mixer_sse41.c 8.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227
  1. /**
  2. * OpenAL cross platform audio library
  3. * Copyright (C) 2014 by Timothy Arceri <[email protected]>.
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Library General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Library General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Library General Public
  15. * License along with this library; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  18. * Or go to http://www.gnu.org/copyleft/lgpl.html
  19. */
  20. #include "config.h"
  21. #include <xmmintrin.h>
  22. #include <emmintrin.h>
  23. #include <smmintrin.h>
  24. #include "alu.h"
  25. #include "mixer_defs.h"
  26. const ALfloat *Resample_lerp32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src,
  27. ALuint frac, ALuint increment, ALfloat *restrict dst,
  28. ALuint numsamples)
  29. {
  30. const __m128i increment4 = _mm_set1_epi32(increment*4);
  31. const __m128 fracOne4 = _mm_set1_ps(1.0f/FRACTIONONE);
  32. const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
  33. union { alignas(16) ALuint i[4]; float f[4]; } pos_;
  34. union { alignas(16) ALuint i[4]; float f[4]; } frac_;
  35. __m128i frac4, pos4;
  36. ALuint pos;
  37. ALuint i;
  38. InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
  39. frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
  40. pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
  41. for(i = 0;numsamples-i > 3;i += 4)
  42. {
  43. const __m128 val1 = _mm_setr_ps(src[pos_.i[0]], src[pos_.i[1]], src[pos_.i[2]], src[pos_.i[3]]);
  44. const __m128 val2 = _mm_setr_ps(src[pos_.i[0]+1], src[pos_.i[1]+1], src[pos_.i[2]+1], src[pos_.i[3]+1]);
  45. /* val1 + (val2-val1)*mu */
  46. const __m128 r0 = _mm_sub_ps(val2, val1);
  47. const __m128 mu = _mm_mul_ps(_mm_cvtepi32_ps(frac4), fracOne4);
  48. const __m128 out = _mm_add_ps(val1, _mm_mul_ps(mu, r0));
  49. _mm_store_ps(&dst[i], out);
  50. frac4 = _mm_add_epi32(frac4, increment4);
  51. pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
  52. frac4 = _mm_and_si128(frac4, fracMask4);
  53. pos_.i[0] = _mm_extract_epi32(pos4, 0);
  54. pos_.i[1] = _mm_extract_epi32(pos4, 1);
  55. pos_.i[2] = _mm_extract_epi32(pos4, 2);
  56. pos_.i[3] = _mm_extract_epi32(pos4, 3);
  57. }
  58. /* NOTE: These four elements represent the position *after* the last four
  59. * samples, so the lowest element is the next position to resample.
  60. */
  61. pos = pos_.i[0];
  62. frac = _mm_cvtsi128_si32(frac4);
  63. for(;i < numsamples;i++)
  64. {
  65. dst[i] = lerp(src[pos], src[pos+1], frac * (1.0f/FRACTIONONE));
  66. frac += increment;
  67. pos += frac>>FRACTIONBITS;
  68. frac &= FRACTIONMASK;
  69. }
  70. return dst;
  71. }
  72. const ALfloat *Resample_fir4_32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src,
  73. ALuint frac, ALuint increment, ALfloat *restrict dst,
  74. ALuint numsamples)
  75. {
  76. const __m128i increment4 = _mm_set1_epi32(increment*4);
  77. const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
  78. union { alignas(16) ALuint i[4]; float f[4]; } pos_;
  79. union { alignas(16) ALuint i[4]; float f[4]; } frac_;
  80. __m128i frac4, pos4;
  81. ALuint pos;
  82. ALuint i;
  83. InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
  84. frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
  85. pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
  86. --src;
  87. for(i = 0;numsamples-i > 3;i += 4)
  88. {
  89. const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]]);
  90. const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]]);
  91. const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]]);
  92. const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]]);
  93. __m128 k0 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[0]]);
  94. __m128 k1 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[1]]);
  95. __m128 k2 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[2]]);
  96. __m128 k3 = _mm_load_ps(ResampleCoeffs.FIR4[frac_.i[3]]);
  97. __m128 out;
  98. k0 = _mm_mul_ps(k0, val0);
  99. k1 = _mm_mul_ps(k1, val1);
  100. k2 = _mm_mul_ps(k2, val2);
  101. k3 = _mm_mul_ps(k3, val3);
  102. k0 = _mm_hadd_ps(k0, k1);
  103. k2 = _mm_hadd_ps(k2, k3);
  104. out = _mm_hadd_ps(k0, k2);
  105. _mm_store_ps(&dst[i], out);
  106. frac4 = _mm_add_epi32(frac4, increment4);
  107. pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
  108. frac4 = _mm_and_si128(frac4, fracMask4);
  109. pos_.i[0] = _mm_extract_epi32(pos4, 0);
  110. pos_.i[1] = _mm_extract_epi32(pos4, 1);
  111. pos_.i[2] = _mm_extract_epi32(pos4, 2);
  112. pos_.i[3] = _mm_extract_epi32(pos4, 3);
  113. frac_.i[0] = _mm_extract_epi32(frac4, 0);
  114. frac_.i[1] = _mm_extract_epi32(frac4, 1);
  115. frac_.i[2] = _mm_extract_epi32(frac4, 2);
  116. frac_.i[3] = _mm_extract_epi32(frac4, 3);
  117. }
  118. pos = pos_.i[0];
  119. frac = frac_.i[0];
  120. for(;i < numsamples;i++)
  121. {
  122. dst[i] = resample_fir4(src[pos], src[pos+1], src[pos+2], src[pos+3], frac);
  123. frac += increment;
  124. pos += frac>>FRACTIONBITS;
  125. frac &= FRACTIONMASK;
  126. }
  127. return dst;
  128. }
  129. const ALfloat *Resample_fir8_32_SSE41(const BsincState* UNUSED(state), const ALfloat *restrict src,
  130. ALuint frac, ALuint increment, ALfloat *restrict dst,
  131. ALuint numsamples)
  132. {
  133. const __m128i increment4 = _mm_set1_epi32(increment*4);
  134. const __m128i fracMask4 = _mm_set1_epi32(FRACTIONMASK);
  135. union { alignas(16) ALuint i[4]; float f[4]; } pos_;
  136. union { alignas(16) ALuint i[4]; float f[4]; } frac_;
  137. __m128i frac4, pos4;
  138. ALuint pos;
  139. ALuint i, j;
  140. InitiatePositionArrays(frac, increment, frac_.i, pos_.i, 4);
  141. frac4 = _mm_castps_si128(_mm_load_ps(frac_.f));
  142. pos4 = _mm_castps_si128(_mm_load_ps(pos_.f));
  143. src -= 3;
  144. for(i = 0;numsamples-i > 3;i += 4)
  145. {
  146. __m128 out[2];
  147. for(j = 0;j < 8;j+=4)
  148. {
  149. const __m128 val0 = _mm_loadu_ps(&src[pos_.i[0]+j]);
  150. const __m128 val1 = _mm_loadu_ps(&src[pos_.i[1]+j]);
  151. const __m128 val2 = _mm_loadu_ps(&src[pos_.i[2]+j]);
  152. const __m128 val3 = _mm_loadu_ps(&src[pos_.i[3]+j]);
  153. __m128 k0 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[0]][j]);
  154. __m128 k1 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[1]][j]);
  155. __m128 k2 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[2]][j]);
  156. __m128 k3 = _mm_load_ps(&ResampleCoeffs.FIR8[frac_.i[3]][j]);
  157. k0 = _mm_mul_ps(k0, val0);
  158. k1 = _mm_mul_ps(k1, val1);
  159. k2 = _mm_mul_ps(k2, val2);
  160. k3 = _mm_mul_ps(k3, val3);
  161. k0 = _mm_hadd_ps(k0, k1);
  162. k2 = _mm_hadd_ps(k2, k3);
  163. out[j>>2] = _mm_hadd_ps(k0, k2);
  164. }
  165. out[0] = _mm_add_ps(out[0], out[1]);
  166. _mm_store_ps(&dst[i], out[0]);
  167. frac4 = _mm_add_epi32(frac4, increment4);
  168. pos4 = _mm_add_epi32(pos4, _mm_srli_epi32(frac4, FRACTIONBITS));
  169. frac4 = _mm_and_si128(frac4, fracMask4);
  170. pos_.i[0] = _mm_extract_epi32(pos4, 0);
  171. pos_.i[1] = _mm_extract_epi32(pos4, 1);
  172. pos_.i[2] = _mm_extract_epi32(pos4, 2);
  173. pos_.i[3] = _mm_extract_epi32(pos4, 3);
  174. frac_.i[0] = _mm_extract_epi32(frac4, 0);
  175. frac_.i[1] = _mm_extract_epi32(frac4, 1);
  176. frac_.i[2] = _mm_extract_epi32(frac4, 2);
  177. frac_.i[3] = _mm_extract_epi32(frac4, 3);
  178. }
  179. pos = pos_.i[0];
  180. frac = frac_.i[0];
  181. for(;i < numsamples;i++)
  182. {
  183. dst[i] = resample_fir8(src[pos ], src[pos+1], src[pos+2], src[pos+3],
  184. src[pos+4], src[pos+5], src[pos+6], src[pos+7], frac);
  185. frac += increment;
  186. pos += frac>>FRACTIONBITS;
  187. frac &= FRACTIONMASK;
  188. }
  189. return dst;
  190. }