123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344 |
- //-----------------------------------------------------------------------------
- // Copyright (c) 2012 GarageGames, LLC
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- //-----------------------------------------------------------------------------
- #include "platform/platform.h"
- #include "math/mQuat.h"
- #include "math/mAngAxis.h"
- #include "math/mMatrix.h"
- #include "platform/profiler.h"
- const QuatF QuatF::Identity(0.0f,0.0f,0.0f,1.0f);
- QuatF& QuatF::set( const EulerF & e )
- {
- /*
- F32 cx, sx;
- F32 cy, sy;
- F32 cz, sz;
- mSinCos( -e.x * 0.5f, sx, cx );
- mSinCos( -e.y * 0.5f, sy, cy );
- mSinCos( -e.z * 0.5f, sz, cz );
- // Qyaw(z) = [ (0, 0, sin z/2), cos z/2 ]
- // Qpitch(x) = [ (sin x/2, 0, 0), cos x/2 ]
- // Qroll(y) = [ (0, sin y/2, 0), cos y/2 ]
- // this = Qresult = Qyaw*Qpitch*Qroll ZXY
- //
- // The code that folows is a simplification of:
- // roll*=pitch;
- // roll*=yaw;
- // *this = roll;
- F32 cycz, sysz, sycz, cysz;
- cycz = cy*cz;
- sysz = sy*sz;
- sycz = sy*cz;
- cysz = cy*sz;
- w = cycz*cx + sysz*sx;
- x = cycz*sx + sysz*cx;
- y = sycz*cx - cysz*sx;
- z = cysz*cx - sycz*sx;
- */
- // Assuming the angles are in radians.
- F32 c1 = mCos(e.y * 0.5f);
- F32 s1 = mSin(e.y * 0.5f);
- F32 c2 = mCos(e.z * 0.5f);
- F32 s2 = mSin(e.z * 0.5f);
- F32 c3 = mCos(e.x * 0.5f);
- F32 s3 = mSin(e.x * 0.5f);
- F32 c1c2 = c1*c2;
- F32 s1s2 = s1*s2;
- w =c1c2*c3 - s1s2*s3;
- x =c1c2*s3 + s1s2*c3;
- y =s1*c2*c3 + c1*s2*s3;
- z =c1*s2*c3 - s1*c2*s3;
- return *this;
- }
- QuatF& QuatF::operator *=( const QuatF & b )
- {
- QuatF prod;
- prod.w = w * b.w - x * b.x - y * b.y - z * b.z;
- prod.x = w * b.x + x * b.w + y * b.z - z * b.y;
- prod.y = w * b.y + y * b.w + z * b.x - x * b.z;
- prod.z = w * b.z + z * b.w + x * b.y - y * b.x;
- *this = prod;
- return (*this);
- }
- QuatF& QuatF::operator /=( const QuatF & c )
- {
- QuatF temp = c;
- return ( (*this) *= temp.inverse() );
- }
- QuatF& QuatF::square()
- {
- F32 t = w*2.0f;
- w = (w*w) - (x*x + y*y + z*z);
- x *= t;
- y *= t;
- z *= t;
- return *this;
- }
- QuatF& QuatF::inverse()
- {
- F32 magnitude = w*w + x*x + y*y + z*z;
- F32 invMagnitude;
- if( magnitude == 1.0f ) // special case unit quaternion
- {
- x = -x;
- y = -y;
- z = -z;
- }
- else // else scale
- {
- if( magnitude == 0.0f )
- invMagnitude = 1.0f;
- else
- invMagnitude = 1.0f / magnitude;
- w *= invMagnitude;
- x *= -invMagnitude;
- y *= -invMagnitude;
- z *= -invMagnitude;
- }
- return *this;
- }
- QuatF & QuatF::set( const AngAxisF & a )
- {
- return set( a.axis, a.angle );
- }
- QuatF & QuatF::set( const Point3F &axis, F32 angle )
- {
- PROFILE_SCOPE( QuatF_set_AngAxisF );
- F32 sinHalfAngle, cosHalfAngle;
- mSinCos( angle * 0.5f, sinHalfAngle, cosHalfAngle );
- x = axis.x * sinHalfAngle;
- y = axis.y * sinHalfAngle;
- z = axis.z * sinHalfAngle;
- w = cosHalfAngle;
- return *this;
- }
- QuatF & QuatF::normalize()
- {
- PROFILE_SCOPE( QuatF_normalize );
- F32 l = mSqrt( x*x + y*y + z*z + w*w );
- if( l == 0.0f )
- identity();
- else
- {
- x /= l;
- y /= l;
- z /= l;
- w /= l;
- }
- return *this;
- }
- #define idx(r,c) (r*4 + c)
- QuatF & QuatF::set( const MatrixF & mat )
- {
- PROFILE_SCOPE( QuatF_set_MatrixF );
- F32 const *m = mat;
- F32 trace = m[idx(0, 0)] + m[idx(1, 1)] + m[idx(2, 2)];
- if (trace > 0.0f)
- {
- F32 s = mSqrt(trace + F32(1));
- w = s * 0.5f;
- s = 0.5f / s;
- x = (m[idx(1,2)] - m[idx(2,1)]) * s;
- y = (m[idx(2,0)] - m[idx(0,2)]) * s;
- z = (m[idx(0,1)] - m[idx(1,0)]) * s;
- }
- else
- {
- F32* q = &x;
- U32 i = 0;
- if (m[idx(1, 1)] > m[idx(0, 0)]) i = 1;
- if (m[idx(2, 2)] > m[idx(i, i)]) i = 2;
- U32 j = (i + 1) % 3;
- U32 k = (j + 1) % 3;
- F32 s = mSqrt((m[idx(i, i)] - (m[idx(j, j)] + m[idx(k, k)])) + 1.0f);
- q[i] = s * 0.5f;
- s = 0.5f / s;
- q[j] = (m[idx(i,j)] + m[idx(j,i)]) * s;
- q[k] = (m[idx(i,k)] + m[idx(k, i)]) * s;
- w = (m[idx(j,k)] - m[idx(k, j)]) * s;
- }
- // Added to resolve issue #2230
- normalize();
- return *this;
- }
- MatrixF * QuatF::setMatrix( MatrixF * mat ) const
- {
- if( x*x + y*y + z*z < 10E-20f) // isIdentity() -- substituted code a little more stringent but a lot faster
- mat->identity();
- else
- m_quatF_set_matF( x, y, z, w, *mat );
- return mat;
- }
- QuatF & QuatF::slerp( const QuatF & q, F32 t )
- {
- return interpolate( *this, q, t );
- }
- QuatF & QuatF::extrapolate( const QuatF & q1, const QuatF & q2, F32 t )
- {
- // assert t >= 0 && t <= 1
- // q1 is value at time = 0
- // q2 is value at time = t
- // Computes quaternion at time = 1
- F64 flip,cos = q1.x * q2.x + q1.y * q2.y + q1.z * q2.z + q1.w * q2.w;
- if (cos < 0.0)
- {
- cos = -cos;
- flip = -1.0;
- }
- else
- flip = 1.0;
- F64 s1,s2;
- if ((1.0 - cos) > 0.00001)
- {
- F64 om = mAcos(cos) / t;
- F64 sd = 1.0 / mSin(t * om);
- s1 = flip * mSin(om) * sd;
- s2 = mSin((1.0 - t) * om) * sd;
- }
- else
- {
- // If quats are very close, do linear interpolation
- s1 = flip / t;
- s2 = (1.0 - t) / t;
- }
- x = F32(s1 * q2.x - s2 * q1.x);
- y = F32(s1 * q2.y - s2 * q1.y);
- z = F32(s1 * q2.z - s2 * q1.z);
- w = F32(s1 * q2.w - s2 * q1.w);
- return *this;
- }
- QuatF & QuatF::interpolate( const QuatF & q1, const QuatF & q2, F32 t )
- {
- //-----------------------------------
- // Calculate the cosine of the angle:
- double cosOmega = q1.dot( q2 );
- //-----------------------------------
- // adjust signs if necessary:
- F32 sign2;
- if ( cosOmega < 0.0 )
- {
- cosOmega = -cosOmega;
- sign2 = -1.0f;
- }
- else
- sign2 = 1.0f;
- //-----------------------------------
- // calculate interpolating coeffs:
- F64 scale1, scale2;
- if ( (1.0 - cosOmega) > 0.00001 )
- {
- // standard case
- F64 omega = mAcos(cosOmega);
- F64 sinOmega = mSin(omega);
- scale1 = mSin((1.0 - t) * omega) / sinOmega;
- scale2 = sign2 * mSin(t * omega) / sinOmega;
- }
- else
- {
- // if quats are very close, just do linear interpolation
- scale1 = 1.0 - t;
- scale2 = sign2 * t;
- }
- //-----------------------------------
- // actually do the interpolation:
- x = F32(scale1 * q1.x + scale2 * q2.x);
- y = F32(scale1 * q1.y + scale2 * q2.y);
- z = F32(scale1 * q1.z + scale2 * q2.z);
- w = F32(scale1 * q1.w + scale2 * q2.w);
- return *this;
- }
- Point3F & QuatF::mulP(const Point3F& p, Point3F* r) const
- {
- QuatF qq;
- QuatF qi = *this;
- QuatF qv( p.x, p.y, p.z, 0.0f);
- qi.inverse();
- qq.mul(qi, qv);
- qv.mul(qq, *this);
- r->set(qv.x, qv.y, qv.z);
- return *r;
- }
- QuatF & QuatF::mul( const QuatF &a, const QuatF &b)
- {
- AssertFatal( &a != this && &b != this, "QuatF::mul: dest should not be same as source" );
- w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;
- x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y;
- y = a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z;
- z = a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x;
- return *this;
- }
- QuatF & QuatF::shortestArc( const VectorF &a, const VectorF &b )
- {
- // From Game Programming Gems pg. 217
- VectorF c = mCross( a, b );
- F32 d = mDot( a, b );
- F32 s = mSqrt( ( 1 + d ) * 2 );
- x = c.x / s;
- y = c.y / s;
- z = c.z / s;
- w = s / 2.f;
- return *this;
- }
|