123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Contains OBB-related code.
- * \file IceOBB.cpp
- * \author Pierre Terdiman
- * \date January, 29, 2000
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * An Oriented Bounding Box (OBB).
- * \class OBB
- * \author Pierre Terdiman
- * \version 1.0
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- #include "../Opcode.h"
- using namespace IceMaths;
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Tests if a point is contained within the OBB.
- * \param p [in] the world point to test
- * \return true if inside the OBB
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool OBB::ContainsPoint(const Point& p) const
- {
- // Point in OBB test using lazy evaluation and early exits
- // Translate to box space
- Point RelPoint = p - mCenter;
- // Point * mRot maps from box space to world space
- // mRot * Point maps from world space to box space (what we need here)
- float f = mRot.m[0][0] * RelPoint.x + mRot.m[0][1] * RelPoint.y + mRot.m[0][2] * RelPoint.z;
- if(f >= mExtents.x || f <= -mExtents.x) return false;
- f = mRot.m[1][0] * RelPoint.x + mRot.m[1][1] * RelPoint.y + mRot.m[1][2] * RelPoint.z;
- if(f >= mExtents.y || f <= -mExtents.y) return false;
- f = mRot.m[2][0] * RelPoint.x + mRot.m[2][1] * RelPoint.y + mRot.m[2][2] * RelPoint.z;
- if(f >= mExtents.z || f <= -mExtents.z) return false;
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Builds an OBB from an AABB and a world transform.
- * \param aabb [in] the aabb
- * \param mat [in] the world transform
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- void OBB::Create(const AABB& aabb, const Matrix4x4& mat)
- {
- // Note: must be coherent with Rotate()
- aabb.GetCenter(mCenter);
- aabb.GetExtents(mExtents);
- // Here we have the same as OBB::Rotate(mat) where the obb is (mCenter, mExtents, Identity).
- // So following what's done in Rotate:
- // - x-form the center
- mCenter *= mat;
- // - combine rotation with identity, i.e. just use given matrix
- mRot = mat;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Computes the obb planes.
- * \param planes [out] 6 box planes
- * \return true if success
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool OBB::ComputePlanes(Plane* planes) const
- {
- // Checkings
- if(!planes) return false;
- Point Axis0 = mRot[0];
- Point Axis1 = mRot[1];
- Point Axis2 = mRot[2];
- // Writes normals
- planes[0].n = Axis0;
- planes[1].n = -Axis0;
- planes[2].n = Axis1;
- planes[3].n = -Axis1;
- planes[4].n = Axis2;
- planes[5].n = -Axis2;
- // Compute a point on each plane
- Point p0 = mCenter + Axis0 * mExtents.x;
- Point p1 = mCenter - Axis0 * mExtents.x;
- Point p2 = mCenter + Axis1 * mExtents.y;
- Point p3 = mCenter - Axis1 * mExtents.y;
- Point p4 = mCenter + Axis2 * mExtents.z;
- Point p5 = mCenter - Axis2 * mExtents.z;
- // Compute d
- planes[0].d = -(planes[0].n|p0);
- planes[1].d = -(planes[1].n|p1);
- planes[2].d = -(planes[2].n|p2);
- planes[3].d = -(planes[3].n|p3);
- planes[4].d = -(planes[4].n|p4);
- planes[5].d = -(planes[5].n|p5);
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Computes the obb points.
- * \param pts [out] 8 box points
- * \return true if success
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool OBB::ComputePoints(Point* pts) const
- {
- // Checkings
- if(!pts) return false;
- Point Axis0 = mRot[0];
- Point Axis1 = mRot[1];
- Point Axis2 = mRot[2];
- Axis0 *= mExtents.x;
- Axis1 *= mExtents.y;
- Axis2 *= mExtents.z;
- // 7+------+6 0 = ---
- // /| /| 1 = +--
- // / | / | 2 = ++-
- // / 4+---/--+5 3 = -+-
- // 3+------+2 / y z 4 = --+
- // | / | / | / 5 = +-+
- // |/ |/ |/ 6 = +++
- // 0+------+1 *---x 7 = -++
- pts[0] = mCenter - Axis0 - Axis1 - Axis2;
- pts[1] = mCenter + Axis0 - Axis1 - Axis2;
- pts[2] = mCenter + Axis0 + Axis1 - Axis2;
- pts[3] = mCenter - Axis0 + Axis1 - Axis2;
- pts[4] = mCenter - Axis0 - Axis1 + Axis2;
- pts[5] = mCenter + Axis0 - Axis1 + Axis2;
- pts[6] = mCenter + Axis0 + Axis1 + Axis2;
- pts[7] = mCenter - Axis0 + Axis1 + Axis2;
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Computes vertex normals.
- * \param pts [out] 8 box points
- * \return true if success
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- bool OBB::ComputeVertexNormals(Point* pts) const
- {
- static float VertexNormals[] =
- {
- -INVSQRT3, -INVSQRT3, -INVSQRT3,
- INVSQRT3, -INVSQRT3, -INVSQRT3,
- INVSQRT3, INVSQRT3, -INVSQRT3,
- -INVSQRT3, INVSQRT3, -INVSQRT3,
- -INVSQRT3, -INVSQRT3, INVSQRT3,
- INVSQRT3, -INVSQRT3, INVSQRT3,
- INVSQRT3, INVSQRT3, INVSQRT3,
- -INVSQRT3, INVSQRT3, INVSQRT3
- };
- if(!pts) return false;
- const Point* VN = (const Point*)VertexNormals;
- for(udword i=0;i<8;i++)
- {
- pts[i] = VN[i] * mRot;
- }
- return true;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Returns edges.
- * \return 24 indices (12 edges) indexing the list returned by ComputePoints()
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- const udword* OBB::GetEdges() const
- {
- static udword Indices[] = {
- 0, 1, 1, 2, 2, 3, 3, 0,
- 7, 6, 6, 5, 5, 4, 4, 7,
- 1, 5, 6, 2,
- 3, 7, 4, 0
- };
- return Indices;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Returns local edge normals.
- * \return edge normals in local space
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- const Point* OBB::GetLocalEdgeNormals() const
- {
- static float EdgeNormals[] =
- {
- 0, -INVSQRT2, -INVSQRT2, // 0-1
- INVSQRT2, 0, -INVSQRT2, // 1-2
- 0, INVSQRT2, -INVSQRT2, // 2-3
- -INVSQRT2, 0, -INVSQRT2, // 3-0
- 0, INVSQRT2, INVSQRT2, // 7-6
- INVSQRT2, 0, INVSQRT2, // 6-5
- 0, -INVSQRT2, INVSQRT2, // 5-4
- -INVSQRT2, 0, INVSQRT2, // 4-7
- INVSQRT2, -INVSQRT2, 0, // 1-5
- INVSQRT2, INVSQRT2, 0, // 6-2
- -INVSQRT2, INVSQRT2, 0, // 3-7
- -INVSQRT2, -INVSQRT2, 0 // 4-0
- };
- return (const Point*)EdgeNormals;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Returns world edge normal
- * \param edge_index [in] 0 <= edge index < 12
- * \param world_normal [out] edge normal in world space
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- void OBB::ComputeWorldEdgeNormal(udword edge_index, Point& world_normal) const
- {
- ASSERT(edge_index<12);
- world_normal = GetLocalEdgeNormals()[edge_index] * mRot;
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Computes an LSS surrounding the OBB.
- * \param lss [out] the LSS
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- void OBB::ComputeLSS(LSS& lss) const
- {
- Point Axis0 = mRot[0];
- Point Axis1 = mRot[1];
- Point Axis2 = mRot[2];
- switch(mExtents.LargestAxis())
- {
- case 0:
- lss.mRadius = (mExtents.y + mExtents.z)*0.5f;
- lss.mP0 = mCenter + Axis0 * (mExtents.x - lss.mRadius);
- lss.mP1 = mCenter - Axis0 * (mExtents.x - lss.mRadius);
- break;
- case 1:
- lss.mRadius = (mExtents.x + mExtents.z)*0.5f;
- lss.mP0 = mCenter + Axis1 * (mExtents.y - lss.mRadius);
- lss.mP1 = mCenter - Axis1 * (mExtents.y - lss.mRadius);
- break;
- case 2:
- lss.mRadius = (mExtents.x + mExtents.y)*0.5f;
- lss.mP0 = mCenter + Axis2 * (mExtents.z - lss.mRadius);
- lss.mP1 = mCenter - Axis2 * (mExtents.z - lss.mRadius);
- break;
- }
- }
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Checks the OBB is inside another OBB.
- * \param box [in] the other OBB
- * \return TRUE if we're inside the other box
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- BOOL OBB::IsInside(const OBB& box) const
- {
- // Make a 4x4 from the box & inverse it
- Matrix4x4 M0Inv;
- {
- Matrix4x4 M0 = box.mRot;
- M0.SetTrans(box.mCenter);
- InvertPRMatrix(M0Inv, M0);
- }
- // With our inversed 4x4, create box1 in space of box0
- OBB _1in0;
- Rotate(M0Inv, _1in0);
- // This should cancel out box0's rotation, i.e. it's now an AABB.
- // => Center(0,0,0), Rot(identity)
- // The two boxes are in the same space so now we can compare them.
- // Create the AABB of (box1 in space of box0)
- const Matrix3x3& mtx = _1in0.mRot;
- float f = fabsf(mtx.m[0][0] * mExtents.x) + fabsf(mtx.m[1][0] * mExtents.y) + fabsf(mtx.m[2][0] * mExtents.z) - box.mExtents.x;
- if(f > _1in0.mCenter.x) return FALSE;
- if(-f < _1in0.mCenter.x) return FALSE;
- f = fabsf(mtx.m[0][1] * mExtents.x) + fabsf(mtx.m[1][1] * mExtents.y) + fabsf(mtx.m[2][1] * mExtents.z) - box.mExtents.y;
- if(f > _1in0.mCenter.y) return FALSE;
- if(-f < _1in0.mCenter.y) return FALSE;
- f = fabsf(mtx.m[0][2] * mExtents.x) + fabsf(mtx.m[1][2] * mExtents.y) + fabsf(mtx.m[2][2] * mExtents.z) - box.mExtents.z;
- if(f > _1in0.mCenter.z) return FALSE;
- if(-f < _1in0.mCenter.z) return FALSE;
- return TRUE;
- }
|