loadsofa.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. /*
  2. * HRTF utility for producing and demonstrating the process of creating an
  3. * OpenAL Soft compatible HRIR data set.
  4. *
  5. * Copyright (C) 2018-2019 Christopher Fitzgerald
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. *
  21. * Or visit: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
  22. */
  23. #include "loadsofa.h"
  24. #include <algorithm>
  25. #include <atomic>
  26. #include <chrono>
  27. #include <cmath>
  28. #include <cstdio>
  29. #include <functional>
  30. #include <future>
  31. #include <iterator>
  32. #include <memory>
  33. #include <numeric>
  34. #include <string>
  35. #include <vector>
  36. #include "makemhr.h"
  37. #include "polyphase_resampler.h"
  38. #include "sofa-support.h"
  39. #include "mysofa.h"
  40. using uint = unsigned int;
  41. /* Attempts to produce a compatible layout. Most data sets tend to be
  42. * uniform and have the same major axis as used by OpenAL Soft's HRTF model.
  43. * This will remove outliers and produce a maximally dense layout when
  44. * possible. Those sets that contain purely random measurements or use
  45. * different major axes will fail.
  46. */
  47. static bool PrepareLayout(const uint m, const float *xyzs, HrirDataT *hData)
  48. {
  49. fprintf(stdout, "Detecting compatible layout...\n");
  50. auto fds = GetCompatibleLayout(m, xyzs);
  51. if(fds.size() > MAX_FD_COUNT)
  52. {
  53. fprintf(stdout, "Incompatible layout (inumerable radii).\n");
  54. return false;
  55. }
  56. double distances[MAX_FD_COUNT]{};
  57. uint evCounts[MAX_FD_COUNT]{};
  58. auto azCounts = std::vector<uint>(MAX_FD_COUNT*MAX_EV_COUNT, 0u);
  59. uint fi{0u}, ir_total{0u};
  60. for(const auto &field : fds)
  61. {
  62. distances[fi] = field.mDistance;
  63. evCounts[fi] = field.mEvCount;
  64. for(uint ei{0u};ei < field.mEvStart;ei++)
  65. azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[field.mEvCount-ei-1];
  66. for(uint ei{field.mEvStart};ei < field.mEvCount;ei++)
  67. {
  68. azCounts[fi*MAX_EV_COUNT + ei] = field.mAzCounts[ei];
  69. ir_total += field.mAzCounts[ei];
  70. }
  71. ++fi;
  72. }
  73. fprintf(stdout, "Using %u of %u IRs.\n", ir_total, m);
  74. return PrepareHrirData(fi, distances, evCounts, azCounts.data(), hData) != 0;
  75. }
  76. bool PrepareSampleRate(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
  77. {
  78. const char *srate_dim{nullptr};
  79. const char *srate_units{nullptr};
  80. MYSOFA_ARRAY *srate_array{&sofaHrtf->DataSamplingRate};
  81. MYSOFA_ATTRIBUTE *srate_attrs{srate_array->attributes};
  82. while(srate_attrs)
  83. {
  84. if(std::string{"DIMENSION_LIST"} == srate_attrs->name)
  85. {
  86. if(srate_dim)
  87. {
  88. fprintf(stderr, "Duplicate SampleRate.DIMENSION_LIST\n");
  89. return false;
  90. }
  91. srate_dim = srate_attrs->value;
  92. }
  93. else if(std::string{"Units"} == srate_attrs->name)
  94. {
  95. if(srate_units)
  96. {
  97. fprintf(stderr, "Duplicate SampleRate.Units\n");
  98. return false;
  99. }
  100. srate_units = srate_attrs->value;
  101. }
  102. else
  103. fprintf(stderr, "Unexpected sample rate attribute: %s = %s\n", srate_attrs->name,
  104. srate_attrs->value);
  105. srate_attrs = srate_attrs->next;
  106. }
  107. if(!srate_dim)
  108. {
  109. fprintf(stderr, "Missing sample rate dimensions\n");
  110. return false;
  111. }
  112. if(srate_dim != std::string{"I"})
  113. {
  114. fprintf(stderr, "Unsupported sample rate dimensions: %s\n", srate_dim);
  115. return false;
  116. }
  117. if(!srate_units)
  118. {
  119. fprintf(stderr, "Missing sample rate unit type\n");
  120. return false;
  121. }
  122. if(srate_units != std::string{"hertz"})
  123. {
  124. fprintf(stderr, "Unsupported sample rate unit type: %s\n", srate_units);
  125. return false;
  126. }
  127. /* I dimensions guarantees 1 element, so just extract it. */
  128. hData->mIrRate = static_cast<uint>(srate_array->values[0] + 0.5f);
  129. if(hData->mIrRate < MIN_RATE || hData->mIrRate > MAX_RATE)
  130. {
  131. fprintf(stderr, "Sample rate out of range: %u (expected %u to %u)", hData->mIrRate,
  132. MIN_RATE, MAX_RATE);
  133. return false;
  134. }
  135. return true;
  136. }
  137. bool PrepareDelay(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
  138. {
  139. const char *delay_dim{nullptr};
  140. MYSOFA_ARRAY *delay_array{&sofaHrtf->DataDelay};
  141. MYSOFA_ATTRIBUTE *delay_attrs{delay_array->attributes};
  142. while(delay_attrs)
  143. {
  144. if(std::string{"DIMENSION_LIST"} == delay_attrs->name)
  145. {
  146. if(delay_dim)
  147. {
  148. fprintf(stderr, "Duplicate Delay.DIMENSION_LIST\n");
  149. return false;
  150. }
  151. delay_dim = delay_attrs->value;
  152. }
  153. else
  154. fprintf(stderr, "Unexpected delay attribute: %s = %s\n", delay_attrs->name,
  155. delay_attrs->value);
  156. delay_attrs = delay_attrs->next;
  157. }
  158. if(!delay_dim)
  159. {
  160. fprintf(stderr, "Missing delay dimensions\n");
  161. /*return false;*/
  162. }
  163. else if(delay_dim != std::string{"I,R"})
  164. {
  165. fprintf(stderr, "Unsupported delay dimensions: %s\n", delay_dim);
  166. return false;
  167. }
  168. else if(hData->mChannelType == CT_STEREO)
  169. {
  170. /* I,R is 1xChannelCount. Makemhr currently removes any delay constant,
  171. * so we can ignore this as long as it's equal.
  172. */
  173. if(delay_array->values[0] != delay_array->values[1])
  174. {
  175. fprintf(stderr, "Mismatched delays not supported: %f, %f\n", delay_array->values[0],
  176. delay_array->values[1]);
  177. return false;
  178. }
  179. }
  180. return true;
  181. }
  182. bool CheckIrData(MYSOFA_HRTF *sofaHrtf)
  183. {
  184. const char *ir_dim{nullptr};
  185. MYSOFA_ARRAY *ir_array{&sofaHrtf->DataIR};
  186. MYSOFA_ATTRIBUTE *ir_attrs{ir_array->attributes};
  187. while(ir_attrs)
  188. {
  189. if(std::string{"DIMENSION_LIST"} == ir_attrs->name)
  190. {
  191. if(ir_dim)
  192. {
  193. fprintf(stderr, "Duplicate IR.DIMENSION_LIST\n");
  194. return false;
  195. }
  196. ir_dim = ir_attrs->value;
  197. }
  198. else
  199. fprintf(stderr, "Unexpected IR attribute: %s = %s\n", ir_attrs->name,
  200. ir_attrs->value);
  201. ir_attrs = ir_attrs->next;
  202. }
  203. if(!ir_dim)
  204. {
  205. fprintf(stderr, "Missing IR dimensions\n");
  206. return false;
  207. }
  208. if(ir_dim != std::string{"M,R,N"})
  209. {
  210. fprintf(stderr, "Unsupported IR dimensions: %s\n", ir_dim);
  211. return false;
  212. }
  213. return true;
  214. }
  215. /* Calculate the onset time of a HRIR. */
  216. static constexpr int OnsetRateMultiple{10};
  217. static double CalcHrirOnset(PPhaseResampler &rs, const uint rate, const uint n,
  218. std::vector<double> &upsampled, const double *hrir)
  219. {
  220. rs.process(n, hrir, static_cast<uint>(upsampled.size()), upsampled.data());
  221. auto abs_lt = [](const double &lhs, const double &rhs) -> bool
  222. { return std::abs(lhs) < std::abs(rhs); };
  223. auto iter = std::max_element(upsampled.cbegin(), upsampled.cend(), abs_lt);
  224. return static_cast<double>(std::distance(upsampled.cbegin(), iter)) /
  225. (double{OnsetRateMultiple}*rate);
  226. }
  227. /* Calculate the magnitude response of a HRIR. */
  228. static void CalcHrirMagnitude(const uint points, const uint n, std::vector<complex_d> &h,
  229. double *hrir)
  230. {
  231. auto iter = std::copy_n(hrir, points, h.begin());
  232. std::fill(iter, h.end(), complex_d{0.0, 0.0});
  233. FftForward(n, h.data());
  234. MagnitudeResponse(n, h.data(), hrir);
  235. }
  236. static bool LoadResponses(MYSOFA_HRTF *sofaHrtf, HrirDataT *hData)
  237. {
  238. std::atomic<uint> loaded_count{0u};
  239. auto load_proc = [sofaHrtf,hData,&loaded_count]() -> bool
  240. {
  241. const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
  242. hData->mHrirsBase.resize(channels * hData->mIrCount * hData->mIrSize, 0.0);
  243. double *hrirs = hData->mHrirsBase.data();
  244. for(uint si{0u};si < sofaHrtf->M;++si)
  245. {
  246. loaded_count.fetch_add(1u);
  247. float aer[3]{
  248. sofaHrtf->SourcePosition.values[3*si],
  249. sofaHrtf->SourcePosition.values[3*si + 1],
  250. sofaHrtf->SourcePosition.values[3*si + 2]
  251. };
  252. mysofa_c2s(aer);
  253. if(std::abs(aer[1]) >= 89.999f)
  254. aer[0] = 0.0f;
  255. else
  256. aer[0] = std::fmod(360.0f - aer[0], 360.0f);
  257. auto field = std::find_if(hData->mFds.cbegin(), hData->mFds.cend(),
  258. [&aer](const HrirFdT &fld) -> bool
  259. {
  260. double delta = aer[2] - fld.mDistance;
  261. return (std::abs(delta) < 0.001);
  262. });
  263. if(field == hData->mFds.cend())
  264. continue;
  265. double ef{(90.0+aer[1]) / 180.0 * (field->mEvCount-1)};
  266. auto ei = static_cast<int>(std::round(ef));
  267. ef = (ef-ei) * 180.0 / (field->mEvCount-1);
  268. if(std::abs(ef) >= 0.1) continue;
  269. double af{aer[0] / 360.0 * field->mEvs[ei].mAzCount};
  270. auto ai = static_cast<int>(std::round(af));
  271. af = (af-ai) * 360.0 / field->mEvs[ei].mAzCount;
  272. ai %= field->mEvs[ei].mAzCount;
  273. if(std::abs(af) >= 0.1) continue;
  274. HrirAzT *azd = &field->mEvs[ei].mAzs[ai];
  275. if(azd->mIrs[0] != nullptr)
  276. {
  277. fprintf(stderr, "\nMultiple measurements near [ a=%f, e=%f, r=%f ].\n",
  278. aer[0], aer[1], aer[2]);
  279. return false;
  280. }
  281. for(uint ti{0u};ti < channels;++ti)
  282. {
  283. azd->mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd->mIndex)];
  284. std::copy_n(&sofaHrtf->DataIR.values[(si*sofaHrtf->R + ti)*sofaHrtf->N],
  285. hData->mIrPoints, azd->mIrs[ti]);
  286. }
  287. /* TODO: Since some SOFA files contain minimum phase HRIRs,
  288. * it would be beneficial to check for per-measurement delays
  289. * (when available) to reconstruct the HRTDs.
  290. */
  291. }
  292. return true;
  293. };
  294. std::future_status load_status{};
  295. auto load_future = std::async(std::launch::async, load_proc);
  296. do {
  297. load_status = load_future.wait_for(std::chrono::milliseconds{50});
  298. printf("\rLoading HRIRs... %u of %u", loaded_count.load(), sofaHrtf->M);
  299. fflush(stdout);
  300. } while(load_status != std::future_status::ready);
  301. fputc('\n', stdout);
  302. return load_future.get();
  303. }
  304. /* Calculates the frequency magnitudes of the HRIR set. Work is delegated to
  305. * this struct, which runs asynchronously on one or more threads (sharing the
  306. * same calculator object).
  307. */
  308. struct MagCalculator {
  309. const uint mFftSize{};
  310. const uint mIrPoints{};
  311. std::vector<double*> mIrs{};
  312. std::atomic<size_t> mCurrent{};
  313. std::atomic<size_t> mDone{};
  314. void Worker()
  315. {
  316. auto htemp = std::vector<complex_d>(mFftSize);
  317. while(1)
  318. {
  319. /* Load the current index to process. */
  320. size_t idx{mCurrent.load()};
  321. do {
  322. /* If the index is at the end, we're done. */
  323. if(idx >= mIrs.size())
  324. return;
  325. /* Otherwise, increment the current index atomically so other
  326. * threads know to go to the next one. If this call fails, the
  327. * current index was just changed by another thread and the new
  328. * value is loaded into idx, which we'll recheck.
  329. */
  330. } while(!mCurrent.compare_exchange_weak(idx, idx+1, std::memory_order_relaxed));
  331. CalcHrirMagnitude(mIrPoints, mFftSize, htemp, mIrs[idx]);
  332. /* Increment the number of IRs done. */
  333. mDone.fetch_add(1);
  334. }
  335. }
  336. };
  337. bool LoadSofaFile(const char *filename, const uint numThreads, const uint fftSize,
  338. const uint truncSize, const ChannelModeT chanMode, HrirDataT *hData)
  339. {
  340. int err;
  341. MySofaHrtfPtr sofaHrtf{mysofa_load(filename, &err)};
  342. if(!sofaHrtf)
  343. {
  344. fprintf(stdout, "Error: Could not load %s: %s\n", filename, SofaErrorStr(err));
  345. return false;
  346. }
  347. /* NOTE: Some valid SOFA files are failing this check. */
  348. err = mysofa_check(sofaHrtf.get());
  349. if(err != MYSOFA_OK)
  350. fprintf(stderr, "Warning: Supposedly malformed source file '%s' (%s).\n", filename,
  351. SofaErrorStr(err));
  352. mysofa_tocartesian(sofaHrtf.get());
  353. /* Make sure emitter and receiver counts are sane. */
  354. if(sofaHrtf->E != 1)
  355. {
  356. fprintf(stderr, "%u emitters not supported\n", sofaHrtf->E);
  357. return false;
  358. }
  359. if(sofaHrtf->R > 2 || sofaHrtf->R < 1)
  360. {
  361. fprintf(stderr, "%u receivers not supported\n", sofaHrtf->R);
  362. return false;
  363. }
  364. /* Assume R=2 is a stereo measurement, and R=1 is mono left-ear-only. */
  365. if(sofaHrtf->R == 2 && chanMode == CM_AllowStereo)
  366. hData->mChannelType = CT_STEREO;
  367. else
  368. hData->mChannelType = CT_MONO;
  369. /* Check and set the FFT and IR size. */
  370. if(sofaHrtf->N > fftSize)
  371. {
  372. fprintf(stderr, "Sample points exceeds the FFT size.\n");
  373. return false;
  374. }
  375. if(sofaHrtf->N < truncSize)
  376. {
  377. fprintf(stderr, "Sample points is below the truncation size.\n");
  378. return false;
  379. }
  380. hData->mIrPoints = sofaHrtf->N;
  381. hData->mFftSize = fftSize;
  382. hData->mIrSize = std::max(1u + (fftSize/2u), sofaHrtf->N);
  383. /* Assume a default head radius of 9cm. */
  384. hData->mRadius = 0.09;
  385. if(!PrepareSampleRate(sofaHrtf.get(), hData) || !PrepareDelay(sofaHrtf.get(), hData)
  386. || !CheckIrData(sofaHrtf.get()))
  387. return false;
  388. if(!PrepareLayout(sofaHrtf->M, sofaHrtf->SourcePosition.values, hData))
  389. return false;
  390. if(!LoadResponses(sofaHrtf.get(), hData))
  391. return false;
  392. sofaHrtf = nullptr;
  393. for(uint fi{0u};fi < hData->mFdCount;fi++)
  394. {
  395. uint ei{0u};
  396. for(;ei < hData->mFds[fi].mEvCount;ei++)
  397. {
  398. uint ai{0u};
  399. for(;ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
  400. {
  401. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  402. if(azd.mIrs[0] != nullptr) break;
  403. }
  404. if(ai < hData->mFds[fi].mEvs[ei].mAzCount)
  405. break;
  406. }
  407. if(ei >= hData->mFds[fi].mEvCount)
  408. {
  409. fprintf(stderr, "Missing source references [ %d, *, * ].\n", fi);
  410. return false;
  411. }
  412. hData->mFds[fi].mEvStart = ei;
  413. for(;ei < hData->mFds[fi].mEvCount;ei++)
  414. {
  415. for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
  416. {
  417. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  418. if(azd.mIrs[0] == nullptr)
  419. {
  420. fprintf(stderr, "Missing source reference [ %d, %d, %d ].\n", fi, ei, ai);
  421. return false;
  422. }
  423. }
  424. }
  425. }
  426. size_t hrir_total{0};
  427. const uint channels{(hData->mChannelType == CT_STEREO) ? 2u : 1u};
  428. double *hrirs = hData->mHrirsBase.data();
  429. for(uint fi{0u};fi < hData->mFdCount;fi++)
  430. {
  431. for(uint ei{0u};ei < hData->mFds[fi].mEvStart;ei++)
  432. {
  433. for(uint ai{0u};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
  434. {
  435. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  436. for(uint ti{0u};ti < channels;ti++)
  437. azd.mIrs[ti] = &hrirs[hData->mIrSize * (hData->mIrCount*ti + azd.mIndex)];
  438. }
  439. }
  440. for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
  441. hrir_total += hData->mFds[fi].mEvs[ei].mAzCount * channels;
  442. }
  443. std::atomic<size_t> hrir_done{0};
  444. auto onset_proc = [hData,channels,&hrir_done]() -> bool
  445. {
  446. /* Temporary buffer used to calculate the IR's onset. */
  447. auto upsampled = std::vector<double>(OnsetRateMultiple * hData->mIrPoints);
  448. /* This resampler is used to help detect the response onset. */
  449. PPhaseResampler rs;
  450. rs.init(hData->mIrRate, OnsetRateMultiple*hData->mIrRate);
  451. for(uint fi{0u};fi < hData->mFdCount;fi++)
  452. {
  453. for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
  454. {
  455. for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
  456. {
  457. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  458. for(uint ti{0};ti < channels;ti++)
  459. {
  460. hrir_done.fetch_add(1u, std::memory_order_acq_rel);
  461. azd.mDelays[ti] = CalcHrirOnset(rs, hData->mIrRate, hData->mIrPoints,
  462. upsampled, azd.mIrs[ti]);
  463. }
  464. }
  465. }
  466. }
  467. return true;
  468. };
  469. std::future_status load_status{};
  470. auto load_future = std::async(std::launch::async, onset_proc);
  471. do {
  472. load_status = load_future.wait_for(std::chrono::milliseconds{50});
  473. printf("\rCalculating HRIR onsets... %zu of %zu", hrir_done.load(), hrir_total);
  474. fflush(stdout);
  475. } while(load_status != std::future_status::ready);
  476. fputc('\n', stdout);
  477. if(!load_future.get())
  478. return false;
  479. MagCalculator calculator{hData->mFftSize, hData->mIrPoints};
  480. for(uint fi{0u};fi < hData->mFdCount;fi++)
  481. {
  482. for(uint ei{hData->mFds[fi].mEvStart};ei < hData->mFds[fi].mEvCount;ei++)
  483. {
  484. for(uint ai{0};ai < hData->mFds[fi].mEvs[ei].mAzCount;ai++)
  485. {
  486. HrirAzT &azd = hData->mFds[fi].mEvs[ei].mAzs[ai];
  487. for(uint ti{0};ti < channels;ti++)
  488. calculator.mIrs.push_back(azd.mIrs[ti]);
  489. }
  490. }
  491. }
  492. std::vector<std::thread> thrds;
  493. thrds.reserve(numThreads);
  494. for(size_t i{0};i < numThreads;++i)
  495. thrds.emplace_back(std::mem_fn(&MagCalculator::Worker), &calculator);
  496. size_t count;
  497. do {
  498. std::this_thread::sleep_for(std::chrono::milliseconds{50});
  499. count = calculator.mDone.load();
  500. printf("\rCalculating HRIR magnitudes... %zu of %zu", count, calculator.mIrs.size());
  501. fflush(stdout);
  502. } while(count != calculator.mIrs.size());
  503. fputc('\n', stdout);
  504. for(auto &thrd : thrds)
  505. {
  506. if(thrd.joinable())
  507. thrd.join();
  508. }
  509. return true;
  510. }