123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- //-----------------------------------------------------------------------------
- // Copyright (c) 2012 GarageGames, LLC
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- //-----------------------------------------------------------------------------
- #include "platform/platform.h"
- #include "math/util/quadTransforms.h"
- BiQuadToSqr::BiQuadToSqr( const Point2F &p00,
- const Point2F &p10,
- const Point2F &p11,
- const Point2F &p01 )
- : m_kP00( p00 )
- {
- m_kB = p10 - p00 ; // width
- m_kC = p01 - p00; // height
- m_kD = p11 + p00 - p10 - p01; // diagonal dist
- if(mFabs(m_kD.x) < POINT_EPSILON)
- m_kD.x = 0.f;
- if(mFabs(m_kD.y) < POINT_EPSILON)
- m_kD.y = 0.f;
- m_fBC = mDotPerp( m_kB, m_kC );
- m_fBD = mDotPerp( m_kB, m_kD );
- m_fCD = mDotPerp( m_kC, m_kD );
- }
- Point2F BiQuadToSqr::transform( const Point2F &p ) const
- {
- Point2F kA = m_kP00 - p;
-
- F32 fAB = mDotPerp( kA, m_kB );
- F32 fAC = mDotPerp( kA, m_kC);
- // 0 = ac*bc+(bc^2+ac*bd-ab*cd)*s+bc*bd*s^2 = k0 + k1*s + k2*s^2
- F32 fK0 = fAC*m_fBC;
- F32 fK1 = m_fBC*m_fBC + fAC*m_fBD - fAB*m_fCD;
- F32 fK2 = m_fBC*m_fBD;
- if (mFabs(fK2) > POINT_EPSILON)
- {
- // s-equation is quadratic
- F32 fInv = 0.5f/fK2;
- F32 fDiscr = fK1*fK1 - 4.0f*fK0*fK2;
- F32 fRoot = mSqrt( mFabs(fDiscr) );
- Point2F kResult0( 0, 0 );
- kResult0.x = (-fK1 - fRoot)*fInv;
- kResult0.y = fAB/(m_fBC + m_fBD*kResult0.x);
- F32 fDeviation0 = deviation(kResult0);
- if ( fDeviation0 == 0.0f )
- return kResult0;
- Point2F kResult1( 0, 0 );
- kResult1.x = (-fK1 + fRoot)*fInv;
- kResult1.y = fAB/(m_fBC + m_fBD*kResult1.x);
- F32 fDeviation1 = deviation(kResult1);
- if ( fDeviation1 == 0.0f )
- return kResult1;
- if (fDeviation0 <= fDeviation1)
- {
- if ( fDeviation0 < POINT_EPSILON )
- return kResult0;
- }
- else
- {
- if ( fDeviation1 < POINT_EPSILON )
- return kResult1;
- }
- }
- else
- {
- // s-equation is linear
- Point2F kResult( 0, 0 );
- kResult.x = -fK0/fK1;
- kResult.y = fAB/(m_fBC + m_fBD*kResult.x);
- F32 fDeviation = deviation(kResult);
- if ( fDeviation < POINT_EPSILON )
- return kResult;
- }
- // point is outside the quadrilateral, return invalid
- return Point2F(F32_MAX,F32_MAX);
- }
- F32 BiQuadToSqr::deviation( const Point2F &sp )
- {
- // deviation is the squared distance of the point from the unit square
- F32 fDeviation = 0.0f;
- F32 fDelta;
- if (sp.x < 0.0f)
- {
- fDeviation += sp.x*sp.x;
- }
- else if (sp.x > 1.0f)
- {
- fDelta = sp.x - 1.0f;
- fDeviation += fDelta*fDelta;
- }
- if (sp.y < 0.0f)
- {
- fDeviation += sp.y*sp.y;
- }
- else if (sp.y > 1.0f)
- {
- fDelta = sp.y - 1.0f;
- fDeviation += fDelta*fDelta;
- }
- return fDeviation;
- }
- BiSqrToQuad3D::BiSqrToQuad3D( const Point3F& pnt00,
- const Point3F& pnt10,
- const Point3F& pnt11,
- const Point3F& pnt01)
- {
- p00 = pnt00;
- p10 = pnt10;
- p11 = pnt11;
- p01 = pnt01;
- }
- Point3F BiSqrToQuad3D::transform( const Point2F &p ) const
- {
- //Let p00, p10, p01, and p11 be your 3-tuples that are the quad's
- //vertices. You can parameterize the quad as follows.
- //q(s,t) = (1-s)*((1-t)*p00 + t*p01) + s*((1-t)*p10 + t*p11)
- //for 0 <= s <= 1 and 0 <= t <= 1. Notice that q(0,0) = p00,
- //q(1,0) = p10, q(0,1) = p01, and q(1,1) = p11, so the parameter
- //"square" whose points are (s,t) will be mapped to the quad.
- const F32 &s = p.x;
- const F32 &t = p.y;
- Point3F result = (1.0f-s)*((1.0f-t)*p00 + t*p01) + s*((1.0f-t)*p10 + t*p11);
- return result;
- }
|