123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490 |
- /*
- ROBERT PENNER'S MOST EXCELLENT EASING METHODS - ported to Torque C++ by Paul Dana
- Easing Equations v1.5
- May 1, 2003
- (c) 2003 Robert Penner, all rights reserved.
- This work is subject to the terms in http://www.robertpenner.com/easing_terms_of_use.html.
-
- These tweening functions provide different flavors of
- math-based motion under a consistent API.
-
- Types of easing:
-
- Linear
- Quadratic
- Cubic
- Quartic
- Quintic
- Sinusoidal
- Exponential
- Circular
- Elastic
- Back
- Bounce
- Changes:
- 1.5 - added bounce easing
- 1.4 - added elastic and back easing
- 1.3 - tweaked the exponential easing functions to make endpoints exact
- 1.2 - inline optimizations (changing t and multiplying in one step)--thanks to Tatsuo Kato for the idea
-
- Discussed in Chapter 7 of
- Robert Penner's Programming Macromedia Flash MX
- (including graphs of the easing equations)
-
- http://www.robertpenner.com/profmx
- http://www.amazon.com/exec/obidos/ASIN/0072223561/robertpennerc-20
- */
- #ifndef _MEASE_H_
- #define _MEASE_H_
- // the ease methods below all are static and take atomic types as params
- // so they are the most generally useful. for convenience, define here
- // a type that can contain all the params needed for below to make
- // data structures that use these methods cleaner...
- //------------------------------------------------------------------------------
- class Ease
- {
- //-------------------------------------- Public data
- public:
- enum enumDirection
- {
- InOut=0,
- In,
- Out
- };
- enum enumType
- {
- Linear=0,
- Quadratic,
- Cubic,
- Quartic,
- Quintic,
- Sinusoidal,
- Exponential,
- Circular,
- Elastic,
- Back,
- Bounce,
- };
- };
- class EaseF : public Ease
- {
- //-------------------------------------- Public data
- public:
- S32 mDir; // inout, in, out
- S32 mType; // linear, etc...
- F32 mParam[2]; // optional params
- //-------------------------------------- Public interface
- public:
- EaseF();
- EaseF(const EaseF &ease);
- EaseF(const S32 dir, const S32 type);
- EaseF(const S32 dir, const S32 type, F32 param[2]);
- //-------------------------------------- Non-math mutators and misc functions
- void set(const S32 dir, const S32 type);
- void set(const S32 dir, const S32 type, F32 param[2]);
- void set(const S32 dir, const S32 type, F32 param0, F32 param1);
- void set(const char *s);
- F32 getValue(F32 t, F32 b, F32 c, F32 d) const;
- F32 getUnitValue(F32 t, bool noExtrapolation) const
- {
- F32 v = getValue(t,0.0f,1.0f,1.0f);
- if (noExtrapolation)
- v = mClampF(v,0.0f,1.0f);
- return v;
- }
- F32 getUnitValue(F32 t) const
- {
- return getValue(t,0.0f,1.0f,1.0f);
- }
- };
- // simple linear tweening - no easing
- // t: current time, b: beginning value, c: change in value, d: duration
- inline F32 mLinearTween(F32 t, F32 b, F32 c, F32 d)
- {
- return c*t/d + b;
- }
- ///////////// QUADRATIC EASING: t^2 ///////////////////
- // quadratic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be in frames or seconds/milliseconds
- inline F32 mEaseInQuad(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- return c*t*t + b;
- };
- // quadratic easing out - decelerating to zero velocity
- inline F32 mEaseOutQuad(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- return -c * t*(t-2) + b;
- };
- // quadratic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutQuad(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d/2;
- if (t < 1)
- return c/2*t*t + b;
- t--;
- return -c/2 * (t*(t-2) - 1) + b;
- };
- ///////////// CUBIC EASING: t^3 ///////////////////////
- // cubic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- inline F32 mEaseInCubic(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- return c*t*t*t + b;
- };
- // cubic easing out - decelerating to zero velocity
- inline F32 mEaseOutCubic(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- t--;
- return c*(t*t*t + 1) + b;
- };
- // cubic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutCubic(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d/2;
- if (t < 1)
- return c/2*t*t*t + b;
- t -= 2;
- return c/2*(t*t*t + 2) + b;
- };
- ///////////// QUARTIC EASING: t^4 /////////////////////
- // quartic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- inline F32 mEaseInQuart(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- return c*t*t*t*t + b;
- };
- // quartic easing out - decelerating to zero velocity
- inline F32 mEaseOutQuart(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- t--;
- return -c * (t*t*t*t - 1) + b;
- };
- // quartic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutQuart(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d/2;
- if (t < 1)
- return c/2*t*t*t*t + b;
- t -= 2;
- return -c/2 * (t*t*t*t - 2) + b;
- };
- ///////////// QUINTIC EASING: t^5 ////////////////////
- // quintic easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in value, d: duration
- // t and d can be frames or seconds/milliseconds
- inline F32 mEaseInQuint(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- return c*t*t*t*t*t + b;
- };
- // quintic easing out - decelerating to zero velocity
- inline F32 mEaseOutQuint(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d;
- t--;
- return c*(t*t*t*t*t + 1) + b;
- };
- // quintic easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutQuint(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d/2;
- if (t < 1)
- return c/2*t*t*t*t*t + b;
- t -= 2;
- return c/2*(t*t*t*t*t + 2) + b;
- };
- ///////////// SINUSOIDAL EASING: sin(t) ///////////////
- // sinusoidal easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInSine(F32 t, F32 b, F32 c, F32 d)
- {
- return -c * mCos(t/d * (M_PI_F/2)) + c + b;
- };
- // sinusoidal easing out - decelerating to zero velocity
- inline F32 mEaseOutSine(F32 t, F32 b, F32 c, F32 d)
- {
- return c * mSin(t/d * (M_PI_F/2)) + b;
- };
- // sinusoidal easing in/out - accelerating until halfway, then decelerating
- inline F32 mEaseInOutSine(F32 t, F32 b, F32 c, F32 d)
- {
- return -c/2 * (mCos(M_PI_F*t/d) - 1) + b;
- };
- ///////////// EXPONENTIAL EASING: 2^t /////////////////
- // exponential easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInExpo(F32 t, F32 b, F32 c, F32 d)
- {
- return c * mPow( 2, 10 * (t/d - 1) ) + b;
- };
- // exponential easing out - decelerating to zero velocity
- inline F32 mEaseOutExpo(F32 t, F32 b, F32 c, F32 d)
- {
- return c * ( -mPow( 2, -10 * t/d ) + 1 ) + b;
- };
- // exponential easing in/out - accelerating until halfway, then decelerating
- inline F32 mEaseInOutExpo(F32 t, F32 b, F32 c, F32 d)
- {
- t /= d/2;
- if (t < 1)
- return c/2 * mPow( 2, 10 * (t - 1) ) + b;
- t--;
- return c/2 * ( -mPow( 2, -10 * t) + 2 ) + b;
- };
- /////////// CIRCULAR EASING: sqrt(1-t^2) //////////////
- // circular easing in - accelerating from zero velocity
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInCirc (F32 t, F32 b, F32 c, F32 d)
- {
- t/=d;
- return -c * (mSqrt(1 - (t)*t) - 1) + b;
- };
- // circular easing out - decelerating to zero velocity
- inline F32 mEaseOutCirc (F32 t, F32 b, F32 c, F32 d)
- {
- t/=d;
- t--;
- return c * mSqrt(1 - (t)*t) + b;
- };
- // circular easing in/out - acceleration until halfway, then deceleration
- inline F32 mEaseInOutCirc(F32 t, F32 b, F32 c, F32 d)
- {
- if ((t/=d/2) < 1)
- return -c/2 * (mSqrt(1 - t*t) - 1) + b;
- t-=2;
- return c/2 * (mSqrt(1 - (t)*t) + 1) + b;
- };
- /////////// ELASTIC EASING: exponentially decaying sine wave //////////////
- // t: current time, b: beginning value, c: change in value, d: duration, a: amplitude (optional), p: period (optional)
- // t and d can be in frames or seconds/milliseconds
- inline F32 mEaseInElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p)
- {
- if (t==0)
- return b;
-
- F32 dt = t /= d;
- if (dt == 1)
- return b+c;
-
- if (p<=0)
- p=d*.3f;
- F32 s;
- if (a < mFabs(c))
- {
- a=c;
- s=p/4;
- }
- else
- s = p/(2*M_PI_F) * mAsin (c/a);
- t -= 1;
- return -(a*mPow(2,10*t) * mSin( (t*d-s)*(2*M_PI_F)/p )) + b;
- };
- inline F32 mEaseOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p)
- {
- if (t==0)
- return b;
- F32 dt = t /= d;
- if (dt == 1)
- return b+c;
- if (p<=0)
- p=d*.3f;
- F32 s;
- if (a < mFabs(c))
- {
- a=c;
- s=p/4;
- }
- else
- s = p/(2*M_PI_F) * mAsin (c/a);
- return a*mPow(2,-10*t) * mSin( (t*d-s)*(2*M_PI_F)/p ) + c + b;
- };
- inline F32 mEaseInOutElastic(F32 t, F32 b, F32 c, F32 d, F32 a, F32 p)
- {
- if (t==0)
- return b;
-
- F32 dt = t /= d / 2;
- if (dt == 2)
- return b+c;
-
- if (p<=0)
- p=d*(.3f*1.5f);
- F32 s;
- if (a < mFabs(c))
- {
- a=c;
- s=p/4;
- }
- else
- s = p/(2*M_PI_F) * mAsin (c/a);
- if (t < 1)
- {
- t -= 1;
- return -.5f*(a*mPow(2, 10 * t) * mSin((t*d - s)*(2 * M_PI_F) / p)) + b;
- }
- t -= 1;
- return a*mPow(2,-10*t) * mSin( (t*d-s)*(2*M_PI_F)/p )*.5f + c + b;
- };
- /////////// BACK EASING: overshooting cubic easing: (s+1)*t^3 - s*t^2 //////////////
- // back easing in - backtracking slightly, then reversing direction and moving to target
- // t: current time, b: beginning value, c: change in value, d: duration, s: overshoot amount (optional)
- // t and d can be in frames or seconds/milliseconds
- // s controls the amount of overshoot: higher s means greater overshoot
- // s has a default value of 1.70158, which produces an overshoot of 10 percent
- // s==0 produces cubic easing with no overshoot
- inline F32 mEaseInBack(F32 t, F32 b, F32 c, F32 d, F32 s)
- {
- if (s < 0)
- s = 1.70158f;
- F32 td = t /= d;
- return c*td*t*((s + 1)*t - s) + b;
- };
- // back easing out - moving towards target, overshooting it slightly, then reversing and coming back to target
- inline F32 mEaseOutBack(F32 t, F32 b, F32 c, F32 d, F32 s)
- {
- if (s < 0)
- s = 1.70158f;
- F32 td = t / d - 1;
- t = td;
- return c*(td*t*((s + 1)*t + s) + 1) + b;
- };
- // back easing in/out - backtracking slightly, then reversing direction and moving to target,
- // then overshooting target, reversing, and finally coming back to target
- inline F32 mEaseInOutBack(F32 t, F32 b, F32 c, F32 d, F32 s)
- {
- if (s < 0)
- s = 1.70158f;
- F32 td = t /= d / 2;
- if (td < 1)
- {
- s *= 1.525f;
- return c / 2 * (t*t*((s + 1)*t - s)) + b;
- }
- s *= 1.525f;
- t -= 2;
- return c/2*(t*t*((s+1)*t + s) + 2) + b;
- };
- /////////// BOUNCE EASING: exponentially decaying parabolic bounce //////////////
- // bounce easing out
- inline F32 mEaseOutBounce(F32 t, F32 b, F32 c, F32 d)
- {
- if ((t/=d) < (1/2.75f))
- {
- return c*(7.5625f*t*t) + b;
- }
- else if (t < (2/2.75))
- {
- t -= 1.5f / 2.75f;
- return c*(7.5625f*t*t + .75f) + b;
- }
- else if (t < (2.5/2.75))
- {
- t -= 2.25f / 2.75f;
- return c*(7.5625f*t*t + .9375f) + b;
- }
- else
- {
- t -= 2.625f / 2.75f;
- return c*(7.5625f*t*t + .984375f) + b;
- }
- };
- // bounce easing in
- // t: current time, b: beginning value, c: change in position, d: duration
- inline F32 mEaseInBounce(F32 t, F32 b, F32 c, F32 d)
- {
- return c - mEaseOutBounce (d-t, 0, c, d) + b;
- };
- // bounce easing in/out
- inline F32 mEaseInOutBounce(F32 t, F32 b, F32 c, F32 d)
- {
- if (t < d/2)
- return mEaseInBounce (t*2, 0, c, d) * .5f + b;
- return mEaseOutBounce (t*2-d, 0, c, d) * .5f + c*.5f + b;
- };
- #endif // _MEASE_H_
|