- private:
- basic_specs specs_;
- int width_;
- formatter<T, Char> formatter_;
- public:
- constexpr nested_formatter() : width_(0) {}
- FMT_CONSTEXPR auto parse(parse_context<Char>& ctx) -> const Char* {
- auto it = ctx.begin(), end = ctx.end();
- if (it == end) return it;
- auto specs = format_specs();
- it = detail::parse_align(it, end, specs);
- specs_ = specs;
- Char c = *it;
- auto width_ref = detail::arg_ref<Char>();
- if ((c >= '0' && c <= '9') || c == '{') {
- it = detail::parse_width(it, end, specs, width_ref, ctx);
- width_ = specs.width;
- }
- ctx.advance_to(it);
- return formatter_.parse(ctx);
- }
- template <typename FormatContext, typename F>
- auto write_padded(FormatContext& ctx, F write) const -> decltype(ctx.out()) {
- if (width_ == 0) return write(ctx.out());
- auto buf = basic_memory_buffer<Char>();
- write(basic_appender<Char>(buf));
- auto specs = format_specs();
- specs.width = width_;
- specs.set_fill(
- basic_string_view<Char>(specs_.fill<Char>(), specs_.fill_size()));
- specs.set_align(specs_.align());
- return detail::write<Char>(
- ctx.out(), basic_string_view<Char>(buf.data(), buf.size()), specs);
- }
- auto nested(const T& value) const -> nested_view<T, Char> {
- return nested_view<T, Char>{&formatter_, &value};
- }
- };
- inline namespace literals {
- #if FMT_USE_NONTYPE_TEMPLATE_ARGS
- template <detail::fixed_string S> constexpr auto operator""_a() {
- using char_t = remove_cvref_t<decltype(*S.data)>;
- return detail::udl_arg<char_t, sizeof(S.data) / sizeof(char_t), S>();
- }
- #else
- /**
- * User-defined literal equivalent of `fmt::arg`.
- *
- * **Example**:
- *
- * using namespace fmt::literals;
- * fmt::print("The answer is {answer}.", "answer"_a=42);
- */
- constexpr auto operator""_a(const char* s, size_t) -> detail::udl_arg<char> {
- return {s};
- }
- #endif // FMT_USE_NONTYPE_TEMPLATE_ARGS
- } // namespace literals
- /// A fast integer formatter.
- class format_int {
- private:
- // Buffer should be large enough to hold all digits (digits10 + 1),
- // a sign and a null character.
- enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
- mutable char buffer_[buffer_size];
- char* str_;
- template <typename UInt>
- FMT_CONSTEXPR20 auto format_unsigned(UInt value) -> char* {
- auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
- return detail::do_format_decimal(buffer_, n, buffer_size - 1);
- }
- template <typename Int>
- FMT_CONSTEXPR20 auto format_signed(Int value) -> char* {
- auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
- bool negative = value < 0;
- if (negative) abs_value = 0 - abs_value;
- auto begin = format_unsigned(abs_value);
- if (negative) *--begin = '-';
- return begin;
- }
- public:
- FMT_CONSTEXPR20 explicit format_int(int value) : str_(format_signed(value)) {}
- FMT_CONSTEXPR20 explicit format_int(long value)
- : str_(format_signed(value)) {}
- FMT_CONSTEXPR20 explicit format_int(long long value)
- : str_(format_signed(value)) {}
- FMT_CONSTEXPR20 explicit format_int(unsigned value)
- : str_(format_unsigned(value)) {}
- FMT_CONSTEXPR20 explicit format_int(unsigned long value)
- : str_(format_unsigned(value)) {}
- FMT_CONSTEXPR20 explicit format_int(unsigned long long value)
- : str_(format_unsigned(value)) {}
- /// Returns the number of characters written to the output buffer.
- FMT_CONSTEXPR20 auto size() const -> size_t {
- return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
- }
- /// Returns a pointer to the output buffer content. No terminating null
- /// character is appended.
- FMT_CONSTEXPR20 auto data() const -> const char* { return str_; }
- /// Returns a pointer to the output buffer content with terminating null
- /// character appended.
- FMT_CONSTEXPR20 auto c_str() const -> const char* {
- buffer_[buffer_size - 1] = '\0';
- return str_;
- }
- /// Returns the content of the output buffer as an `std::string`.
- inline auto str() const -> std::string { return {str_, size()}; }
- };
- #define FMT_STRING_IMPL(s, base) \
- [] { \
- /* Use the hidden visibility as a workaround for a GCC bug (#1973). */ \
- /* Use a macro-like name to avoid shadowing warnings. */ \
- struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base { \
- using char_type = fmt::remove_cvref_t<decltype(s[0])>; \
- constexpr explicit operator fmt::basic_string_view<char_type>() const { \
- return fmt::detail::compile_string_to_view<char_type>(s); \
- } \
- }; \
- using FMT_STRING_VIEW = \
- fmt::basic_string_view<typename FMT_COMPILE_STRING::char_type>; \
- fmt::detail::ignore_unused(FMT_STRING_VIEW(FMT_COMPILE_STRING())); \
- return FMT_COMPILE_STRING(); \
- }()
- /**
- * Constructs a legacy compile-time format string from a string literal `s`.
- *
- * **Example**:
- *
- * // A compile-time error because 'd' is an invalid specifier for strings.
- * std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
- */
- #define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string)
- FMT_API auto vsystem_error(int error_code, string_view fmt, format_args args)
- -> std::system_error;
- /**
- * Constructs `std::system_error` with a message formatted with
- * `fmt::format(fmt, args...)`.
- * `error_code` is a system error code as given by `errno`.
- *
- * **Example**:
- *
- * // This throws std::system_error with the description
- * // cannot open file 'madeup': No such file or directory
- * // or similar (system message may vary).
- * const char* filename = "madeup";
- * FILE* file = fopen(filename, "r");
- * if (!file)
- * throw fmt::system_error(errno, "cannot open file '{}'", filename);
- */
- template <typename... T>
- auto system_error(int error_code, format_string<T...> fmt, T&&... args)
- -> std::system_error {
- return vsystem_error(error_code, fmt.str, vargs<T...>{{args...}});
- }
- /**
- * Formats an error message for an error returned by an operating system or a
- * language runtime, for example a file opening error, and writes it to `out`.
- * The format is the same as the one used by `std::system_error(ec, message)`
- * where `ec` is `std::error_code(error_code, std::generic_category())`.
- * It is implementation-defined but normally looks like:
- *
- * <message>: <system-message>
- *
- * where `<message>` is the passed message and `<system-message>` is the system
- * message corresponding to the error code.
- * `error_code` is a system error code as given by `errno`.
- */
- FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
- const char* message) noexcept;
- // Reports a system error without throwing an exception.
- // Can be used to report errors from destructors.
- FMT_API void report_system_error(int error_code, const char* message) noexcept;
- inline auto vformat(detail::locale_ref loc, string_view fmt, format_args args)
- -> std::string {
- auto buf = memory_buffer();
- detail::vformat_to(buf, fmt, args, loc);
- return {buf.data(), buf.size()};
- }
- template <typename... T>
- FMT_INLINE auto format(detail::locale_ref loc, format_string<T...> fmt,
- T&&... args) -> std::string {
- return vformat(loc, fmt.str, vargs<T...>{{args...}});
- }
- template <typename OutputIt,
- FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
- auto vformat_to(OutputIt out, detail::locale_ref loc, string_view fmt,
- format_args args) -> OutputIt {
- auto&& buf = detail::get_buffer<char>(out);
- detail::vformat_to(buf, fmt, args, loc);
- return detail::get_iterator(buf, out);
- }
- template <typename OutputIt, typename... T,
- FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
- FMT_INLINE auto format_to(OutputIt out, detail::locale_ref loc,
- format_string<T...> fmt, T&&... args) -> OutputIt {
- return fmt::vformat_to(out, loc, fmt.str, vargs<T...>{{args...}});
- }
- template <typename... T>
- FMT_NODISCARD FMT_INLINE auto formatted_size(detail::locale_ref loc,
- format_string<T...> fmt,
- T&&... args) -> size_t {
- auto buf = detail::counting_buffer<>();
- detail::vformat_to(buf, fmt.str, vargs<T...>{{args...}}, loc);
- return buf.count();
- }
- FMT_API auto vformat(string_view fmt, format_args args) -> std::string;
- /**
- * Formats `args` according to specifications in `fmt` and returns the result
- * as a string.
- *
- * **Example**:
- *
- * #include <fmt/format.h>
- * std::string message = fmt::format("The answer is {}.", 42);
- */
- template <typename... T>
- FMT_NODISCARD FMT_INLINE auto format(format_string<T...> fmt, T&&... args)
- -> std::string {
- return vformat(fmt.str, vargs<T...>{{args...}});
- }
- /**
- * Converts `value` to `std::string` using the default format for type `T`.
- *
- * **Example**:
- *
- * std::string answer = fmt::to_string(42);
- */
- template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
- FMT_NODISCARD auto to_string(T value) -> std::string {
- // The buffer should be large enough to store the number including the sign
- // or "false" for bool.
- char buffer[max_of(detail::digits10<T>() + 2, 5)];
- return {buffer, detail::write<char>(buffer, value)};
- }
- template <typename T, FMT_ENABLE_IF(detail::use_format_as<T>::value)>
- FMT_NODISCARD auto to_string(const T& value) -> std::string {
- return to_string(format_as(value));
- }
- template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
- !detail::use_format_as<T>::value)>
- FMT_NODISCARD auto to_string(const T& value) -> std::string {
- auto buffer = memory_buffer();
- detail::write<char>(appender(buffer), value);
- return {buffer.data(), buffer.size()};
- }
- FMT_END_EXPORT
- FMT_END_NAMESPACE
- #ifdef FMT_HEADER_ONLY
- # define FMT_FUNC inline
- # include "format-inl.h"
- #endif
- // Restore _LIBCPP_REMOVE_TRANSITIVE_INCLUDES.
- #ifdef FMT_REMOVE_TRANSITIVE_INCLUDES
- # undef _LIBCPP_REMOVE_TRANSITIVE_INCLUDES
- #endif
- #endif // FMT_FORMAT_H_
|