123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- //-----------------------------------------------------------------------------
- // Copyright (c) 2012 GarageGames, LLC
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy
- // of this software and associated documentation files (the "Software"), to
- // deal in the Software without restriction, including without limitation the
- // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
- // sell copies of the Software, and to permit persons to whom the Software is
- // furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included in
- // all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- // IN THE SOFTWARE.
- //-----------------------------------------------------------------------------
- #include "platform/platform.h"
- #include "math/mMathFn.h"
- //--------------------------------------------------------------------------
- #define EQN_EPSILON (1e-8)
- static inline void swap(F32 & a, F32 & b)
- {
- F32 t = b;
- b = a;
- a = t;
- }
- static inline F32 mCbrt(F32 val)
- {
- if(val < 0.f)
- return(-mPow(-val, F32(1.f/3.f)));
- else
- return(mPow(val, F32(1.f/3.f)));
- }
- static inline U32 mSolveLinear(F32 a, F32 b, F32 * x)
- {
- if(mIsZero(a))
- return(0);
- x[0] = -b/a;
- return(1);
- }
- static U32 mSolveQuadratic_c(F32 a, F32 b, F32 c, F32 * x)
- {
- // really linear?
- if(mIsZero(a))
- return(mSolveLinear(b, c, x));
- // get the descriminant: (b^2 - 4ac)
- F32 desc = (b * b) - (4.f * a * c);
- // solutions:
- // desc < 0: two imaginary solutions
- // desc > 0: two real solutions (b +- sqrt(desc)) / 2a
- // desc = 0: one real solution (b / 2a)
- if(mIsZero(desc))
- {
- x[0] = b / (2.f * a);
- return(1);
- }
- else if(desc > 0.f)
- {
- F32 sqrdesc = mSqrt(desc);
- F32 den = (2.f * a);
- x[0] = (-b + sqrdesc) / den;
- x[1] = (-b - sqrdesc) / den;
- if(x[1] < x[0])
- swap(x[0], x[1]);
- return(2);
- }
- else
- return(0);
- }
- //--------------------------------------------------------------------------
- // from Graphics Gems I: pp 738-742
- U32 mSolveCubic_c(F32 a, F32 b, F32 c, F32 d, F32 * x)
- {
- if(mIsZero(a))
- return(mSolveQuadratic(b, c, d, x));
- // normal form: x^3 + Ax^2 + BX + C = 0
- F32 A = b / a;
- F32 B = c / a;
- F32 C = d / a;
- // substitute x = y - A/3 to eliminate quadric term and depress
- // the cubic equation to (x^3 + px + q = 0)
- F32 A2 = A * A;
- F32 A3 = A2 * A;
- F32 p = (1.f/3.f) * (((-1.f/3.f) * A2) + B);
- F32 q = (1.f/2.f) * (((2.f/27.f) * A3) - ((1.f/3.f) * A * B) + C);
- // use Cardano's fomula to solve the depressed cubic
- F32 p3 = p * p * p;
- F32 q2 = q * q;
- F32 D = q2 + p3;
- U32 num = 0;
- if(mIsZero(D)) // 1 or 2 solutions
- {
- if(mIsZero(q)) // 1 triple solution
- {
- x[0] = 0.f;
- num = 1;
- }
- else // 1 single and 1 double
- {
- F32 u = mCbrt(-q);
- x[0] = 2.f * u;
- x[1] = -u;
- num = 2;
- }
- }
- else if(D < 0.f) // 3 solutions: casus irreducibilis
- {
- F32 phi = (1.f/3.f) * mAcos(-q / mSqrt(-p3));
- F32 t = 2.f * mSqrt(-p);
- x[0] = t * mCos(phi);
- x[1] = -t * mCos(phi + (M_PI / 3.f));
- x[2] = -t * mCos(phi - (M_PI / 3.f));
- num = 3;
- }
- else // 1 solution
- {
- F32 sqrtD = mSqrt(D);
- F32 u = mCbrt(sqrtD - q);
- F32 v = -mCbrt(sqrtD + q);
- x[0] = u + v;
- num = 1;
- }
- // resubstitute
- F32 sub = (1.f/3.f) * A;
- for(U32 i = 0; i < num; i++)
- x[i] -= sub;
- // sort the roots
- for(S32 j = 0; j < (num - 1); j++)
- for(S32 k = j + 1; k < num; k++)
- if(x[k] < x[j])
- swap(x[k], x[j]);
- return(num);
- }
- //--------------------------------------------------------------------------
- // from Graphics Gems I: pp 738-742
- U32 mSolveQuartic_c(F32 a, F32 b, F32 c, F32 d, F32 e, F32 * x)
- {
- if(mIsZero(a))
- return(mSolveCubic(b, c, d, e, x));
- // normal form: x^4 + ax^3 + bx^2 + cx + d = 0
- F32 A = b / a;
- F32 B = c / a;
- F32 C = d / a;
- F32 D = e / a;
- // substitue x = y - A/4 to eliminate cubic term:
- // x^4 + px^2 + qx + r = 0
- F32 A2 = A * A;
- F32 A3 = A2 * A;
- F32 A4 = A2 * A2;
- F32 p = ((-3.f/8.f) * A2) + B;
- F32 q = ((1.f/8.f) * A3) - ((1.f/2.f) * A * B) + C;
- F32 r = ((-3.f/256.f) * A4) + ((1.f/16.f) * A2 * B) - ((1.f/4.f) * A * C) + D;
- U32 num = 0;
- if(mIsZero(r)) // no absolute term: y(y^3 + py + q) = 0
- {
- num = mSolveCubic(1.f, 0.f, p, q, x);
- x[num++] = 0.f;
- }
- else
- {
- // solve the resolvent cubic
- F32 q2 = q * q;
- a = 1.f;
- b = (-1.f/2.f) * p;
- c = -r;
- d = ((1.f/2.f) * r * p) - ((1.f/8.f) * q2);
- mSolveCubic(a, b, c, d, x);
- F32 z = x[0];
- // build 2 quadratic equations from the one solution
- F32 u = (z * z) - r;
- F32 v = (2.f * z) - p;
- if(mIsZero(u))
- u = 0.f;
- else if(u > 0.f)
- u = mSqrt(u);
- else
- return(0);
- if(mIsZero(v))
- v = 0.f;
- else if(v > 0.f)
- v = mSqrt(v);
- else
- return(0);
- // solve the two quadratics
- a = 1.f;
- b = v;
- c = z - u;
- num = mSolveQuadratic(a, b, c, x);
- a = 1.f;
- b = -v;
- c = z + u;
- num += mSolveQuadratic(a, b, c, x + num);
- }
- // resubstitute
- F32 sub = (1.f/4.f) * A;
- for(U32 i = 0; i < num; i++)
- x[i] -= sub;
- // sort the roots
- for(S32 j = 0; j < (num - 1); j++)
- for(S32 k = j + 1; k < num; k++)
- if(x[k] < x[j])
- swap(x[k], x[j]);
- return(num);
- }
- U32 (*mSolveQuadratic)( F32 a, F32 b, F32 c, F32* x ) = mSolveQuadratic_c;
- U32 (*mSolveCubic)( F32 a, F32 b, F32 c, F32 d, F32* x ) = mSolveCubic_c;
- U32 (*mSolveQuartic)( F32 a, F32 b, F32 c, F32 d, F32 e, F32* x ) = mSolveQuartic_c;
|