123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528 |
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- /**
- * Contains code for 3D vectors.
- * \file IcePoint.h
- * \author Pierre Terdiman
- * \date April, 4, 2000
- */
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
- // Include Guard
- #ifndef __ICEPOINT_H__
- #define __ICEPOINT_H__
- // Forward declarations
- class HPoint;
- class Plane;
- class Matrix3x3;
- class Matrix4x4;
- #define CROSS2D(a, b) (a.x*b.y - b.x*a.y)
- const float EPSILON2 = 1.0e-20f;
- class ICEMATHS_API Point
- {
- public:
- //! Empty constructor
- inline_ Point() {}
- //! Constructor from a single float
- // inline_ Point(float val) : x(val), y(val), z(val) {}
- // Removed since it introduced the nasty "Point T = *Matrix4x4.GetTrans();" bug.......
- //! Constructor from floats
- inline_ Point(float _x, float _y, float _z) : x(_x), y(_y), z(_z) {}
- //! Constructor from array
- inline_ Point(const float f[3]) : x(f[_X]), y(f[_Y]), z(f[_Z]) {}
- //! Copy constructor
- inline_ Point(const Point& p) : x(p.x), y(p.y), z(p.z) {}
- //! Destructor
- inline_ ~Point() {}
- //! Clears the vector
- inline_ Point& Zero() { x = y = z = 0.0f; return *this; }
- //! + infinity
- inline_ Point& SetPlusInfinity() { x = y = z = MAX_FLOAT; return *this; }
- //! - infinity
- inline_ Point& SetMinusInfinity() { x = y = z = MIN_FLOAT; return *this; }
- //! Sets positive unit random vector
- Point& PositiveUnitRandomVector();
- //! Sets unit random vector
- Point& UnitRandomVector();
- //! Assignment from values
- inline_ Point& Set(float _x, float _y, float _z) { x = _x; y = _y; z = _z; return *this; }
- //! Assignment from array
- inline_ Point& Set(const float f[3]) { x = f[_X]; y = f[_Y]; z = f[_Z]; return *this; }
- //! Assignment from another point
- inline_ Point& Set(const Point& src) { x = src.x; y = src.y; z = src.z; return *this; }
- //! Adds a vector
- inline_ Point& Add(const Point& p) { x += p.x; y += p.y; z += p.z; return *this; }
- //! Adds a vector
- inline_ Point& Add(float _x, float _y, float _z) { x += _x; y += _y; z += _z; return *this; }
- //! Adds a vector
- inline_ Point& Add(const float f[3]) { x += f[_X]; y += f[_Y]; z += f[_Z]; return *this; }
- //! Adds vectors
- inline_ Point& Add(const Point& p, const Point& q) { x = p.x+q.x; y = p.y+q.y; z = p.z+q.z; return *this; }
- //! Subtracts a vector
- inline_ Point& Sub(const Point& p) { x -= p.x; y -= p.y; z -= p.z; return *this; }
- //! Subtracts a vector
- inline_ Point& Sub(float _x, float _y, float _z) { x -= _x; y -= _y; z -= _z; return *this; }
- //! Subtracts a vector
- inline_ Point& Sub(const float f[3]) { x -= f[_X]; y -= f[_Y]; z -= f[_Z]; return *this; }
- //! Subtracts vectors
- inline_ Point& Sub(const Point& p, const Point& q) { x = p.x-q.x; y = p.y-q.y; z = p.z-q.z; return *this; }
- //! this = -this
- inline_ Point& Neg() { x = -x; y = -y; z = -z; return *this; }
- //! this = -a
- inline_ Point& Neg(const Point& a) { x = -a.x; y = -a.y; z = -a.z; return *this; }
- //! Multiplies by a scalar
- inline_ Point& Mult(float s) { x *= s; y *= s; z *= s; return *this; }
- //! this = a * scalar
- inline_ Point& Mult(const Point& a, float scalar)
- {
- x = a.x * scalar;
- y = a.y * scalar;
- z = a.z * scalar;
- return *this;
- }
- //! this = a + b * scalar
- inline_ Point& Mac(const Point& a, const Point& b, float scalar)
- {
- x = a.x + b.x * scalar;
- y = a.y + b.y * scalar;
- z = a.z + b.z * scalar;
- return *this;
- }
- //! this = this + a * scalar
- inline_ Point& Mac(const Point& a, float scalar)
- {
- x += a.x * scalar;
- y += a.y * scalar;
- z += a.z * scalar;
- return *this;
- }
- //! this = a - b * scalar
- inline_ Point& Msc(const Point& a, const Point& b, float scalar)
- {
- x = a.x - b.x * scalar;
- y = a.y - b.y * scalar;
- z = a.z - b.z * scalar;
- return *this;
- }
- //! this = this - a * scalar
- inline_ Point& Msc(const Point& a, float scalar)
- {
- x -= a.x * scalar;
- y -= a.y * scalar;
- z -= a.z * scalar;
- return *this;
- }
- //! this = a + b * scalarb + c * scalarc
- inline_ Point& Mac2(const Point& a, const Point& b, float scalarb, const Point& c, float scalarc)
- {
- x = a.x + b.x * scalarb + c.x * scalarc;
- y = a.y + b.y * scalarb + c.y * scalarc;
- z = a.z + b.z * scalarb + c.z * scalarc;
- return *this;
- }
- //! this = a - b * scalarb - c * scalarc
- inline_ Point& Msc2(const Point& a, const Point& b, float scalarb, const Point& c, float scalarc)
- {
- x = a.x - b.x * scalarb - c.x * scalarc;
- y = a.y - b.y * scalarb - c.y * scalarc;
- z = a.z - b.z * scalarb - c.z * scalarc;
- return *this;
- }
- //! this = mat * a
- inline_ Point& Mult(const Matrix3x3& mat, const Point& a);
- //! this = mat1 * a1 + mat2 * a2
- inline_ Point& Mult2(const Matrix3x3& mat1, const Point& a1, const Matrix3x3& mat2, const Point& a2);
- //! this = this + mat * a
- inline_ Point& Mac(const Matrix3x3& mat, const Point& a);
- //! this = transpose(mat) * a
- inline_ Point& TransMult(const Matrix3x3& mat, const Point& a);
- //! Linear interpolate between two vectors: this = a + t * (b - a)
- inline_ Point& Lerp(const Point& a, const Point& b, float t)
- {
- x = a.x + t * (b.x - a.x);
- y = a.y + t * (b.y - a.y);
- z = a.z + t * (b.z - a.z);
- return *this;
- }
- //! Hermite interpolate between p1 and p2. p0 and p3 are used for finding gradient at p1 and p2.
- //! this = p0 * (2t^2 - t^3 - t)/2
- //! + p1 * (3t^3 - 5t^2 + 2)/2
- //! + p2 * (4t^2 - 3t^3 + t)/2
- //! + p3 * (t^3 - t^2)/2
- inline_ Point& Herp(const Point& p0, const Point& p1, const Point& p2, const Point& p3, float t)
- {
- float t2 = t * t;
- float t3 = t2 * t;
- float kp0 = (2.0f * t2 - t3 - t) * 0.5f;
- float kp1 = (3.0f * t3 - 5.0f * t2 + 2.0f) * 0.5f;
- float kp2 = (4.0f * t2 - 3.0f * t3 + t) * 0.5f;
- float kp3 = (t3 - t2) * 0.5f;
- x = p0.x * kp0 + p1.x * kp1 + p2.x * kp2 + p3.x * kp3;
- y = p0.y * kp0 + p1.y * kp1 + p2.y * kp2 + p3.y * kp3;
- z = p0.z * kp0 + p1.z * kp1 + p2.z * kp2 + p3.z * kp3;
- return *this;
- }
- //! this = rotpos * r + linpos
- inline_ Point& Transform(const Point& r, const Matrix3x3& rotpos, const Point& linpos);
- //! this = trans(rotpos) * (r - linpos)
- inline_ Point& InvTransform(const Point& r, const Matrix3x3& rotpos, const Point& linpos);
- //! Returns MIN(x, y, z);
- inline_ float Min() const { return MIN(x, MIN(y, z)); }
- //! Returns MAX(x, y, z);
- inline_ float Max() const { return MAX(x, MAX(y, z)); }
- //! Sets each element to be componentwise minimum
- inline_ Point& Min(const Point& p) { x = MIN(x, p.x); y = MIN(y, p.y); z = MIN(z, p.z); return *this; }
- //! Sets each element to be componentwise maximum
- inline_ Point& Max(const Point& p) { x = MAX(x, p.x); y = MAX(y, p.y); z = MAX(z, p.z); return *this; }
- //! Clamps each element
- inline_ Point& Clamp(float min, float max)
- {
- if(x<min) x=min; if(x>max) x=max;
- if(y<min) y=min; if(y>max) y=max;
- if(z<min) z=min; if(z>max) z=max;
- return *this;
- }
- //! Computes square magnitude
- inline_ float SquareMagnitude() const { return x*x + y*y + z*z; }
- //! Computes magnitude
- inline_ float Magnitude() const { return sqrtf(x*x + y*y + z*z); }
- //! Computes volume
- inline_ float Volume() const { return x * y * z; }
- //! Checks the point is near zero
- inline_ bool ApproxZero() const { return SquareMagnitude() < EPSILON2; }
- //! Tests for exact zero vector
- inline_ BOOL IsZero() const
- {
- if(IR(x) || IR(y) || IR(z)) return FALSE;
- return TRUE;
- }
- //! Checks point validity
- inline_ BOOL IsValid() const
- {
- if(!IsValidFloat(x)) return FALSE;
- if(!IsValidFloat(y)) return FALSE;
- if(!IsValidFloat(z)) return FALSE;
- return TRUE;
- }
- //! Slighty moves the point
- void Tweak(udword coord_mask, udword tweak_mask)
- {
- if(coord_mask&1) { udword Dummy = IR(x); Dummy^=tweak_mask; x = FR(Dummy); }
- if(coord_mask&2) { udword Dummy = IR(y); Dummy^=tweak_mask; y = FR(Dummy); }
- if(coord_mask&4) { udword Dummy = IR(z); Dummy^=tweak_mask; z = FR(Dummy); }
- }
- #define TWEAKMASK 0x3fffff
- #define TWEAKNOTMASK ~TWEAKMASK
- //! Slighty moves the point out
- inline_ void TweakBigger()
- {
- udword Dummy = (IR(x)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(x)) Dummy+=TWEAKMASK+1; x = FR(Dummy);
- Dummy = (IR(y)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(y)) Dummy+=TWEAKMASK+1; y = FR(Dummy);
- Dummy = (IR(z)&TWEAKNOTMASK); if(!IS_NEGATIVE_FLOAT(z)) Dummy+=TWEAKMASK+1; z = FR(Dummy);
- }
- //! Slighty moves the point in
- inline_ void TweakSmaller()
- {
- udword Dummy = (IR(x)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(x)) Dummy+=TWEAKMASK+1; x = FR(Dummy);
- Dummy = (IR(y)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(y)) Dummy+=TWEAKMASK+1; y = FR(Dummy);
- Dummy = (IR(z)&TWEAKNOTMASK); if(IS_NEGATIVE_FLOAT(z)) Dummy+=TWEAKMASK+1; z = FR(Dummy);
- }
- //! Normalizes the vector
- inline_ Point& Normalize()
- {
- float M = x*x + y*y + z*z;
- if(M)
- {
- M = 1.0f / sqrtf(M);
- x *= M;
- y *= M;
- z *= M;
- }
- return *this;
- }
- //! Sets vector length
- inline_ Point& SetLength(float length)
- {
- float NewLength = length / Magnitude();
- x *= NewLength;
- y *= NewLength;
- z *= NewLength;
- return *this;
- }
- //! Clamps vector length
- inline_ Point& ClampLength(float limit_length)
- {
- if(limit_length>=0.0f) // Magnitude must be positive
- {
- float CurrentSquareLength = SquareMagnitude();
- if(CurrentSquareLength > limit_length * limit_length)
- {
- float Coeff = limit_length / sqrtf(CurrentSquareLength);
- x *= Coeff;
- y *= Coeff;
- z *= Coeff;
- }
- }
- return *this;
- }
- //! Computes distance to another point
- inline_ float Distance(const Point& b) const
- {
- return sqrtf((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z));
- }
- //! Computes square distance to another point
- inline_ float SquareDistance(const Point& b) const
- {
- return ((x - b.x)*(x - b.x) + (y - b.y)*(y - b.y) + (z - b.z)*(z - b.z));
- }
- //! Dot product dp = this|a
- inline_ float Dot(const Point& p) const { return p.x * x + p.y * y + p.z * z; }
- //! Cross product this = a x b
- inline_ Point& Cross(const Point& a, const Point& b)
- {
- x = a.y * b.z - a.z * b.y;
- y = a.z * b.x - a.x * b.z;
- z = a.x * b.y - a.y * b.x;
- return *this;
- }
- //! Vector code ( bitmask = sign(z) | sign(y) | sign(x) )
- inline_ udword VectorCode() const
- {
- return (IR(x)>>31) | ((IR(y)&SIGN_BITMASK)>>30) | ((IR(z)&SIGN_BITMASK)>>29);
- }
- //! Returns largest axis
- inline_ PointComponent LargestAxis() const
- {
- const float* Vals = &x;
- PointComponent m = _X;
- if(Vals[_Y] > Vals[m]) m = _Y;
- if(Vals[_Z] > Vals[m]) m = _Z;
- return m;
- }
- //! Returns closest axis
- inline_ PointComponent ClosestAxis() const
- {
- const float* Vals = &x;
- PointComponent m = _X;
- if(AIR(Vals[_Y]) > AIR(Vals[m])) m = _Y;
- if(AIR(Vals[_Z]) > AIR(Vals[m])) m = _Z;
- return m;
- }
- //! Returns smallest axis
- inline_ PointComponent SmallestAxis() const
- {
- const float* Vals = &x;
- PointComponent m = _X;
- if(Vals[_Y] < Vals[m]) m = _Y;
- if(Vals[_Z] < Vals[m]) m = _Z;
- return m;
- }
- //! Refracts the point
- Point& Refract(const Point& eye, const Point& n, float refractindex, Point& refracted);
- //! Projects the point onto a plane
- Point& ProjectToPlane(const Plane& p);
- //! Projects the point onto the screen
- void ProjectToScreen(float halfrenderwidth, float halfrenderheight, const Matrix4x4& mat, HPoint& projected) const;
- //! Unfolds the point onto a plane according to edge(a,b)
- Point& Unfold(Plane& p, Point& a, Point& b);
- //! Hash function from Ville Miettinen
- inline_ udword GetHashValue() const
- {
- const udword* h = (const udword*)(this);
- udword f = (h[0]+h[1]*11-(h[2]*17)) & 0x7fffffff; // avoid problems with +-0
- return (f>>22)^(f>>12)^(f);
- }
- //! Stuff magic values in the point, marking it as explicitely not used.
- void SetNotUsed();
- //! Checks the point is marked as not used
- BOOL IsNotUsed() const;
- // Arithmetic operators
- //! Unary operator for Point Negate = - Point
- inline_ Point operator-() const { return Point(-x, -y, -z); }
- //! Operator for Point Plus = Point + Point.
- inline_ Point operator+(const Point& p) const { return Point(x + p.x, y + p.y, z + p.z); }
- //! Operator for Point Minus = Point - Point.
- inline_ Point operator-(const Point& p) const { return Point(x - p.x, y - p.y, z - p.z); }
- //! Operator for Point Mul = Point * Point.
- inline_ Point operator*(const Point& p) const { return Point(x * p.x, y * p.y, z * p.z); }
- //! Operator for Point Scale = Point * float.
- inline_ Point operator*(float s) const { return Point(x * s, y * s, z * s ); }
- //! Operator for Point Scale = float * Point.
- inline_ friend Point operator*(float s, const Point& p) { return Point(s * p.x, s * p.y, s * p.z); }
- //! Operator for Point Div = Point / Point.
- inline_ Point operator/(const Point& p) const { return Point(x / p.x, y / p.y, z / p.z); }
- //! Operator for Point Scale = Point / float.
- inline_ Point operator/(float s) const { s = 1.0f / s; return Point(x * s, y * s, z * s); }
- //! Operator for Point Scale = float / Point.
- inline_ friend Point operator/(float s, const Point& p) { return Point(s / p.x, s / p.y, s / p.z); }
- //! Operator for float DotProd = Point | Point.
- inline_ float operator|(const Point& p) const { return x*p.x + y*p.y + z*p.z; }
- //! Operator for Point VecProd = Point ^ Point.
- inline_ Point operator^(const Point& p) const
- {
- return Point(
- y * p.z - z * p.y,
- z * p.x - x * p.z,
- x * p.y - y * p.x );
- }
- //! Operator for Point += Point.
- inline_ Point& operator+=(const Point& p) { x += p.x; y += p.y; z += p.z; return *this; }
- //! Operator for Point += float.
- inline_ Point& operator+=(float s) { x += s; y += s; z += s; return *this; }
- //! Operator for Point -= Point.
- inline_ Point& operator-=(const Point& p) { x -= p.x; y -= p.y; z -= p.z; return *this; }
- //! Operator for Point -= float.
- inline_ Point& operator-=(float s) { x -= s; y -= s; z -= s; return *this; }
- //! Operator for Point *= Point.
- inline_ Point& operator*=(const Point& p) { x *= p.x; y *= p.y; z *= p.z; return *this; }
- //! Operator for Point *= float.
- inline_ Point& operator*=(float s) { x *= s; y *= s; z *= s; return *this; }
- //! Operator for Point /= Point.
- inline_ Point& operator/=(const Point& p) { x /= p.x; y /= p.y; z /= p.z; return *this; }
- //! Operator for Point /= float.
- inline_ Point& operator/=(float s) { s = 1.0f/s; x *= s; y *= s; z *= s; return *this; }
- // Logical operators
- //! Operator for "if(Point==Point)"
- inline_ bool operator==(const Point& p) const { return ( (IR(x)==IR(p.x))&&(IR(y)==IR(p.y))&&(IR(z)==IR(p.z))); }
- //! Operator for "if(Point!=Point)"
- inline_ bool operator!=(const Point& p) const { return ( (IR(x)!=IR(p.x))||(IR(y)!=IR(p.y))||(IR(z)!=IR(p.z))); }
- // Arithmetic operators
- //! Operator for Point Mul = Point * Matrix3x3.
- inline_ Point operator*(const Matrix3x3& mat) const
- {
- class ShadowMatrix3x3{ public: float m[3][3]; }; // To allow inlining
- const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat;
- return Point(
- x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0],
- x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1],
- x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] );
- }
- //! Operator for Point Mul = Point * Matrix4x4.
- inline_ Point operator*(const Matrix4x4& mat) const
- {
- class ShadowMatrix4x4{ public: float m[4][4]; }; // To allow inlining
- const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat;
- return Point(
- x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0],
- x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1],
- x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2]);
- }
- //! Operator for Point *= Matrix3x3.
- inline_ Point& operator*=(const Matrix3x3& mat)
- {
- class ShadowMatrix3x3{ public: float m[3][3]; }; // To allow inlining
- const ShadowMatrix3x3* Mat = (const ShadowMatrix3x3*)&mat;
- float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0];
- float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1];
- float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2];
- x = xp; y = yp; z = zp;
- return *this;
- }
- //! Operator for Point *= Matrix4x4.
- inline_ Point& operator*=(const Matrix4x4& mat)
- {
- class ShadowMatrix4x4{ public: float m[4][4]; }; // To allow inlining
- const ShadowMatrix4x4* Mat = (const ShadowMatrix4x4*)&mat;
- float xp = x * Mat->m[0][0] + y * Mat->m[1][0] + z * Mat->m[2][0] + Mat->m[3][0];
- float yp = x * Mat->m[0][1] + y * Mat->m[1][1] + z * Mat->m[2][1] + Mat->m[3][1];
- float zp = x * Mat->m[0][2] + y * Mat->m[1][2] + z * Mat->m[2][2] + Mat->m[3][2];
- x = xp; y = yp; z = zp;
- return *this;
- }
- // Cast operators
- //! Cast a Point to a HPoint. w is set to zero.
- operator HPoint() const;
- inline_ operator const float*() const { return &x; }
- inline_ operator float*() { return &x; }
- public:
- float x, y, z;
- };
- FUNCTION ICEMATHS_API void Normalize1(Point& a);
- FUNCTION ICEMATHS_API void Normalize2(Point& a);
- #endif //__ICEPOINT_H__
|